

Phase V Status & Remedial Monitoring Report

Former Bird Machine Company Site 100 Neponset Street Walpole, Massachusetts RTN 4-3024222

Prepared for:

Baker Hughes

Sugar Land, Texas 77478

Phase V Status & Remedial Monitoring Report

Former Bird Machine Company Site Walpole, Massachusetts RTN 4-3024222

Prepared for:

Baker Hughes Sugar Land, Texas 77478

Prepared by:

Wood Massachusetts, Inc. 271 Mill Road 3rd Floor Chelmsford, MA 01824 USA

T: 978-692-9090

February 17, 2022

Prepared by:

Samantha Mizusawa

Geologist

Reviewed by:

Kim Henry, LSP Program Manager

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by Wood Massachusetts, Inc. (© Wood Massachusetts, Inc.) save to the extent that copyright has been legally assigned by us to another party or is used by Wood MA under license. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of Wood MA. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third-party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Wood MA at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Wood MA excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Executive summary

On behalf of Baker Hughes, Wood Massachusetts, Inc. (Wood MA), completed this Phase V Status and Remedial Monitoring Report (RMR) for the former Bird Machine Company (BMC) Site located in Walpole, Massachusetts. Baker Hughes is submitting this RMR pursuant to 310 CMR 40.0890 of the Massachusetts Contingency Plan (MCP). This RMR documents the operation of a Comprehensive Remedial Action that is expected to be a Permanent Solution for the Site, and that was installed as described in the Phase IV Final Inspection Report (FIR; AMEC 2012). A Permanent Solution will achieve a condition of No Significant Risk (NSR) for current and reasonably foreseeable site uses. As documented in the Class C-2 Response Action Outcome (RAO) Statement submitted to the Massachusetts Department of Environmental Protection (MassDEP) on December 16, 2011, the Site already achieves the requirements of a Temporary Solution (AMEC 2011a).

Release Abatement Measures (RAMs) have been conducted at several locations between 2005 and 2011 to reduce the mass and concentrations of contaminants at the Site. The Phase II Comprehensive Site Assessment (CSA) reports (AMEC 2011b, AMEC 2011c) indicate that a condition of NSR exists for all areas of the Site except groundwater, where some monitoring well concentrations exceed drinking water criteria (Massachusetts Maximum Contaminant Levels or MMCLs). It is unlikely that groundwater at the Site will be used for drinking water, but the Site is within a Potential Drinking Water Source Area designated by the Town of Walpole (Walpole 2007). Considering this designation, groundwater at the Site is categorized as GW-1 under the MCP. The CSA reports found no current pathway between Site contaminants and the Town's water supply wells to the northeast, but the potential for contaminant movement from a portion of the Site warrants further monitoring.

Areas of groundwater contamination exceeding MMCLs were identified for arsenic, chlorinated Volatile Organic Compounds (cVOCs), and 1,4-dichlorobenzene (DCB). A Monitored Natural Attenuation (MNA) remedy consisting of active monitoring of natural processes was selected to achieve clean up goals and was installed in accordance with Phase IV of the MCP. MNA is considered an Active Remedial Monitoring Program under the MCP and has been designed and constructed to provide a Permanent Solution that achieves a condition of NSR, as described in the FIR (AMEC 2012).

The August 2013 Phase V Status and Remedial Monitoring Report (RMR; AMEC 2013a) coincided with one year of initial process monitoring as described in the FIR. At that time, it was determined that initial process monitoring had confirmed that key MNA processes were underway and a transition to long-term performance monitoring was appropriate. Long-term monitoring is designed to confirm that site conditions remain suitable for MNA, and that overall contaminant concentrations and mass are decreasing within a reasonable timeframe.

The long-term monitoring program performed until 2018 included quarterly sampling at six locations within the plumes that have had significant fluctuations in recent contaminant concentrations above the MMCLs, semi-annual sampling at nine other wells within the horizontal

and vertical extent of the plume areas where previous quarterly sampling shows little variation in concentrations, and annual sampling at 23 wells along the plume lateral or vertical edges where concentrations are below MMCLs. The results over the first five years of monitoring showed consistent results with concentrations at many wells below ½ the MMCL, which is the selected remedial goal for the Site. As a result, some monitoring wells were selected for reduced sampling frequency, or removal from the long-term monitoring program. These changes were implemented beginning in the third quarter of 2018. The current Operation, Maintenance, and Monitoring (OMM) program is summarized in **Table 1** and includes performance of long-term monitoring in March (quarterly), June (quarterly, semi-annual, and annual), September (quarterly), and December (quarterly and semi-annual). Analytes for long-term monitoring consist of the contaminants exceeding MMCLs and their primary breakdown products.

Groundwater sampling results from the September 2021 and December 2021 rounds indicate that MNA processes continue to reduce the overall mass and concentrations of contaminants at the Site. Concentrations within the DCB plume have continued to decline steadily, and the remedial goals have now been achieved for all wells within the plume. While some wells in the interior of the cVOC plume continue to show fluctuating concentrations above the MMCL, the plume is stable or contracting as evidenced by the overall decreasing contaminant trends. Recent arsenic results indicate that the overall plume is stable (i.e. not expanding), however they also show that concentrations within the plume interior can vary significantly. No significant changes to the Conceptual Site Model (CSM) are warranted based on the latest measurements.

Table of contents

1.0	Site Background		1	
	1.1	Disposal Site Description		
	1.2	Release History and Response Actions		
	1.3	Hydrogeological Characteristics	4	
2.0	Operation, Maintenance, and Monitoring [310 CMR 40.0892(2)(A)]			
	2.1	Monitoring Network Design and Operation	6	
	2.2	Control of OHM Spills and Accidents	7	
	2.3	Waste Management	7	
	2.4	Measures to Avoid Adverse Impacts	8	
	2.5	Permits, Licenses and Approvals	8	
3.0	OMM Modifications Since the Preceding Report [310 CMR 40.0892(3)(B)]			
4.0	Evaluations of Effectiveness [310 CMR 40.0892(2)(B)]			
	4.1	Flow Rates	9	
	4.2	Contaminant Extent	11	
		4.2.1 Horizontal Extent of Contamination	12	
		4.2.2 Vertical Extent of Contamination	13	
	4.3	Concentrations Over Time	14	
	4.4	Estimates of Mass Loss & Plume Stability	17	
5.0	Recommendations and CSM [310 CMR 40.0892(2)(D)]			
	5.1	Conceptual Site Model	18	
	5.2	OMM Revisions or Corrective Measures	20	
	5.3	Remedy Operation Status	21	
6.0	Refer	References		

List of Figures

Figure 1:	Site Location Map
Figure 2:	Disposal Site Boundary
Figure 3:	Current Site Features
Figure 4:	Bedrock Elevations from Drilling
Figure 5:	Monitoring Well Locations
Figure 6a:	Shallow Groundwater Elevation Contours, September 2021
Figure 6b:	Shallow Groundwater Elevation Contours, December 2021
Figure 7a:	Deep Groundwater Elevation Contours, September 2021
Figure 7b:	Deep Groundwater Elevation Contours, December 2021
Figure 8:	USGS Hydrographs for Neponset River
Figure 9:	Lateral Extent of Groundwater COCs
Figure 10:	Cross Section A to A'
Figure 11:	Cross Section C to C'
Figure 12:	Cross Section D to D'
Figure 13:	Cross Section E to E'
Figure 14:	NP-MW-601 DCB/TCB Concentrations vs. Time
Figure 15:	MW-702B DCB/TCB Concentrations vs. Time
Figure 16:	LR-MW-122 Arsenic Concentrations vs. Time
Figure 17:	MW-706S Arsenic Concentrations vs. Time
Figure 18:	LR-MW-129 cVOC Concentrations vs. Time

Figure 19:	MB-MW-362 cVOC Concentrations vs. Time
Figure 20:	MB-MW-374 cVOC Concentrations vs. Time
Figure 21:	MW-704S cVOC Concentrations vs. Time
Figure 22:	MW-709S cVOC Concentrations vs. Time
Figure 23:	MW-709D cVOC Concentrations vs. Time
Figure 24:	MW-710S cVOC Concentrations vs. Time
Figure 25:	MW-710M cVOC Concentrations vs. Time
Figure 26:	MW-711D cVOC Concentrations vs. Time
Figure 27:	MW-713D cVOC Concentrations vs. Time
Figure 28:	MW-714S cVOC Concentrations vs. Time

List of Tables

Table 1: Sampling Frequency of Wells in the Monitoring Program

Table 2: MNA Sampling Parameters and Container Types

Table 3: COC Detections for September 2021 and December 2021 Groundwater Monitoring

List of Appendices

Appendix A: Public Notification Letter

Appendix B: BWSC Transmittal Form (to be included in paper copy following eDEP submittal)

Appendix C: Sampling Logs
Appendix D: Laboratory Results

List of Acronyms

bgs Below ground surface
BMC Bird Machine Company
BWSC Bureau of Waste Site Cleanup

cfs Cubic feet per second

cis-1,2-DCE cis-1,2-dichloroethene
CMR Code of Massachusetts Regulations

COC Contaminants of Concern

CSA Comprehensive Site Assessment

cVOC Chlorinated Volatile Organic Compounds

DCB 1,4-dichlorobenzene
DDA Demolition Debris Area
DO Dissolved Oxygen

EPH Extractable Petroleum Hydrocarbons
FIR Final Inspection Report (310 CMR 40.0878)

ft Feet

HASP Health and Safety Plan
LRA3 Lead Release Area 3
LSP Licensed Site Professional

Massachusetts Department of Environmental Protection

MBA Manufacturing Building Area
MCP Massachusetts Contingency Plan

mg/L Milligrams per liter

MMCL Massachusetts Maximum Contaminant Level for drinking water

MNA Monitored Natural Attenuation

mV Millivolts

NAPL Non-aqueous phase liquid

ND Not Detected by laboratory analysis

NSR No Significant Risk

OHM Oil or Hazardous Material

OMM Operation, Maintenance, and Monitoring

ORP Oxidation-Reduction Potential

PCE Tetrachloroethyene

ppb Parts per billion (for groundwater, micrograms per liter)

RAM Release Abatement Measure

RAP Remedial Action Plan
RC Reportable Concentration
RMR Remedial Monitoring Report
ROS Remedy Operation Status
RTN Release Tracking Number

SRS South Rail Spur

SVOC Semivolatile Organic Compound

TCB 1,2,4-Trichlorobenzene

TCE Trichloroethene

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

VC Vinyl Chloride

VOC Volatile Organic Compounds

1.0 Site Background

On behalf of Baker Hughes, Wood Massachusetts, Inc. (Wood MA) completed this Phase V Status Report & Remedial Monitoring Report (RMR) for the former Bird Machine Company (BMC) Site located in Walpole, Massachusetts. This document is submitted pursuant to 310 CMR 40.0892 of the Massachusetts Contingency Plan (MCP). This Report documents operation of Monitored Natural Attenuation (MNA), an Active Remedial Monitoring Program, which is the selected remedy to achieve a Permanent Solution for the Site. The Site location is indicated in **Figure 1** and the following is general information pertaining to the MCP status.

Release Tracking Number (RTN): RTN 4-3024222

Tier Classification: Tier IB

Site Address: 100 Neponset Street

Walpole, Massachusetts 02071-1037

Person Undertaking Response Actions: Baker Hughes

12645 West Airport Boulevard Sugar Land, Texas 77478 Contact: Mr. Chris Clodfelter Phone: (832) 668-0112

Licensed Site Professional (LSP): Kim M. Henry (License #7122)

Wood Massachusetts, Inc.

271 Mill Road

Chelmsford, Massachusetts 01824

Phone: (978) 692-9090

A Tier 1B Permit Application was submitted to the Massachusetts Department of Environmental Protection (MassDEP) on January 10, 2008, including a revised Tier Classification and updated Phase I information combining several linked sites under the subject RTN. Tier 1B permit #W204776 for this RTN was effective on February 28, 2008 and expired on February 28, 2013. Because Remedy Operation Status (ROS; AMEC, 2013b) was achieved and a ROS Opinion filed with the MassDEP on February 13, 2013, renewal of the permit was not required under the MCP.

This RMR is organized as follows:

- Section 1 Site Background
- Section 2 Operation, Maintenance, and Monitoring
- Section 3 OMM Modifications Since the Preceding Report
- Section 4 Evaluation of Effectiveness

- Section 5 Recommendations and CSM
- Section 6 References

1.1 Disposal Site Description

The Site, defined in the MCP as the area where the release "has come to be located," is in the central portion of the 108-acre Property. The approximate universal transverse mercator coordinates for the Site are 4,664,600 North and 312,700 East (World Geodetic System 1984/North American Datum 1983), based on the United States Geological Survey (USGS) Franklin Quadrangle Map, 1987. The Site Location Map, **Figure 1**, shows the regional location of the Site and positions of the nearest municipal water supply wells. Access to the property and Site is obtained via Neponset Street; this road and other Site features are depicted on an aerial photo in **Figure 2**. The Neponset River flows around the Site from the south to the northeast. Ruckaduck Pond is located to the west and was formerly used for water power, with dams maintaining an elevation several feet above the downstream river. An outlet from Ruckaduck Pond (formerly used to power a turbine) channels water through the Site via an underground pipe, discharging to the river on the east side.

As documented in the Phase II CSA, historical maps [including Sanborn Library, LLC Fire Insurance (Sanborn) Maps] were reviewed to determine the previous owner/operators of the property and the operations history. The Property appears to have been developed by 1832 with a "shingle mill" and two houses south of the Site, and a small pond in the present location of Ruckaduck Pond. A map dated 1852 indicates "Smith's Mill" and three houses in the same area. A map dated 1888 indicates the Walpole Emery Mill in the same area, and Old Colony Railroad in its present location along the western edge of the Site. Sanborn maps from 1918 indicate that a railroad spur and three "factory" buildings had been constructed, and an open channel or "tailrace" had been constructed downstream of one of the factory buildings to convey water used for powering machinery back to the Neponset River. The BMC reportedly started operations at the property in 1919.

The 1927 and 1944 Sanborn Fire Insurance Maps indicate larger industrial buildings at the property, including a machine shop, casting shed, lumber shed, assembling, welding shop, and office. A 1940 USGS Topographic Map which contains more detailed topography in the vicinity of the Site, indicates the boundary of the Cedar Swamp, and shows Cedar Swamp Brook. Historical aerial photographs and facility plans from 1931 to 1978 indicate that the Neponset River was rerouted at different times to facilitate the expansion of buildings and the addition of new structures. The open tailrace channel was filled in and replaced with a buried 24-inch concrete pipe in 1966. The industrial buildings on the Property were expanded several times in the 1960s and 1970s.

BMC primarily manufactured and repaired industrial centrifuges on the Property. Baker Hughes Incorporated acquired BMC in 1989. BMC became an operating unit within Baker Process, Inc., a wholly owned subsidiary of Baker Hughes Incorporated. Baker Hughes is the present owner of the Property.

Manufacturing operations at the Property were discontinued in 2004, and most buildings associated with the former BMC were demolished by 2008, except for a fire pump house (building no. 9), garage (19), and guard shack (21) (Figure 3). The garage (19) was demolished in 2016 during RAM activities for construction of a solar photovoltaic array farm. Other site features which remain included floors and frost walls of demolished buildings 1, 3, 5, 19, 20, 22, and 23; frost walls of demolished buildings 4, 4A, 6A, 7A, 8, 8A, 12, and 15; and pavement around the former buildings except where it was removed for RAM excavations. Figure 3 also shows remaining subsurface drains that lead to outfalls in the Neponset River. These drains were connected to the former buildings (roof drains or sanitary lines) or to surface catch basins, a few of which still remain as indicated in the figure. Note that the drain line connecting the pond and the river was installed within a former masonry-lined tail race; the masonry was observed in place near the southeast wall of former building 1 during building demolition and may still exist on either side of the drain in other areas. Figure 3 shows several subsurface structures which were left in place following building demolition: a 10,000-gallon concrete wastewater sump that was cleaned and filled with sand; several sections of Transite pipe encased in concrete; a 5,000-gallon steel wastewater tank that was closed in place near former building 4 by filling with concrete; and a reinforced-concrete base for a wastewater pump station adjacent to the 5,000-gallon tank. The RAM excavation areas in Figure 3, and the areas above the structures left in place, have been filled to grade with sandy soil.

The Property is zoned Limited Manufacturing, which allows a wide range of commercial, institutional, and residential uses. The Property is also grandfathered for industrial use. Beginning in 2016 a portion of the site was leased to Bird Machine Solar Farm, LLC (BMSF) for redevelopment as a solar photovoltaic array farm. Construction activities were conducted as a RAM because disturbance of soil within the Disposal Site boundary was required to install support pilings and subsurface utilities. Construction activities were completed in late 2016 and included surrounding the entire solar farm with a chain link fence. Current human receptors at the Site are limited to occasional trespassers and utility workers periodically inspecting or working on the solar panels.

The area surrounding the property has a mixture of residential and recreational (undeveloped forests and wetlands) uses. In 2005 there were 273 residences with an estimated 743 residents located within ½-mile of the Site (Weston, 2005). There are no inhabited houses or private water supply wells within 500 feet (ft.) of the Site. There are no schools, day care centers, playgrounds, or parks within 500 ft. of the Site. The 1987 USGS Franklin quadrangle map depicts the Boyden School located approximately 0.35 mile southeast of the Property, and 0.5 miles southeast of the Site. The nearest public water supply wells are slightly over one-mile northeast of the Site as indicated in **Figure 1**.

1.2 Release History and Response Actions

The Site includes multiple RTNs due to the discovery of various releases at the property during past investigations. Timing of releases is not well known, and the Site was used for manufacturing from at least 1832 to 2004. The RTNs were linked together to facilitate administrative compliance

with MCP requirements. Three exposure areas were identified and evaluated in the October 2011 Phase II CSA Report (AMEC 2011b): the Manufacturing Building Area (MBA), the Lead Release Area 3 (LRA3), and the South Rail Spur (SRS). A separate exposure area was addressed in the December 2011 Phase II CSA Addendum (AMEC 2011c); the Demolition Debris Area (DDA). All four areas are shown on **Figure 2**. Release Abatement Measures were conducted at several locations within the DDA, MBA, and LRA3 to reduce the mass and concentrations of contaminants at the Site. The CSAs indicate that a condition of No Significant Risk exists for all areas of the Site except groundwater within the MBA, where some monitoring well concentrations exceed drinking water criteria.

The remaining contamination at the MBA includes metals (primarily antimony, barium, lead, nickel, and zinc) and Extractable Petroleum Hydrocarbon (EPH) compounds in soil. The concentrations of metals and Semivolatile Organic Compounds (SVOCs) have been reduced significantly by soil excavation RAMs. The remaining elevated concentrations in soil are under and around the former locations of manufacturing buildings. These soil concentrations were found to pose No Significant Risk for current and future foreseeable uses of the Site.

Groundwater sampling indicates that elevated concentrations of arsenic and cVOCs are present in the area adjoining the river downgradient of the manufacturing buildings. Groundwater concentrations in these areas exceed drinking water criteria. Historically, chlorobenzenes have been elevated in two wells located in the north parking area; however, for the past several years, concentrations have remained below the MMCL. The updated extent of these exceedances is provided in Section 4 based on the results of recent monitoring. It is unlikely that groundwater at the Site will be used for drinking water, but the Site is within a Potential Drinking Water Source Area designated by the Town of Walpole (Walpole 2007). Considering this designation, groundwater at the Site is categorized as GW-1 under the MCP.

1.3 Hydrogeological Characteristics

The southeastern portion of the Site includes sand and gravel fill up to 10 feet thick; the fill is generally thickest where the Neponset River was rerouted. Beneath the fill layer, a 5-foot to 10-foot thick silty sand layer is present, which thins to a few feet in the west where bedrock is at a depth of 10 feet or less. The bedrock surface slopes downward to the east and is typically 20 to 30 feet deep near the river. Where bedrock deepens, the silty sand is underlain by a coarser silty sand and gravel in thicknesses of up to 20 feet. Cross sections including the latest contaminant findings are presented in Section 4.

Most borings at the Site were not cored into rock, and drilling refusals are generally interpreted as the bedrock surface unless inconsistent with borings that were cored or hammered to confirm rock. A bedrock low of about 45 ft. below ground surface (bgs) occurs in the east-central portion of the Site near monitoring well MW-708. Bedrock cored during the FIR monitoring well installations consisted of two distinct rock types, conglomerate and shale. The interpreted bedrock surface map is provided in **Figure 4**.

Bedrock at MW-702 to the northwest and MW-710 to the east consisted of alternating layers of consolidated to unconsolidated conglomerate containing a mixture of angular to rounded boulders and sand. The layers consisted of approximately 5-foot thick consolidated rock alternating with approximately 3-foot thick unconsolidated boulders and sand. These alternating layers are consistent with highly fractured and weathered conglomerate material having been repeatedly faulted and folded. Bedrock at MW-708, a few hundred feet west of MW-710, consisted of slightly weathered shale in approximately 2-centimeter thick bedding layers. These layers were oriented vertically, suggesting previous faulting and folding in the area.

The water table beneath the Site occurs approximately 1 to 5 ft. bgs in either fill or sand. Bedrock is believed to impede vertical flow as it is generally less transmissive than the shallow sand aquifer, depending on competency. Groundwater in the sand aquifer appears to be discharging to the Neponset River or its associated wetlands during much of the year. The water table in the areas adjacent to the river is typically less than 1-foot bgs. The horizontal direction of groundwater flow is toward the river from both sides. The vertical direction of flow is upward, discharging to the river. Vertical flow near Ruckaduck Pond is expected to be downward since the dam impounds surface water at an elevation above the water table. Mapped shallow and deep piezometric surfaces for the recent monitoring events are presented in Section 4.

Groundwater flow directions in specific areas of the MBA vary depending on water table conditions. Groundwater elevations were mapped for monitoring events in October 2006, July 2008, and April 2009 in the Remedial Action Plan (RAP; AMEC 2011d) and, based on river flow records, these three times appear to represent a range of typical median, low, and high-water tables, respectively. Significant changes in the water table surface are apparent between the three events, particularly in the southeast portion of the Site. Aside from precipitation and river flow, another difference between the events was that in 2006 the MBA buildings and pavement were still intact; while in 2007 the buildings were demolished and some pavement removed. Removal of the impervious structures may have affected infiltration patterns. Lateral groundwater seepage velocities in the sandy soils are estimated to range between 0.1 and 0.9 feet per day in the MBA, based on these three mapped events.

2.0 Operation, Maintenance, and Monitoring [310 CMR 40.0892(2)(A)]

The MNA remedy consists of an Active Remedial Monitoring Program as defined at 310 CMR 40.0006.

Initial process monitoring was conducted in the first year of OMM (August 2012 – August 2013) through quarterly sampling and measurements of water levels in the monitoring wells and river. Following the first year of initial process monitoring, it was determined that key MNA processes were underway and a transition to long-term performance monitoring was appropriate. Long-term monitoring is designed to confirm that site conditions remain suitable for MNA, and that overall contaminant concentrations and mass are decreasing within a reasonable timeframe.

Analytes for long-term monitoring consist of the contaminants exceeding MMCLs and their primary breakdown products. Analytes for the current reporting period are summarized in **Table** 2 and include arsenic and volatile organic compounds (VOCs). The long-term monitoring program initially included continued quarterly sampling at 6 locations within the plumes that have had significant fluctuations in recent contaminant concentrations above the MMCLs, semiannual sampling at 9 other wells within the horizontal and vertical extent of the plume areas where previous quarterly sampling shows little variation in concentrations, and annual sampling at 23 wells along the plume lateral or vertical edges where concentrations are below MMCLs. The results over the first five years of monitoring showed consistent results with concentrations at many wells below ½ the MMCL, which is the selected remedial goal for the Site. As a result, some monitoring wells were selected for reduced sampling frequency, or removal from the long-term monitoring program. Five of the seven wells in the DCB plume were removed from sampling; four of these wells are consistently non-detect (MW-700S, MW-701S, NP-MW-602, and NP-MW-603), and the fifth well (MW-702D) is consistently detected at a concentration below ½ the MMCL. Seven of the 25 wells in the VOC plume were removed from the sampling program due to non-detect concentrations, including LR-MW-124, LR-MW-129, MW-710D, MW-708S, MW-708D, MW-711S, and MW-712S. Four additional wells (MW-707D, MW-709D, MW-710S, and MW-711D) were removed from semi-annual sampling to annual sampling due to consistently low concentrations detected. Due to the fluctuating concentrations, no modifications were made to monitoring wells in the arsenic plume. These changes were implemented beginning in the third quarter of 2018.

The type and frequency of current OMM under this program are summarized in the following sub-sections.

2.1 Current Monitoring Network Design and Operation

Long-term performance monitoring is currently performed at 4 monitoring wells on a quarterly basis (March, June, September, and December), 5 monitoring wells on a semi-annual basis (June and December), and 17 monitoring wells on an annual basis (June). The current OMM sampling plan for long-term performance monitoring is provided in **Table 1**. Prior to sample collection, synoptic groundwater measurements are obtained from 59 monitoring wells. The locations of monitoring wells are indicated in **Figure 5**.

Groundwater sampling is performed with low-flow sampling techniques using a peristaltic pump. Each monitoring well is equipped with dedicated polyethylene tubing, with the intake at the approximate center of the saturated screen section and at least two feet above the bottom of the well to prevent the disturbance of any sediment which may be present. The water level is measured and recorded before starting the pump. Sampling records from previously sampled wells are reviewed to determine initial flow rates, or purging will be started at flow rates of approximately 0.2 to 0.5 liters per minute. The flow rate is adjusted to ensure that little or no drawdown (less than 0.3 feet) occurs in the well. If this level of drawdown cannot be sustained, the pumping rate is reduced to the minimum capabilities of the pump to avoid pumping the well dry. The level of the water is not allowed to drop below the intake on the pump to avoid the possible entrainment of air into the sample. If the recharge rate is very low, sampling commences after the well has

been purged and groundwater has recharged to a sufficient level to purge one system volume (volume of tubing) and then the appropriate volume of sample is collected.

During the purging of the well, the field parameters (pH, temperature, conductivity, dissolved oxygen, and redox potential) are monitored every 5 minutes, or as appropriate, using a flow-through cell, until the parameters stabilize. Turbidity is monitored at the same time intervals as the other field parameters, but the sample is collected through a tee valve prior to the flow-through cell. Field parameters are considered stabilized when, for three consecutive readings, the temperature is within \pm 3%, pH is within \pm 0.1, dissolved oxygen is within \pm 10% or changes less than 0.3 milligrams per liter (mg/L), redox potential is within \pm 10 millivolts (mV), conductivity is within \pm 3%, and turbidity is within \pm 10%. An attempt is made to purge the well until turbidity of the purged water is less than 5 nephelometric turbidity units (ntu).

After purging is completed, the discharge tubing is disconnected from the flow through cell and groundwater is pumped directly into the proper sample containers. All sample containers are filled by allowing the water to flow gently down the inside of the container with minimal turbulence. Samples requiring dissolved constituent analysis are collected by pumping water through a new 0.45 µm filter into the appropriate sample container using a peristaltic pump and new silicone tubing. Sample containers, preservatives, volumes, hold times, and shipping requirements are summarized in **Table 2**. Each sample is labeled and placed into a cooler with ice for shipment to the laboratory. Sampling activities are documented using pre-printed field data sheets to record well purging and any field screening results.

2.2 Control of OHM Spills and Accidents

Site activities consist of groundwater sampling and analysis and water table measurements. Limited amounts of Oil or Hazardous Material (OHM) are associated with these activities, mainly consisting of petroleum or lubricants in vehicles or generators. Equipment containing OHM is operated in paved areas to the extent possible. Safe engineering and construction practices are implemented during all phases of work, as described in the Health and Safety Plan in the FIR.

Spills of OHM will be reported and addressed in accordance with the MCP. Any impacted material resulting from a spill of machine oil or other hazardous substances will be placed in 55-gallon waste disposal drums or other approved containers for waste characterization, off-site transportation, and disposal. Equipment that comes in contact with contaminant residuals in soil or groundwater will be decontaminated before leaving the Site. Any wash water used will be managed as described in Section 2.3. No spills of OHM occurred during the current reporting period.

2.3 Waste Management

OMM field activities at the site typically do not generate decontamination water in quantities requiring disposal. Excess groundwater collected during OMM sampling is poured back into the boring or well from which it was obtained as required by MassDEP. Development water that

cannot be returned to the boring or well, and all excess decontamination water and spill wastes are containerized and characterized for disposal at a licensed offsite waste facility. If contaminant concentrations in development water are below reportable concentrations (RC), then the water can be discharged to the pervious land surface near the well. When waste is generated from site activities, characterization and disposal are conducted within 120-days of generation.

2.4 Measures to Avoid Adverse Impacts

Field crews periodically traverse and work within wooded and wetland areas east of the Neponset River to gauge and sample several monitoring well locations. The well locations are accessed on foot to minimize adverse impacts to these sensitive areas.

2.5 Permits, Licenses and Approvals

No federal permits or approvals are required to implement OMM activities. The work is conducted under the direction of a Licensed Site Professional under the MCP as indicated in Section 1 and is subject to the Public Involvement requirements of the MCP. The public notification letter for this report is provided in **Appendix A**. The Bureau of Waste Site Cleanup (BWSC) Transmittal Form required under the MCP will be provided in **Appendix B** in the paper copy of this RMR, following final eDEP submittal.

Monitoring well installations within 100-foot wetland buffers and 200-foot Riverfront Area buffers were subject to the wetland protection requirements of the Walpole Conservation Commission and complied with their Order of Conditions. Ongoing site activities, which consist only of monitoring well sampling and gauging, are not subject to Conservation Commission requirements. All waste materials generated during response actions that cannot be reused are transported to appropriately licensed disposal facilities, in accordance with state and federal regulations.

3.0 OMM Modifications Since the Preceding Report [310 CMR 40.0892(3)(B)]

OMM activities are performed consistent with the current OMM schedule and will include performance of long-term monitoring in March (quarterly), June (quarterly, semi-annual, and annual), September (quarterly), and December (quarterly and semi-annual). Results discussed in this report include wells sampled in September and December 2021.

4.0 Evaluations of Effectiveness [310 CMR 40.0892(2)(B)]

MNA is expected to reduce concentrations of contaminants to below drinking water standards in the shallow sand aquifer at the Site, and to achieve or approach background levels. For the purpose of Presumptive Certainty in achieving or approaching background, in accordance with MassDEP Policy WSC-04-160, it is assumed that the background level of arsenic is approached at a level of 5 parts per billion (ppb) which is one-half of the MMCL criterion for this contaminant. Similarly, for cVOCs and chlorobenzenes, background would be approached at one-half of the

MMCL standards: 35 ppb for 1,2,4-Trichlorobenzene (TCB); 2.5 ppb for tetrachloroethyene (PCE), trichloroethene (TCE), or DCB; and 1 ppb for vinyl chloride (VC).

The principal MNA processes are expected to include desorption, dilution, and biodegradation, considering site conditions described in the CSA (AMEC 2011c). The Site has relatively high groundwater flow rates with seepage velocities estimated in the range of 37 to 330 ft./yr. through sandy material. Neponset River flow is estimated at 200 to 400 times greater than the groundwater discharge, based on estimates in the CSA. Anaerobic conditions and dechlorination products are observed in wells having organic contaminants. Because releases are believed to be at least decades old, plumes of contaminants likely have achieved steady state or declining concentrations. However, source removals in portions of the vadose and saturated zones during 2005 to 2008 may have affected hydrogeology and plume stability in some areas. Therefore, in the absence of any continuing sources, contaminants sorbed to the aquifer matrix are expected to continue desorbing to groundwater, biodegrading (for organics) in the aquifer, and discharging to the river. Plumes appear to be relatively dilute based on low ratios of contaminant maximum concentrations to solubilities (<0.08%), and plume widths are generally less than 200 feet.

MNA effectiveness will be demonstrated through declining contaminant concentrations and reduced plume size within a reasonable timeframe, and persistence of site conditions favorable to MNA processes. Data analysis includes graphic or tabular displays of the following measurements for contaminants of concern (COCs) and geochemical indicators:

- groundwater flow directions
- groundwater and surface water flow rates
- plume extent (horizontal & vertical)
- concentrations versus time

Data analysis includes evaluation of plume stability and loss of contaminant mass, and where possible estimates of remediation times. Evaluation of progress in achieving cleanup goals can be difficult due to subsurface and/or measurement variability, and seasonal or storm-related variations in groundwater movement. Therefore, multiple lines of evidence will be used to reduce uncertainty in evaluating the overall effectiveness. Following the evaluations in this section, the CSM will be updated as needed to ensure that it considers all data collected to date.

4.1 Flow Rates

Water level measurements were collected at shallow and deep (above bedrock) wells at the beginning of each monitoring event, on September 20, 2021 and December 1, 2021. Shallow and deep-water table contours were prepared and are provided in **Figures 6 and 7**. Neponset River flows at the nearest stream gauge in Norwood MA (USGS, 2019) are indicated on **Figure 8**.

During the September 20, 2021 synoptic water level round, discharge rates in the Neponset River averaged 38 cubic feet per second (cfs), which is approximately 25 cfs above long-term median

values for that date (13 cfs). During the December 1, 2021 water level round, discharge rates in the Neponset River averaged 45 cfs, which is approximately equal to the long-term median values for that date (45 cfs). The discharge rate for the September round was above the long-term trend. The relative flow rate for the September synoptic gauging event corresponds to above-average precipitation leading up to the gauging event; 6.14 inches of rain were recorded between September 1 and September 20, 2021 where the long-term trend for the same period is 3.40 inches. The discharge rate for the December round was similar to the long-term trend. Although there was below-average precipitation leading up to the gauging event on December 1, 2021, above-average precipitation was recorded in July, September, late October, and November 2021.

The long-term median data illustrated in **Figure 8** suggest that typical river flow is at the annual high in late March to early April, then steadily declines through mid-July when flows reach the annual low. The low-water conditions persist through the summer months, until late September when river elevations begin to slowly increase. This increasing trend continues through the fall and winter months, until the maximum flow rate is again reached in late March. Quarterly sampling is conducted during periods of high flow in March, moderate to low flow in June, low flow in September, and moderate flow conditions in December. In general, during the current reporting period, the shallow water table measurements in September were similar in elevation compared to December. Typically, the September shallow water table measurements would be lower in elevation compared to December. However, due to high precipitation recorded in July, September, late October, and November 2021, the shallow water table measurements were similar between the two rounds.

Water table contours generated from the September 20, 2021 gauging results show shallow groundwater flow in an easterly direction with pronounced mounding of the water table in the area between the Neponset River and monitoring wells MW-706S, MW-365, and MW-712S (Figure 6a). There were very minor weather events during the preceding week with rain on September 15th that totaled 0.06 inches of precipitation, rain on September 16th that totaled 0.30 inches of precipitation, rain on September 17th that totaled 0.01 inches of precipitation, and rain on September 19th that totaled 0.34 inches of precipitation. However, it should be noted that there was a significant weather event on September 2nd that totaled 4.23 inches of precipitation. The December 2021 results show shallow groundwater flow in an easterly direction (Figure 6b), with pronounced mounding of the water table in the area between MW-706S and MW-365. There was one very minor weather event that occurred during the preceding week with rain on November 27th that totaled 0.04 inches of precipitation. In general, hydraulic gradients are steepest near Ruckaduck Pond to the west and become flatter near the Neponset River to the east. The water table is flattest in the southeast portion of the site, which may reflect varying degrees of infiltration through surficial fill due to heterogeneities in fill material and compaction, or greater infiltration in low areas where runoff ponds. The steep hydraulic gradients observed in the western portion of the site are caused by artificial retention of surface water in Ruckaduck Pond, which provides a source for groundwater recharge.

Lateral hydraulic gradients were calculated for the area between MW-711 and MW-709, which is near the center of the cVOC plume where it discharges to the river. Lateral gradients for shallow

wells across the top of the aquifer were 0.004 ft./ft. in December. Lateral gradients for deep wells across the bottom of the aquifer were 0.003 ft/ft. in December.

The lateral seepage velocity was calculated for the bottom of the aquifer at MW-711D and MW-709D, located near the center of the cVOC plume. This location is where most contaminants are present, both horizontally and vertically. The bottom of the aquifer in this area consists of silty sand and gravel, which is comparable to the aquifer material at DD-MW-201 where hydraulic conductivity was measured during the DDA Phase II investigations (Weston 2007a). Based on the above lateral gradient, and the measured hydraulic conductivity of 13 ft./day for silty sand & gravel at DD-MW-201, and assuming an effective porosity of 0.23, the lateral seepage velocity at the bottom of the aquifer in this area is calculated to be 0.17 ft./day in December.

Where shallow and deep well couplets are present, the difference in piezometric surfaces have been historically calculated to determine the vertical component of flow between the shallow and deep aquifers. After several years of monitoring, it became evident that the vertical flow directions can be variable between monitoring rounds. These variations are likely attributable to the amount, and timing of precipitation leading up to the synoptic gauging events. In general, the following vertical flow directions are typically observed:

- Neutral flow in the northern part of the site where the aquifer is thinner;
- Upward flow at MW-709 and MW-710 where the cVOC plume discharges to the River:
- Slightly downward flow at LR-MW-122 at the downgradient edge of the arsenic plume;
- Slightly downward flow in the central area, except at MW-714 and MW-713; and
- Variable vertical flow in the central portion of the site where infiltration of precipitation affects hydrogeologic conditions.

4.2 Contaminant Extent

This section of the RMR documents the latest findings regarding the extent of groundwater contamination. Sampling logs are provided in **Appendix C**, and complete laboratory results (including detection limits for compounds not detected) are provided in **Appendix D**. Summaries of detections are provided for COCs in **Table 3**. Table 3 includes recent historic results for comparison to the latest results; results from the current reporting period are shown in black font, while older results are shown in grey. Horizontal extents are illustrated in **Figure 9**, and vertical extents are shown in **Figures 10 to 13**.

Evaluations of contaminant concentration trends over time are discussed in Section 4.3. The concentrations listed parenthetically in the following text are for the most recent (December 2021) sampling round unless otherwise specified.

4.2.1 Horizontal Extent of Contamination

Wells sampled during the current reporting period included wells sampled on a quarterly (September and December) and semi-annual basis (December). Wells sampled during the previous reporting period included those sampled on a quarterly basis (March and June), on a semi-annual basis (June), and on an annual basis (June). Sampling and analysis of chlorobenzenes, arsenic and cVOCs was conducted in June, September, and December from the wells shown on **Table 1**.

Chlorobenzene Results

Sampling for DCB and TCB was conducted in June from the wells shown on **Table 1**. Sampling for DCB and TCB was not conducted during the current reporting period (September and December). DCB and TCB detections for June 2021 are summarized below relative to their respective MMCLs of 5 ppb and 70 ppb.

- MW-702B: In June, DCB was below the 5 ppb MMCL (1 ppb) and TCB was below the 70 ppb MMCL (14 ppb).
- ▶ NP-MW-601: In June, DCB was non-detect and TCB was below the 70 ppb MMCL (5.6 ppb).

The DCB plume is centered around well NP-MW-601 and MW-702B. The DCB plume boundary on **Figure 9** is illustrated as a dashed line to represent chlorobenzene concentrations below the MMCL at NP-MW-601 and MW-702B in June 2021. Temporal trends of chlorobenzene concentrations are discussed in detail in Section 4.3.

Arsenic Results

Sampling and analysis of arsenic was conducted in September and December from the wells shown on **Table 1**. Arsenic detections are summarized below relative to the 10 ppb MMCL.

- ▶ LR-MW-122: Sampled in December only. Arsenic was above the 10 ppb MMCL (15 ppb).
- ▶ MW-706S: Arsenic was above the MMCL in the primary sample (17.2 ppb) and in the field duplicate sample (18.2 ppb) during the September sampling round. In December, arsenic was below the MMCL in the primary sample (4.5 ppb) and in the field duplicate sample (4.7 ppb).

The arsenic plume encompasses LR-MW-122, MB-MW-371, MW-703, and MW-706. The plume is illustrated as dashed and solid on **Figure 9** to show the concentrations above the MMCL at LR-MW-122 (solid line) and below the MMCL at MW-706S (dashed line) noted during the December 2021 sampling round. The line is dashed adjacent to MB-MW-371 and MW-703 as they were not sampled during the current reporting period, but were non-detect during the previous reporting period in June 2021.

Arsenic concentrations observed during the current reporting period were typical of recent trends. Temporal trends of arsenic concentrations are discussed in detail in Section 4.3.

cVOC Results

Sampling and analysis of cVOCs was conducted in September and December from the wells shown on **Table 1**. cVOC detections are summarized below relative to the 5 ppb MMCL for PCE and TCE, and the 2 ppb MMCL for VC. Unless noted, only results for the primary samples are discussed below; refer to **Table 3** for field duplicate results.

- ▶ MB-MW-374: Concentrations of PCE (17, 19 ppb) were above the MMCL in the September and December sampling rounds, respectively. TCE (4 ppb) was below the MMCL in the September sampling round. However, TCE (5.1 ppb) was above the MMCL in the December sampling round. VC was non-detect for both the September and December sampling rounds.
- ▶ MW-709S: The concentrations of PCE (46, 48 ppb), TCE (22, 52 ppb), and VC (4.5, 4.2 ppb) were above the MMCLs in the September and December sampling rounds, respectively.
- ▶ MW-713D: Concentrations of PCE (16 ppb) and TCE (5.7 ppb) were above the MMCL during the December sampling round. VC was non-detect.
- ▶ MW-714S: PCE was non-detect during the September sampling round. The concentration of PCE (1.2 ppb) in December was detected, but below the MMCL. TCE was non-detect during the September sampling round. The concentration of TCE (8.3 ppb) was above the MMCL in December. Concentrations of VC (1.5, 1.2 ppb) were below the MMCL in the September and December sampling rounds, respectively.

Samples collected from MB-MW-362, MW-704S, and MW-710M had one or more compounds detected; however, there were no MMCL exceedances.

There are two cVOC plumes as depicted on **Figure 9**; a smaller plume centered on MW-707, and a larger plume centered around MW-704, MW-709, MW-710, MW-713, MW-714, and MW-374. The smaller cVOC plume is surrounded by a dashed boundary line to represent the PCE below the MMCL at MW-707. This well has remained below the MMCL since December 2015. The larger plume is surrounded by a boundary line that is dashed where cVOCs are present below the MMCL and solid where cVOCs exceed the MMCL.

Concentrations of cVOCs observed during the current reporting period were consistent with long-term trends. Temporal trends of cVOCs concentrations are discussed in detail in Section 4.3.

4.2.2 Vertical Extent of Contamination

DCB results suggest that chlorobenzene contamination is historically present within the relatively thin (12-foot thick) overburden sandy aquifer at monitoring well NP-MW-601, and shallow bedrock well MW-702B. The DCB concentrations at NP-MW-601 and MW-702B have been below

the MMCL since 2016. Therefore, the vertical extent of chlorobenzenes above the MMCL during the current reporting period is not shown on **Figure 10**.

The vertical extents of PCE and other cVOCs are indicated in **Figures 11** to **13**. The extent of contamination is drawn to include wells where samples had cVOC concentrations exceeding the MMCLs from the most recent sampling round in December 2021. On **Figure 11**, the estimated area of cVOCs lies within the deep overburden aquifer at MB-MW-374 and in the shallow overburden aquifer at MW-714, due to the exceedances during the December 2021 sampling round. The estimated area of cVOCs depicted on **Figures 12** and **13** was unchanged compared to the previous RMR, and is contained within the shallow overburden aquifer at MW-709, and the deep overburden aquifer at MW-713. Note the horizontal scales differ on these cross-sections but the vertical scales are the same. Compared to the depiction in the FIR, the vertical extent is similar in terms of most of the contamination above MMCLs occurring 10 or more feet below the water table within the site and surfacing along the eastern edge of the river.

The water table elevations in **Figures 10** to **13** have been updated to represent conditions observed during the latest (December 2021) synoptic gauging round.

4.3 Concentrations Over Time

Plots of contaminant concentrations over time at monitoring wells with current or historic MMCL exceedances are presented in **Figures 14** and **15** for DCB/TCB; **Figures 16** and **17** for arsenic; and **Figures 18** to **28** for cVOCs. Results are discussed by contaminant type in the following paragraphs.

DCB/TCB measurements are available since June 2006 at NP-MW-601 (**Figure 14**). In general concentrations of DCB and TCB at this well have fluctuated seasonally with a consistent declining trend observed since 2012. At NP-MW-601 concentrations of TCB and DCB have not exceeded their respective MMCLs since December 2015 and have remained below their remedial goals since March 2018.

Concentrations of DCB/TCB have been monitored at MW-702B since June 2012 (**Figure 15**). Over time, chlorobenzenes have shown an overall decrease in concentration, from a high of 72 ppb for TCB in February 2013 to a range of 27 to 53 ppb from September 2017 to June 2018, and 2.2 to 7.0 ppb for DCB from 2012 to June 2018. Concentrations remain stable below the MMCL, with the last exceedance for TCB occurring in September 2013 and the last exceedance for DCB occurring in December 2014. DCB and TCB are currently below their respective remedial goals.

Arsenic results are available since June 2006 at LR-MW-122 (**Figure 16**). Generally, arsenic concentrations at LR-MW-122 (sampled semi-annually) show seasonal fluctuations with lower concentrations observed during the winter months and higher concentrations observed during the summer months. The maximum arsenic concentration at this well (75 ppb) was observed in July 2010. Immediately following the July 2010 round, concentrations dropped to near the MMCL. Over the past ten years, arsenic has fluctuated above and below the MMCL with concentrations

ranging from 0.9 ppb to 45.4 ppb. The arsenic concentration at this location was above the MMCL in December 2021 (15 ppb).

Arsenic results are available since June 2012 at MW-706S, and temporally illustrated on **Figure 17**. During the first several years of monitoring, arsenic was typically detected between 2.4 ppb and 21.2 with occasional elevated concentrations in the 40.8 to 86.6 ppb range. During the December 2015 sampling round, arsenic concentrations at MW-706S significantly increased to 165.7 ppb. Although arsenic results decreased in September 2016 to 18.3 ppb, concentrations spiked to an all-time high of 182 ppb during the December 2016 round. During the four subsequent rounds, concentrations fluctuated from a low of 8.1 ppb (below the MMCL) to 156.2. Since March 2018, arsenic concentrations have been consistent with concentrations observed during the first several years of monitoring. During the most recent sampling rounds, arsenic was detected at 11.4 ppb in March 2021 and 96 ppb in June 2021. In general, concentrations fluctuate seasonally with highest concentrations in the winter, next highest concentrations in the spring and fall, and lowest concentrations in the summer. Since 2017, arsenic has showed an overall declining trend; although the seasonal trend observed previously was opposite during the winter 2020 and spring 2021 events. During summer and winter 2021 events, arsenic results returned to a more overall declining trend.

cVOC measurements are available since June 2007 for LR-MW-129, since July 2008 for MB-MW-362, and since April 2009 for MB-MW-374. Trends of individual cVOC analytes (PCE, TCE, and VC) were generally consistent at each well, and are plotted on **Figures 18** to **20**.

- ➤ Concentrations of cVOCs in LR-MW-129 declined rapidly over the initial year (2007-2008); and all analytes have been below the laboratory detection limit for the past several years. This monitoring well is no longer included in the sampling plan.
- Concentrations at MB-MW-362 show a sharp increase between late 2009 and mid-2010, and then have declined steadily each year. Prior to the December 2017 sampling round, all cVOCs were non-detect for the previous four sampling rounds. In December 2017, TCE was detected above the MMCL (6.1 ppb). In June 2017, vinyl chloride was non-detect; however, TCE (11 ppb) and PCE (6.3 ppb) were detected at concentrations above MMCLs. The TCE and PCE concentrations in September 2018 were also above the MMCLs with VC not detected. The December 2019 sampling had no exceedances of the MMCLs with detections of TCE at 4.2 ppb and PCE 2.6 ppb and VC was not detected. The October 2020 and December 2020 sampling rounds had no exceedances of the MMCLs with detections of TCE (3.1, 4.3 ppb) and PCE (1.2, 1.6 ppb), respectively. VC was not detected in October and December 2020. PCE and VC were non-detect during the June 2021 sampling round. TCE was detected at 3.5 ppb, however, June 2021 had no exceedances of the MMCLs. During the December 2021 sampling round, PCE and VC were non-detect. TCE was detected at 1.3 ppb, but below the MMCL. PCE, TCE, and VC were below the remedial goal during the December 2021 sampling round.
- Concentrations at MB-MW-374 were near MMCL criteria until mid-2010, then generally increased between mid-2010 and December 2012. Since 2012, detected

concentrations of PCE have fluctuated between 2.4 ppb and 72 ppb, TCE between 1.3 ppb and 36 ppb, and VC between non-detect and 12 ppb. Through 2017, trends show decreasing concentrations of parent cVOC compounds, and increasing concentrations of the daughter products, indicating reductive dechlorination is occurring. Since 2017, PCE, TCE, and VC have been generally stable with seasonally varying concentrations.

Concentrations of cVOCs at the newer wells with MMCL exceedances generally showed the following trends over approximately seven years of measurements to date, as indicated in **Figures 21 to 28**:

- Slightly decreasing with concentrations below MMCL criteria at MW-704S. PCE, the only contaminant with historic concentrations above the MMCL, fell below the MMCL for the first time during the June 2014 monitoring round, and has remained below the MMCL during all subsequent rounds, including during the current monitoring period. VC has not been detected in sampling conducted since June 2012. cVOC Concentrations have remained at, or below the remedial goals since December 2016.
- ▶ Fluctuating concentrations above MMCL criteria at MW-709S. Concentrations of PCE, TCE, and VC increased over the first year and a half of monitoring, and an overall declining trend has been observed since 2013.
- ► Flat with concentrations near MMCL criteria at MW-709D. The last MMCL exceedance at this well occurred in June 2015, and concentrations have remained below the remedial goal since June 2017 and have been non-detect since 2019.
- ▶ VC has been non-detect for six consecutive sampling rounds at MW-710S. PCE and TCE concentrations continue to decline and have remained below the remedial goals since June 2018, with non-detect concentrations in 2020 and 2021.
- Overall decreasing concentrations for PCE, TCE, and VC, with recent concentrations below the MMCL criteria at MW-710M. PCE and TCE were below the MMCL, and VC was non-detect during the last sampling round in December 2021. (VC has been nondetect since December 2014). cVOCs have remained at or below the remedial goal during the last two sampling rounds in June and December 2021.
- ▶ Steadily decreasing trends since 2013 at MW-711D. All cVOCs have remained below their respective MMCLs since June 2015 and have achieved their remedial goals.
- Increasing trends of PCE and TCE from 2015 to 2017 at MW-713D were followed by flat, then decreasing trends over the past several years. PCE and TCE concentrations remain above MMCL criteria. In general, VC concentrations have shown an increasing trend as PCE and TCE concentrations decreased, suggesting reductive dechlorination may be occurring. However, VC was non-detect during the December 2021 sampling round.
- Sharply fluctuating concentrations of PCE and TCE at MW-714S. Higher concentrations of PCE and TCE have typically been observed in March, with lower concentrations in June, September, and December. In 2012 and 2013 PCE concentrations exceeded TCE concentrations; however, in 2014 the PCE and TCE peaks coincided. Since 2015 TCE

concentrations have exceeded PCE concentrations, suggesting reductive dechlorination may be occurring. VC continues to fluctuate seasonally with the highest concentrations observed in December, and the lowest in September, with mid-range concentrations observed in March and June.

4.4 Estimates of Mass Loss & Plume Stability

MNA is expected to reduce concentrations of contaminants at this site principally by the processes of desorption, dilution, and biodegradation. These processes are expected to be interrelated, for example increased precipitation may speed both desorption of contaminants from the aquifer matrix to groundwater, and dilution due to greater groundwater discharge to the river and increased surface water flow. Note that an increase in the rate of desorption of contaminants may increase groundwater concentrations in some areas in the short term, as greater mass is being removed from the solid aquifer matrix. Fluctuations in desorption may result from changes in water table elevation or gradient, including preferential flow paths along infrastructure or geologic anomalies below the water table.

Evaluation of contaminant mass loss and plume stability considers the above evaluations of COC extent in Section 4.2 and changes in concentrations over time discussed in Section 4.3. These evaluations also consider the groundwater flow conditions described in Section 4.1 and are presented below by analyte type. Any changes to the CSM and MNA program based on this evaluation are indicated below and are summarized in Section 6.

The DCB/TCB plume at NP-MW-601 and MW-702B shows evidence of mass loss based on the overall decreasing trends observed since 2012 and the presence of daughter products. DCB is an anaerobic degradation intermediate of TCB, and the maxima for both compounds have coincided in time. Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP) results have historically been low at these two wells, indicating anaerobic conditions. Concentrations of parent and daughter COCs are decreasing, suggesting dilution and degradation processes are continuing to reduce the overall mass of contaminants at these locations. Plume shape appears to be stable or contracting and is oriented around two wells about 60 feet apart, in line with groundwater flow. A downward trend is apparent for both DCB and TCB at MW-702B and NP-MW-601, and TCB and DCB have achieved background at both locations. It is expected that TCB and DCB will remain below background on a consistent basis during future monitoring rounds.

The arsenic plume is centered on two wells, upgradient well MW-706S and downgradient well LR-MW-122, where concentrations have historically been above the MMCL. Groundwater data used to evaluate the arsenic plume are available beginning in 2006 at LR-MW-122, and 2012 at MW-706S. Trends at the two wells show seasonal fluctuations, with concentrations ranging from background to 80 ppb and concentrations below background prior to 2015. Several concentrations spikes (up to 182 ppb) were observed in the fall and winter months at MW-706S between 2015 and 2017, with lower concentrations observed during the spring and summer months. Since 2018, arsenic concentrations at MW-706S have returned to more typical concentrations and are similar to pre-2015 concentrations. Since the initial concentration spike in

2015, concentrations have shown an overall decreasing trend. LR-MW-122, which is downgradient from MW-706S did not experience a similar concentration spike between 2015 and 2017. The maximum arsenic concentration at this well (75 ppb) was observed in July 2010. Concentrations during the subsequent sampling event were near the MMCL and have slowly increased over the past ten years. It is presumed that a small, localized source of arsenic is located in the unsaturated fill near MW-706S, and that precipitation infiltrating the fill periodically leaches arsenic to MW-706S, causing increases in groundwater concentrations. These spikes are typically followed by periods of low precipitation and therefore low concentrations. Downgradient, at LR-MW-122, seasonal variations are also observed, but are less pronounced compared to MW-706S, presumably because LR-MW-122 is further from the suspected source area. These patterns are expected to continue in the future until the source material is depleted. These recent trends have made it difficult to estimate mass loss within the arsenic plume. An evaluation was performed to understand the cause of the fluctuating concentrations, and to assess the remediation timeframe previously estimated. Results were presented in the 2018 Q3/Q4 RMR. Arsenic concentrations at wells surrounding MW-706S and LR-MW-122 have remained low to non-detect, indicating that the plume is stable.

The overall cVOC plume shape is unchanged from the previous reporting period. Several sections of the plume boundary are illustrated as dashed lines on **Figure 9** to represent current cVOC concentrations below the MMCL. In general, average concentrations of PCE and daughter products have declined at the lateral edges of the plume (i.e. MB-MW-362, LR-MW-129, and MW-711D). At interior location MW-709S a period of increasing concentrations was observed for several years; however, since 2014 overall trends for PCE and TCE show slightly declining concentrations with fluctuations attributed to seasonal variability. At monitoring well MB-MW-374, concentrations of daughter compounds (cis-1,2-DCE and VC) showed an increasing trend from 2013 to 2017 as the parent compound (PCE) has decreased. Since 2017, PCE, TCE, and VC have been declining. Overall, these patterns suggest that dilution and degradation are occurring. Trends at upgradient well MW-714S have shown significantly fluctuating concentrations since 2012; however since 2014 TCE concentrations generally exceed PCE concentrations indicating degradation is occurring.

Additional mass loss is expected as groundwater in the plume area discharges into surface waters of the Neponset River and associated wetlands. Although the site has been developed into a solar photovoltaic array farm, groundwater flow conditions remain similar to historical conditions.

5.0 Recommendations and CSM [310 CMR 40.0892(2)(D)]

5.1 Conceptual Site Model

Groundwater data collected during the current reporting period are generally consistent with historic conditions, and do not warrant changes to the Conceptual Site Model. The current CSM for the site is discussed below.

The estimated areas of groundwater contamination exceeding MMCLs are indicated in **Figures 9** through **13**. Arsenic contamination is observed at the water table, DCB contamination is near the bottom of a thin (12-foot thick) sand aquifer and in the underlying shallow bedrock, and PCE contamination is in the deepest part of the sand aquifer (up to 35 ft. bgs). The Neponset River appears to be a groundwater discharge area based on measured horizontal and vertical gradients around the Site. PCE has been identified at one monitoring location east of the river (MW-704S), at higher concentrations in the shallow compared to the deep screen and appears to be discharging to surface water in this area. The PCE concentrations have remained below the MMCL since June 2014 at this location and achieved background concentrations in December 2016 (and have remained consistent with background). Sediment and surface water concentrations in the river suggest that the contaminant discharge from groundwater to the river has not resulted in measurable concentrations of contaminants in the river. A CSA completed for the river where it borders the Site found a condition of No Significant Risk for river receptors (Weston 2007b).

The CSAs for the Site (AMEC 2011b, AMEC 2011c) found no current pathway between Site contaminants and the Town's water supply wells located 1.2 miles to the northeast (**Figure 1**), but the potential for movement in this direction warrants monitoring. The town supply wells draw water from surficial sands and gravel above bedrock, in the High Yield (>300 gpm) aquifer mapped by USGS northeast of the Site. The bedrock surface in the supply well area is 62 to 80 feet bgs, compared to 10 to 40 feet bgs at the Site; bedrock slopes downward to the northeast along the river valley. The potential for contaminant migration to the Town's supply wells would appear to be greatest for chlorinated organic compounds in the form of non-aqueous phase liquid (NAPL) which is denser than water; however, NAPL has not been observed at the Site. The chlorinated organic compounds encountered at the BMC site are present in the dissolved phase rather than as NAPL. In this dissolved form the density contrast has no effect on migration, compared to advection, dispersion, and other processes. Dissolved phase concentrations at the BMC site do not suggest the presence of NAPL.

No significant sources of groundwater contaminants are known to remain at the Site. Source control has occurred through soil excavation RAMs in the areas in and upgradient from arsenic and some cVOC groundwater contamination. The RAM around Building 6/6A, upgradient from arsenic detected in LR-MW-122, included the removal of soil having arsenic above background levels. Fluctuating concentrations at MW-706S suggest that a localized source of arsenic may exist in the unsaturated fill; although a soil investigation conducted in 2018 was unsuccessful in identifying a source of arsenic in the fill. The RAM around Building 7A/7C and LRA 2, upgradient from cVOCs detected in LR-MW-129, included removing soil with metals and oily contamination that was not known to contain cVOCs. Above-ground structures and below-ground tanks associated with former manufacturing operations have been removed as of early 2008, and it is possible that these structures included source materials. Removal of these structures and soil during RAM activities has eliminated known sources of VOCs to groundwater.

The installed well network and sampling procedures described in this report meet the design requirements identified in the FIR. Monitoring wells are focused along plume centerlines and

discharge areas. Monitoring locations include shallow, deep, and bedrock screens as appropriate to measure changes in nature and extent of contaminants.

5.2 OMM Revisions or Corrective Measures

MNA will be continued as a Permanent Solution if evaluations of site data demonstrate that natural attenuation is occurring at rates that will achieve drinking water standards and approach background levels in a reasonable timeframe. In the RAP, this timeframe was identified as up to 10 years for MNA. Determination of satisfactory reductions in concentrations considers multiple lines of evidence including temporal trends in individual wells, estimates of mass reduction, and distribution of contaminants and geochemical conditions. The data presented in this report indicate that natural attenuation is occurring in the areas of MMCL exceedances. No significant changes in the CSM are warranted at this time based on the latest measurements, and the estimated remediation timeframe of 10 years from 2012 is assumed to be the same for most of the monitoring wells. However, while MNA is effectively reducing the mass and concentrations overall, it is evident that some areas will not achieve the remedial goals by 2022.

The effectiveness of the OMM program is continually evaluated to ensure contaminant are not posing an unacceptable risk to receptors and that the Site is progressing towards a Permanent Solution. Many of the monitoring wells currently in the OMM program have years of MNA data showing consistently declining contaminant trends, some of which have achieved the stated remedial objectives (i.e. ½ the MMCL).

If MNA measurements suggest that some portions of the Site will not achieve a Permanent Solution, then supplemental MCP documents for design and construction of contingent remedies will be prepared. The following types of measurements will be considered as evidence of the need for contingent remedies:

- Contaminant concentrations exhibit an increasing trend not expected based on monitoring to date,
- Near-source wells exhibit large concentration increases indicative of a new or renewed release,
- Contaminants are identified in monitoring wells located outside the original plume boundary or other specified compliance boundary,
- Contaminant concentrations are not decreasing at a rate necessary to meet the remediation objectives,
- Changes in land and/or groundwater use could adversely affect the protectiveness of the MNA remedy, and
- Contaminants are identified in locations posing unacceptable risk to human or ecological receptors.

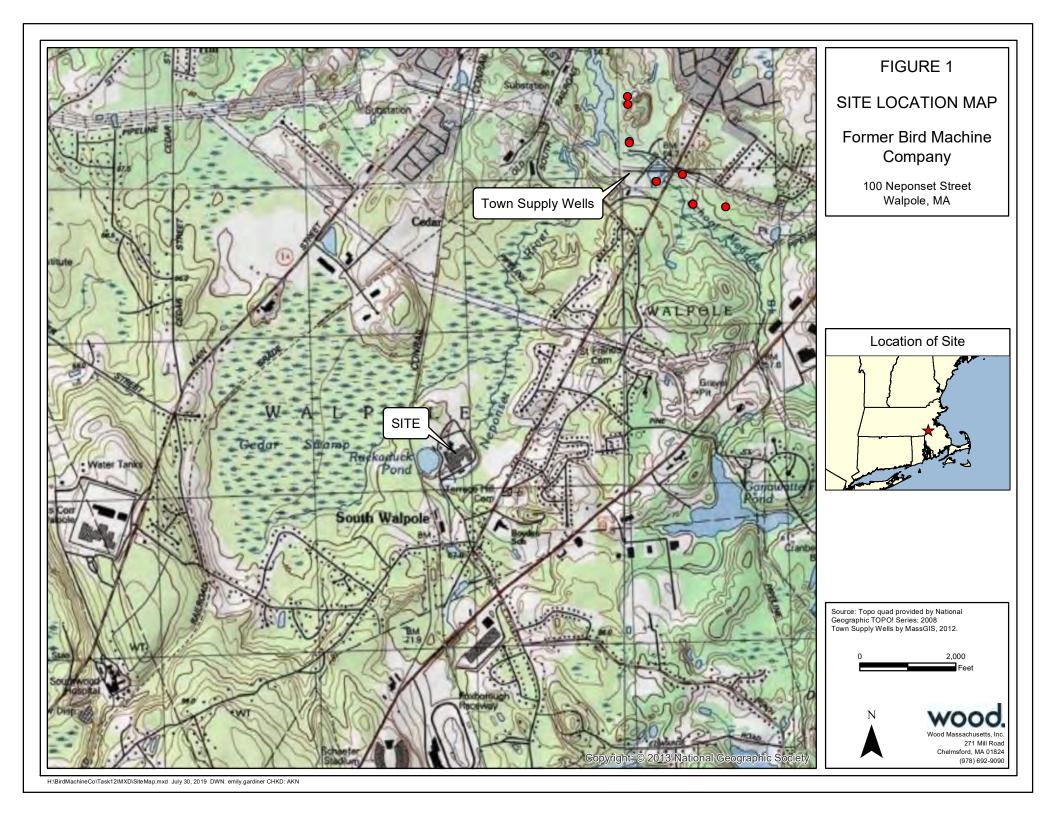
Multiple lines of evidence will be used to determine the need for contingent remedies, to account for the uncertainty associated with variability in subsurface conditions. The evaluations of these types of measurements will be conducted in accordance with United States Environmental Protection Agency (USEPA) guidance for performance monitoring of MNA (EPA 2004).

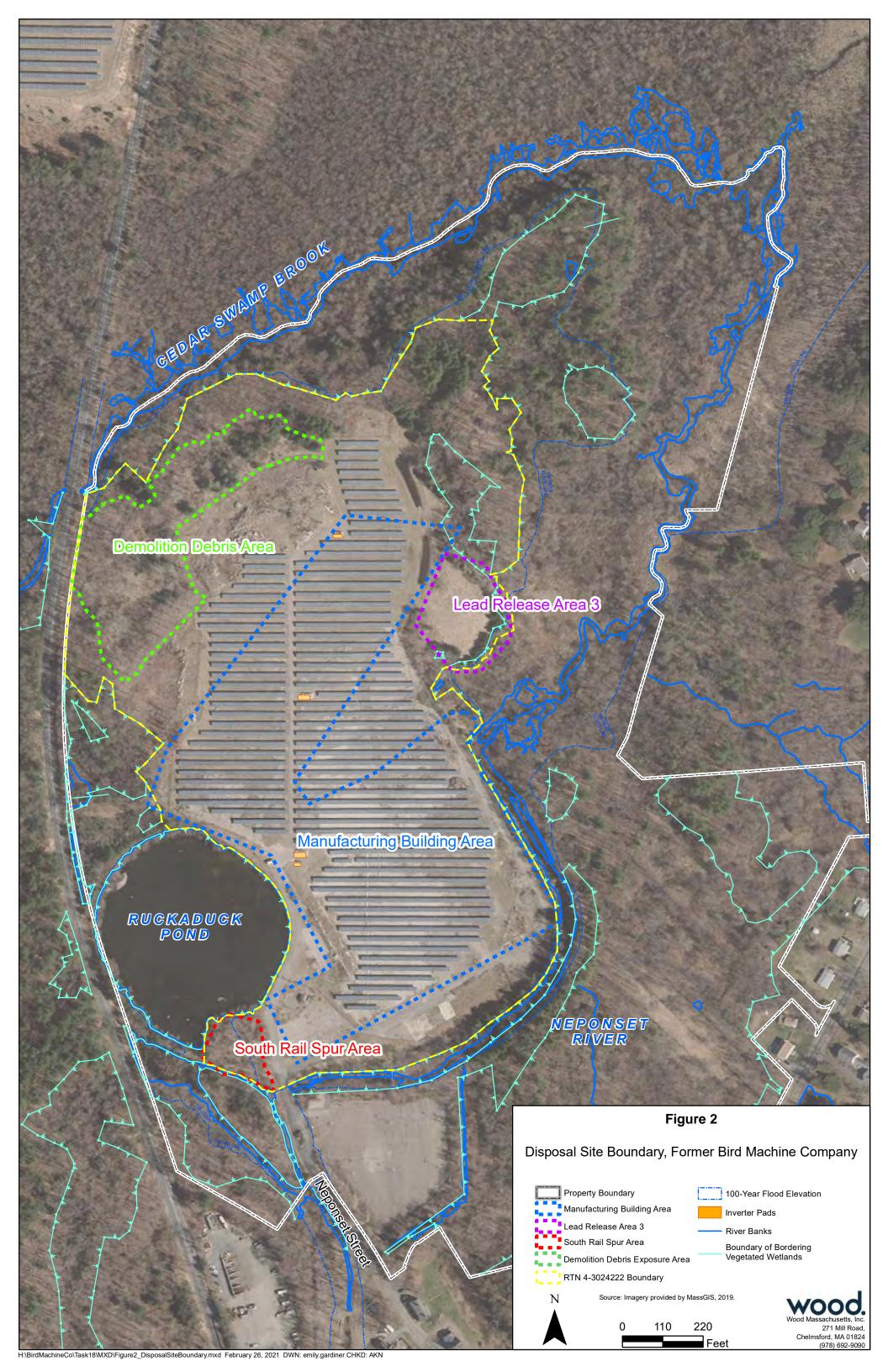
5.3 Remedy Operation Status

Remedy Operation Status was achieved in February 2013. Based on the data presented in this RMR and the conclusions summarized in Sections 6.1 and 6.2, MNA is still considered a viable approach to achieve a Permanent Solution, and therefore the Site meets the requirements for Remedy Operation Status.

6.0 References

- AMEC 2011a. Response Action Outcome Statement for RTN 4-3024222, Former Bird Machine Company Site. Prepared by AMEC Earth & Environmental Inc. for Baker Hughes Inc. Final, December 2011.
- AMEC 2011b. Phase II Comprehensive Site Assessment Report for RTN 4-3024222, Former Bird Machine Company Site. Prepared by AMEC Earth & Environmental Inc. for Baker Hughes Inc. Final, October 2011.
- AMEC 2011c. Phase II Comprehensive Site Assessment Addendum for RTN 4-3024222, Former Bird Machine Company Site. Prepared by AMEC Earth & Environmental Inc. for Baker Hughes Inc. Final, December 2011.
- AMEC 2011d. Phase III Remedial Action Plan for RTN 4-3024222, Former Bird Machine Company Site. Prepared by AMEC Earth & Environmental Inc. for Baker Hughes Inc. Final, December 2011.
- AMEC 2012. Phase IV Final Inspection Report, Former Bird Machine Company Site. Prepared by AMEC Earth & Environmental Inc. for Baker Hughes Inc. Final, August 2012.
- AMEC 2013a. Phase V Status and Remedial Monitoring Report, Prepared by AMEC Environment & Infrastructure, Inc. for Baker Hughes Inc. Final, August 2013.
- AMEC 2013b. Remedy Operation Status Opinion, Former Bird Machine Company Site. Prepared by AMEC Environment & Infrastructure, Inc. for Baker Hughes Inc. Final, February 13, 2013.
- EPA 2004. Pope, D. et al. Performance Monitoring of MNA Remedies for VOCs in Ground Water.


 National Risk Management Research Laboratory Office of Research and Development, US
 Environmental Protection Agency, Cincinnati OH. April 2004.



- USGS 2020. Gauging Data at USGS Station 01105000, Neponset River at Norwood, MA. National Water Information System. http://www.waterdata.usgs.gov. January 2020.
- Walpole 2007. Letter from John Spillane, Chairman, Town of Walpole Board of Water & Sewer Commissioners, to Dina Kuykendall, Baker Hughes a GE Company. October 25, 2007.
- Weston 2005. Phase I Initial Site Investigation Report for RTN 3-0024222, Bird Machine Company Manufacturing Building Area. Prepared by Weston Solutions Inc. for Baker Process Inc. September 14, 2005.
- Weston 2007a. Phase II Comprehensive Site Assessment for Demolition Debris Area, RTN 4-3024105. Prepared by Weston Solutions Inc. for Baker Process Inc. July 30, 2007.
- Weston 2007b. Phase II Comprehensive Site Assessment for Release of Hydrocarbons to the Neponset River Site, RTN 4-3023575. Prepared by Weston Solutions Inc. for Baker Process Inc. January 25, 2007.

wood.

Figures

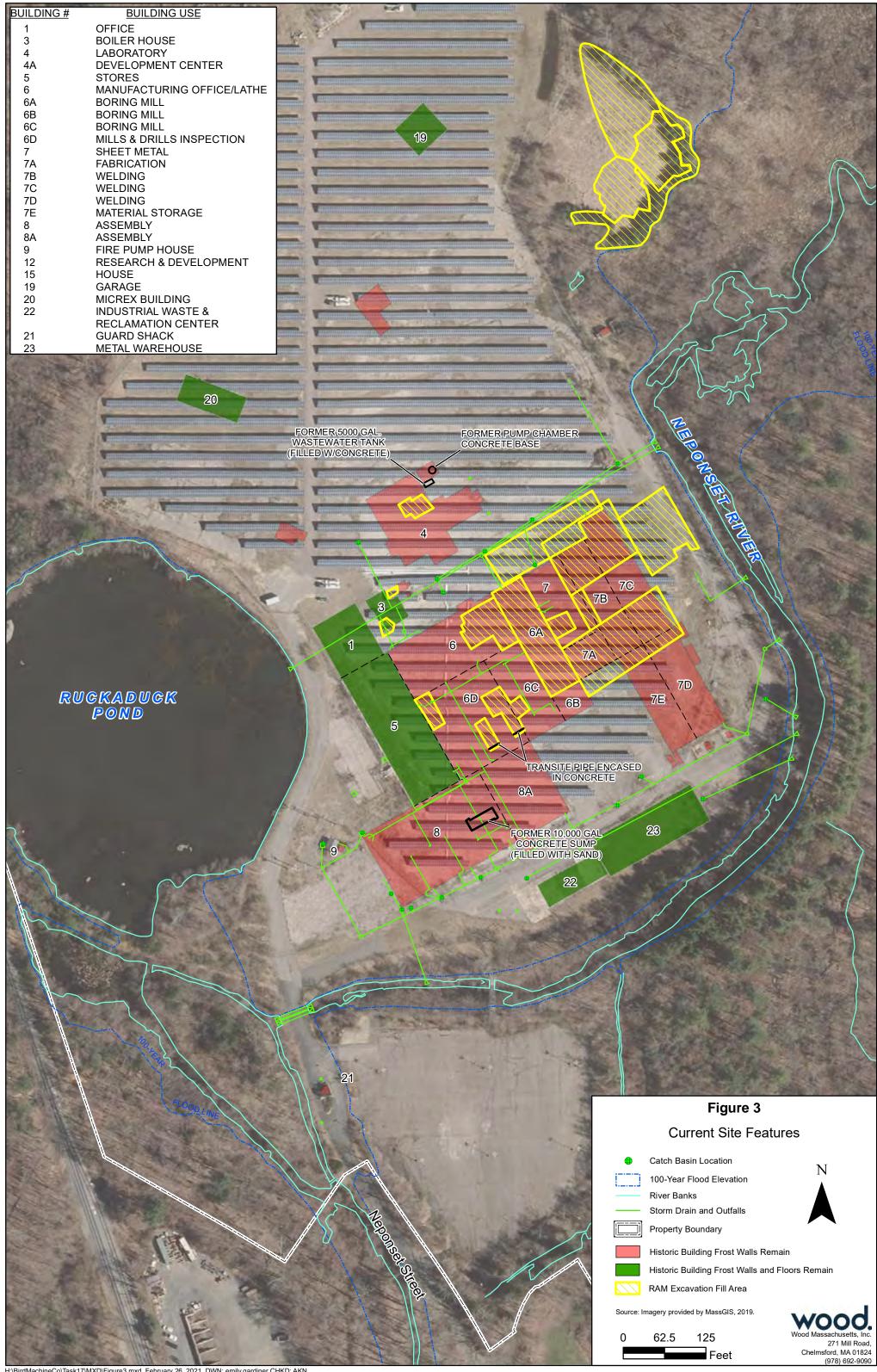
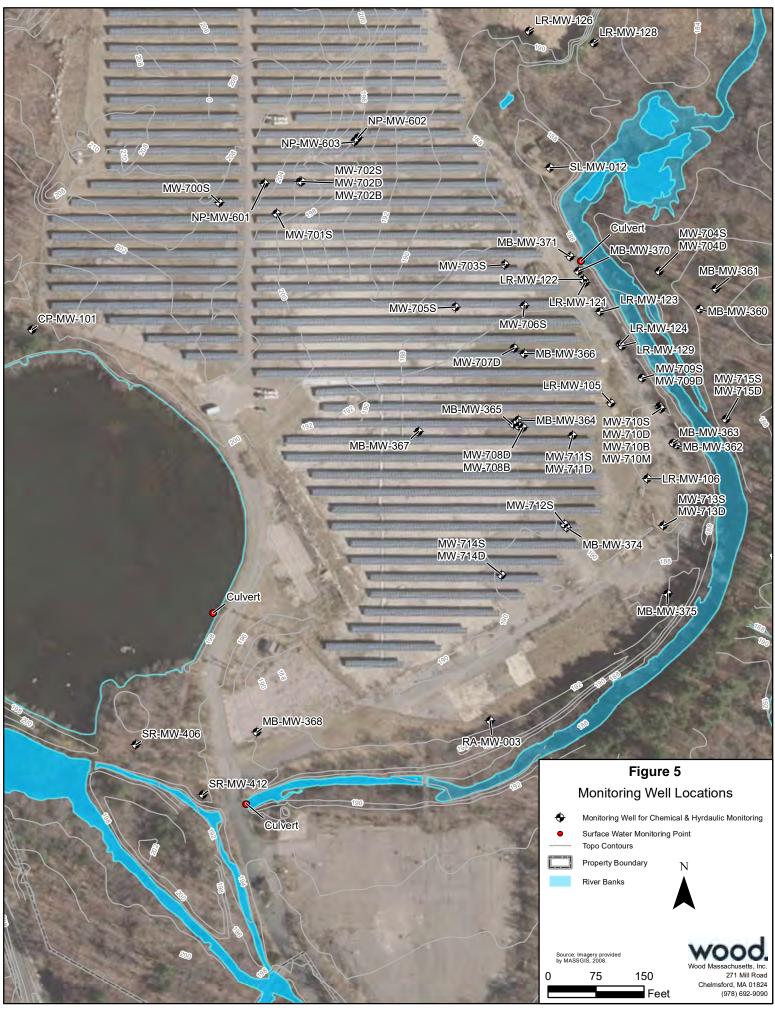
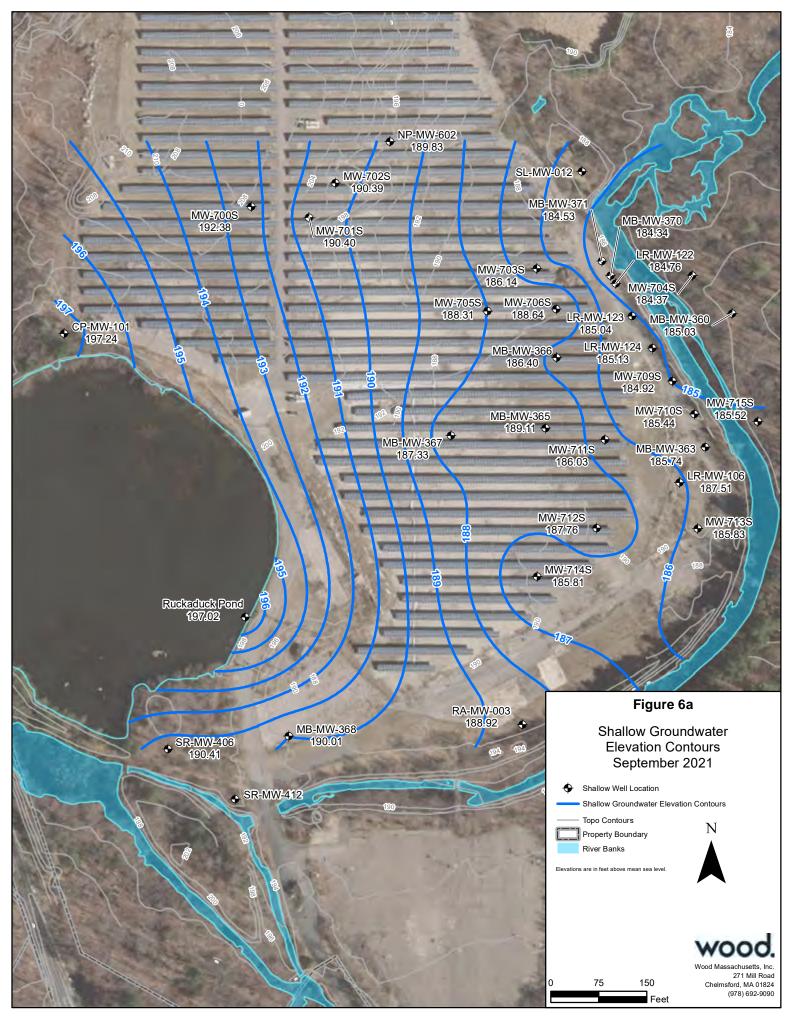
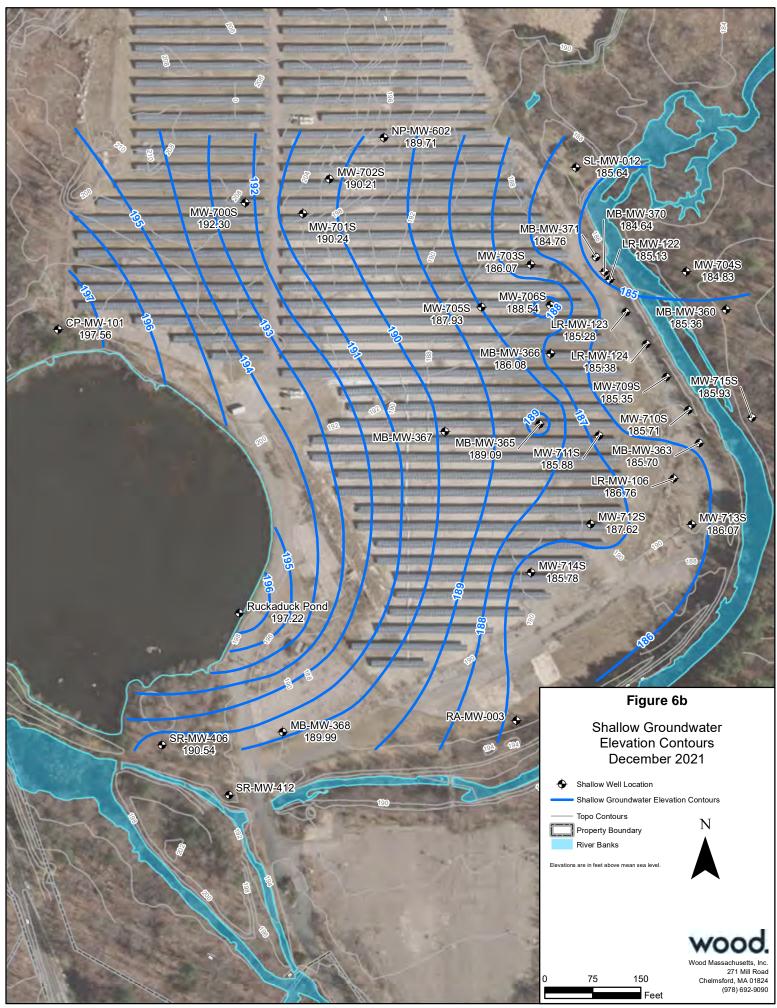
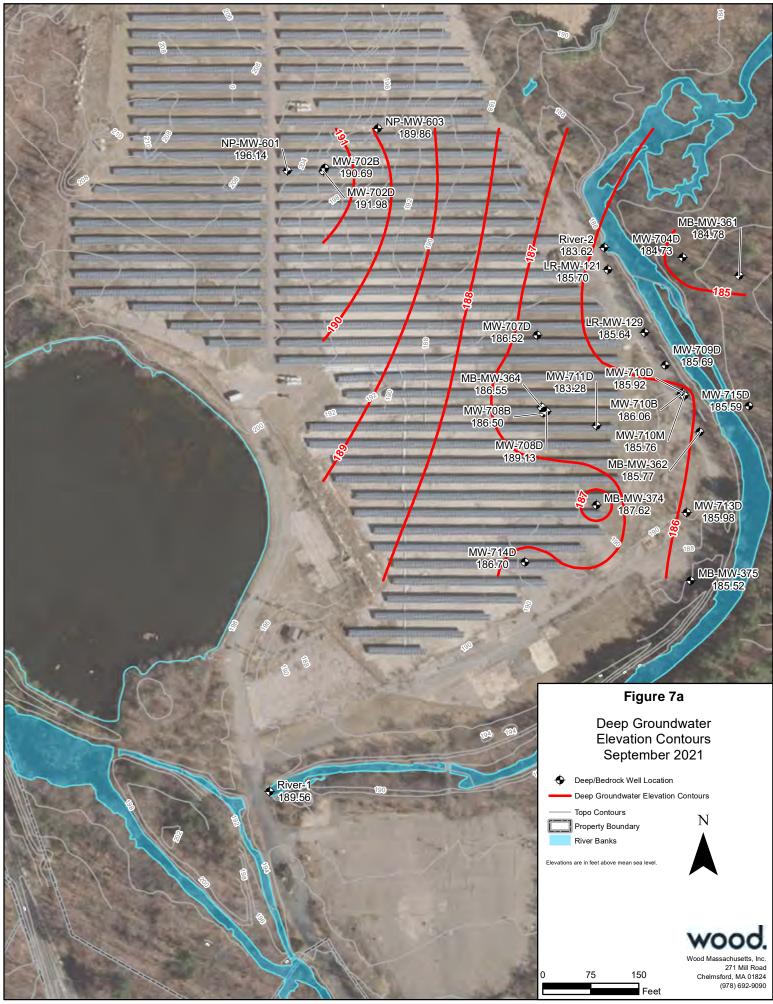


FIGURE 4

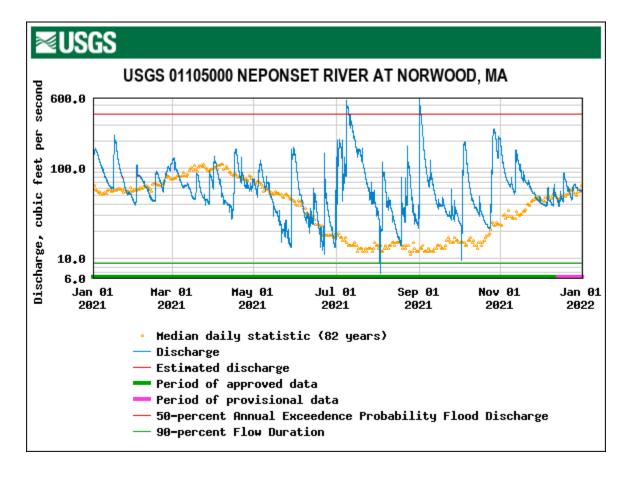

BEDROCK
ELEVATIONS
FROM DRILLING

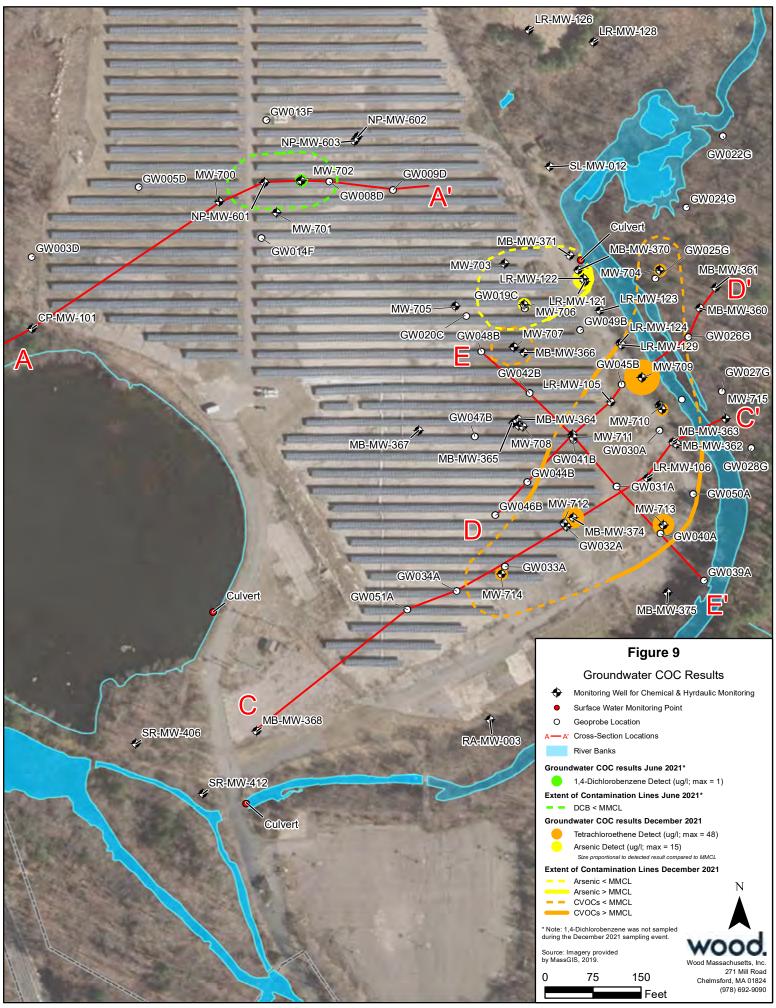

Former Bird Machine Company

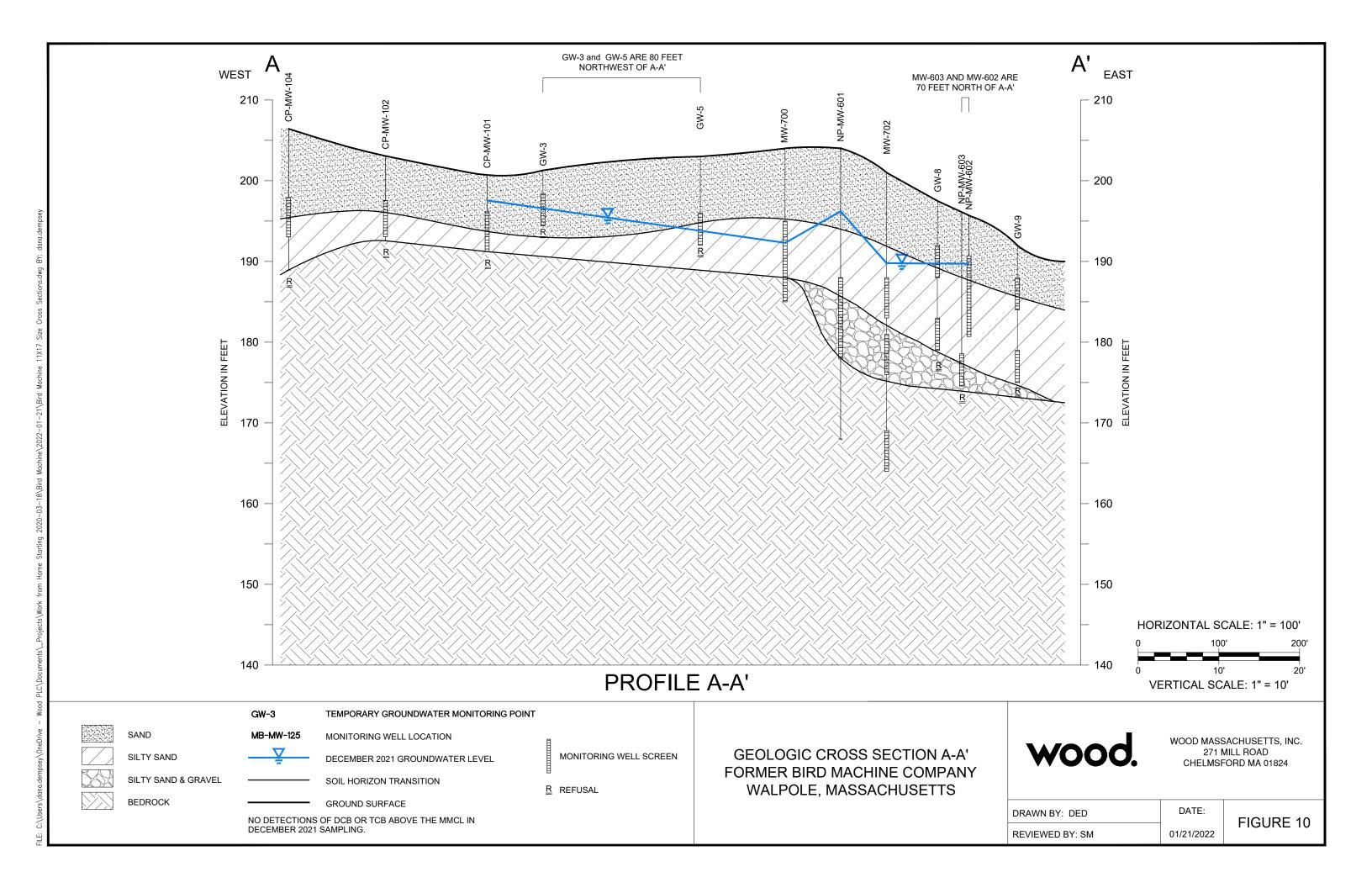

100 Neponset Street Walpole, MA

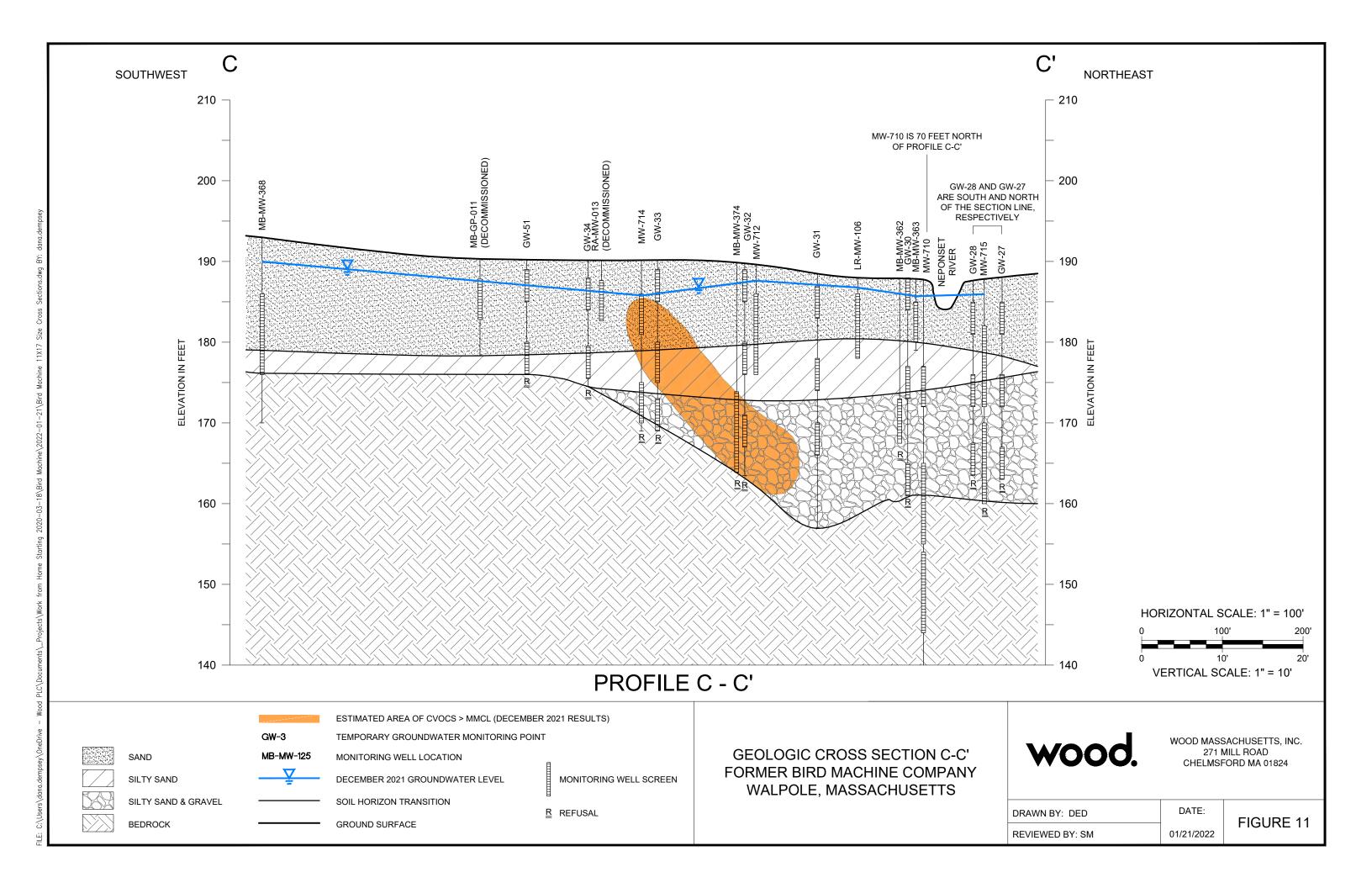


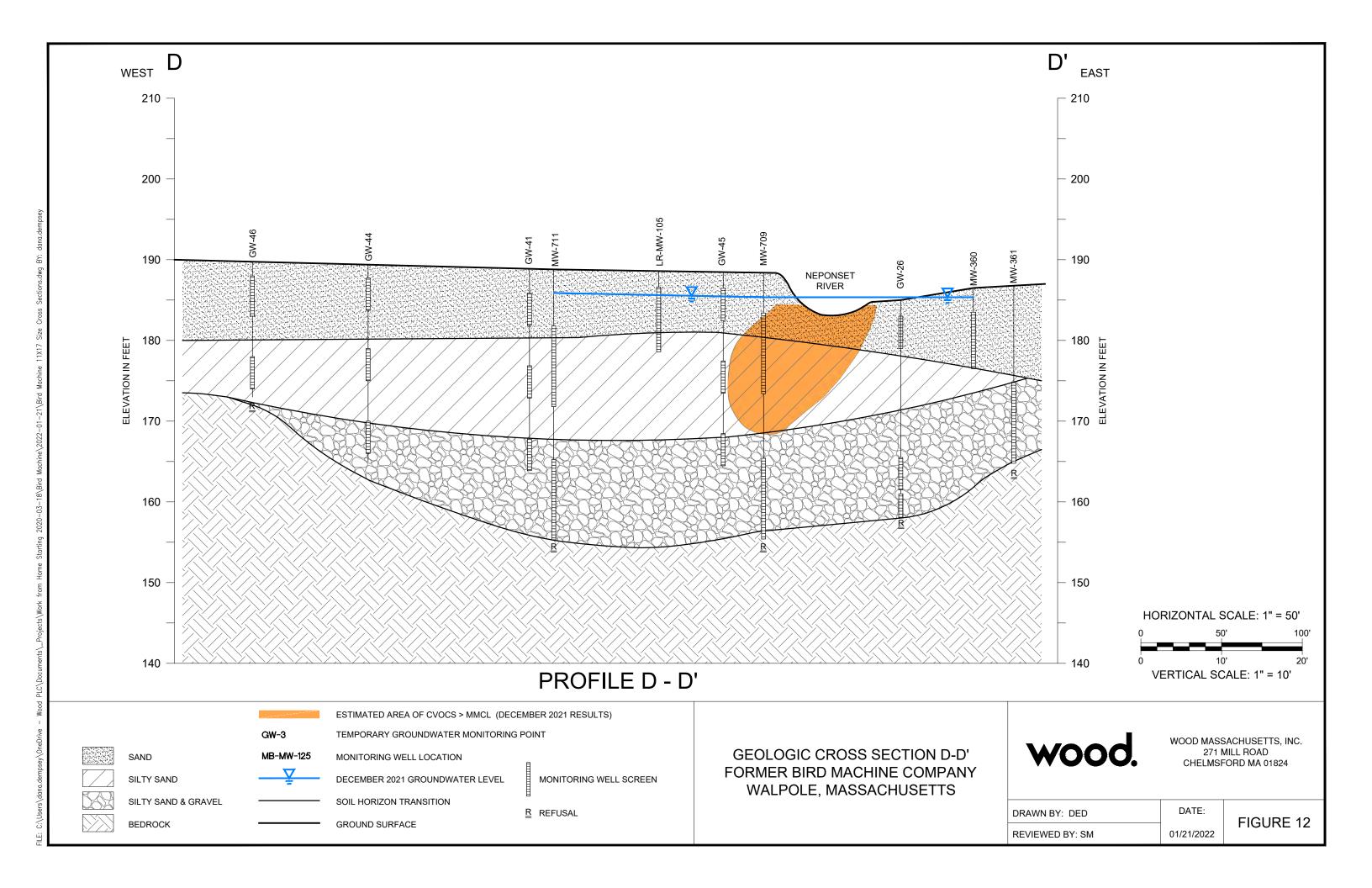
N
Wood Massachusetts, Inc.
271 Mill Road
Chelmsford, MA 01824
(978) 692-9090

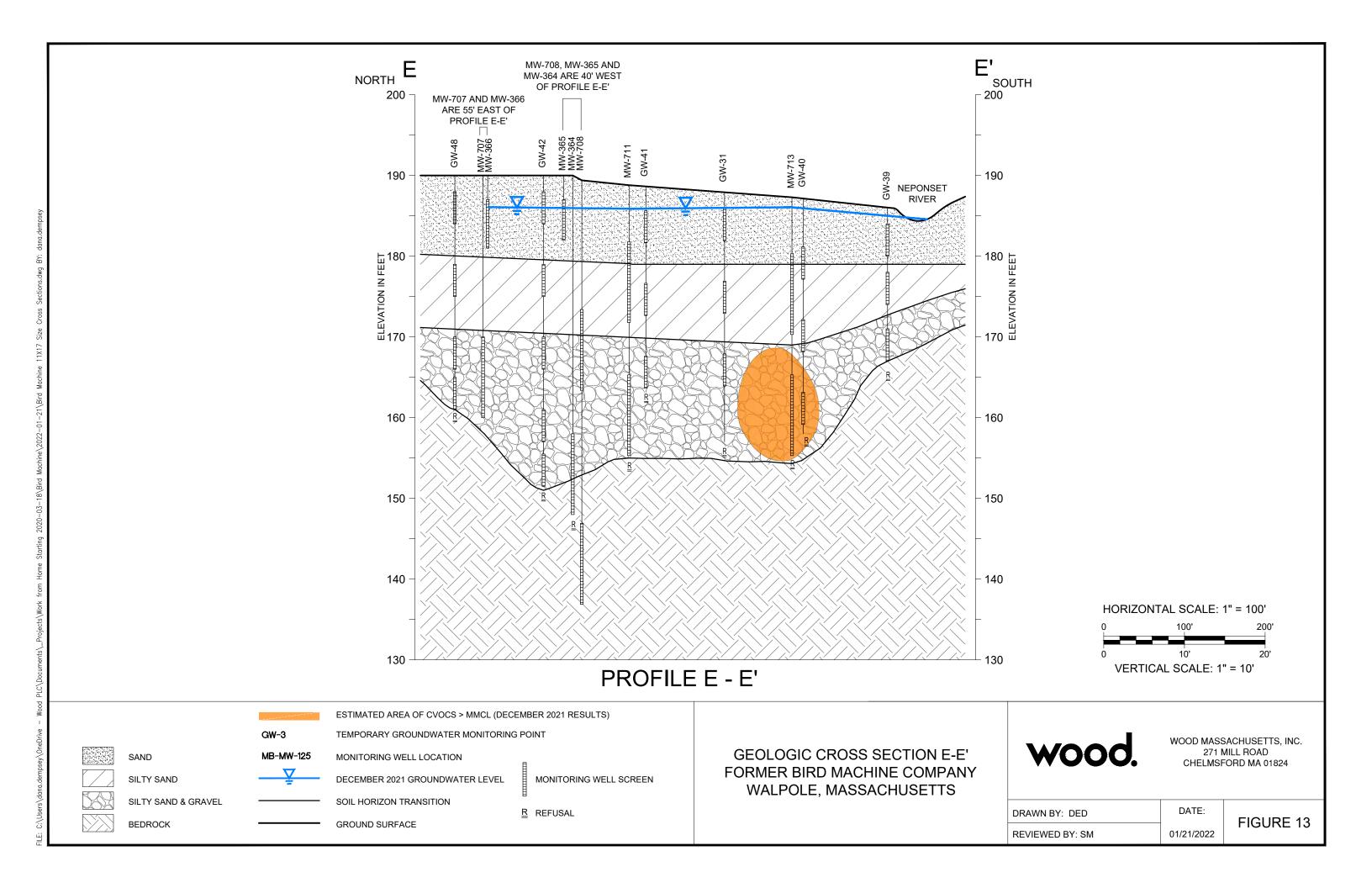



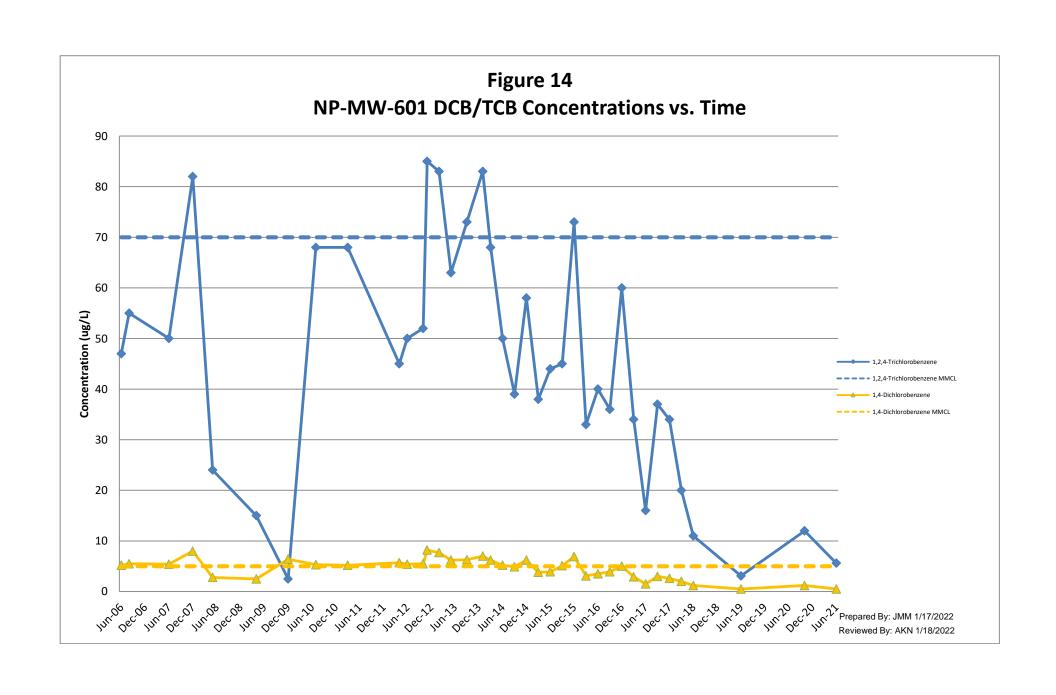


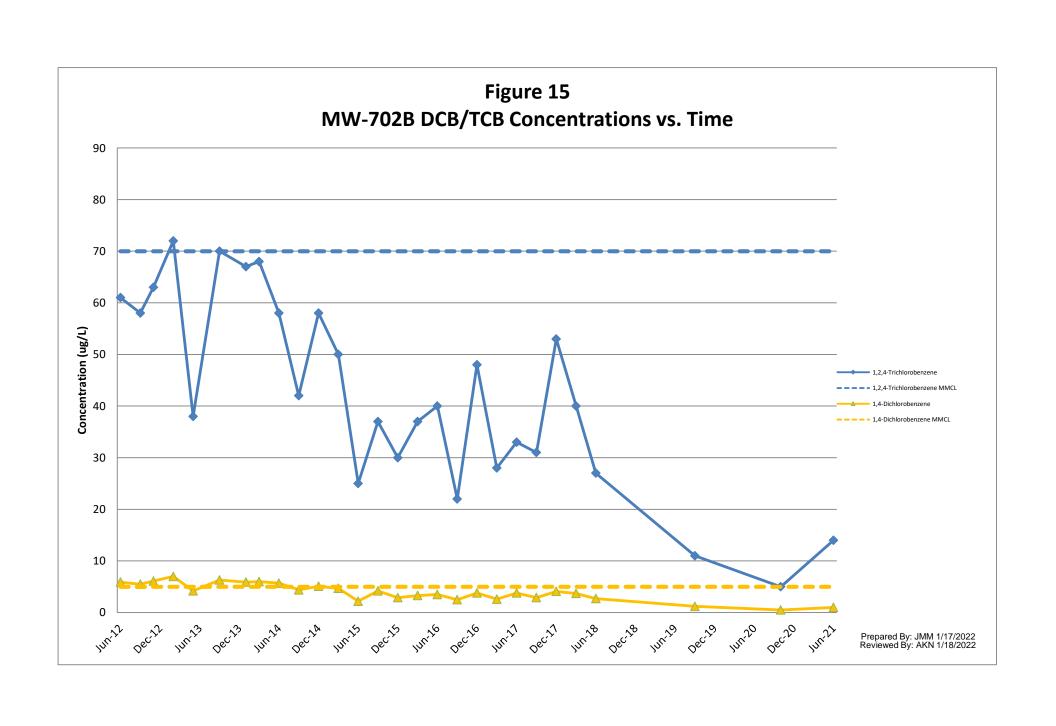

Figure 8. USGS Hydrograph of the Neponset River

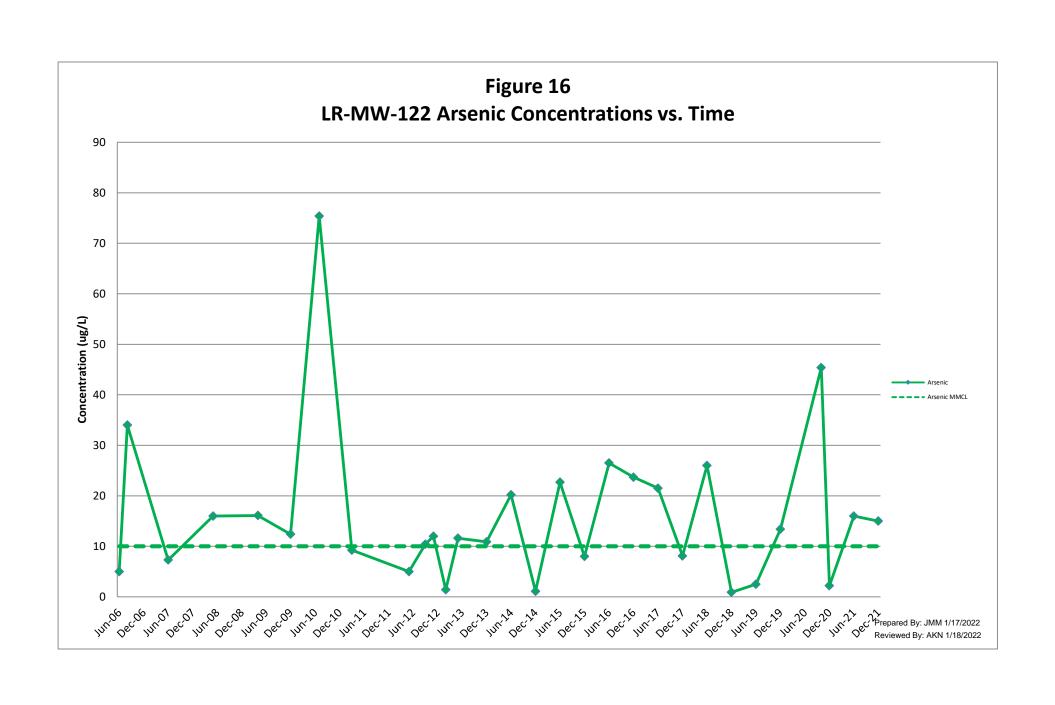

2021 Daily Discharge, January - December

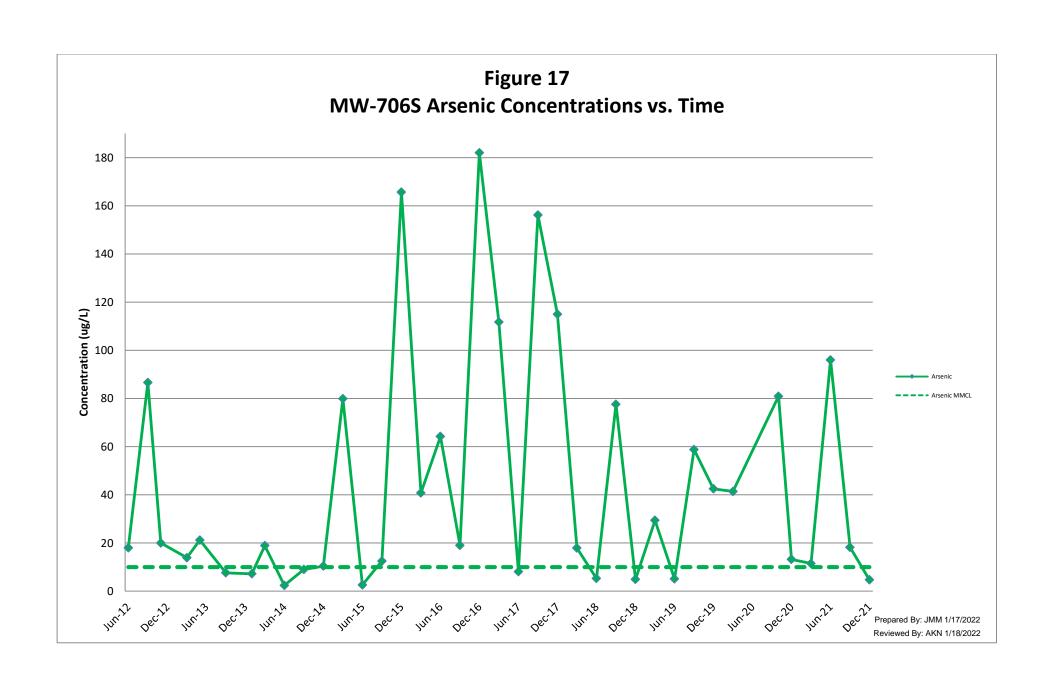


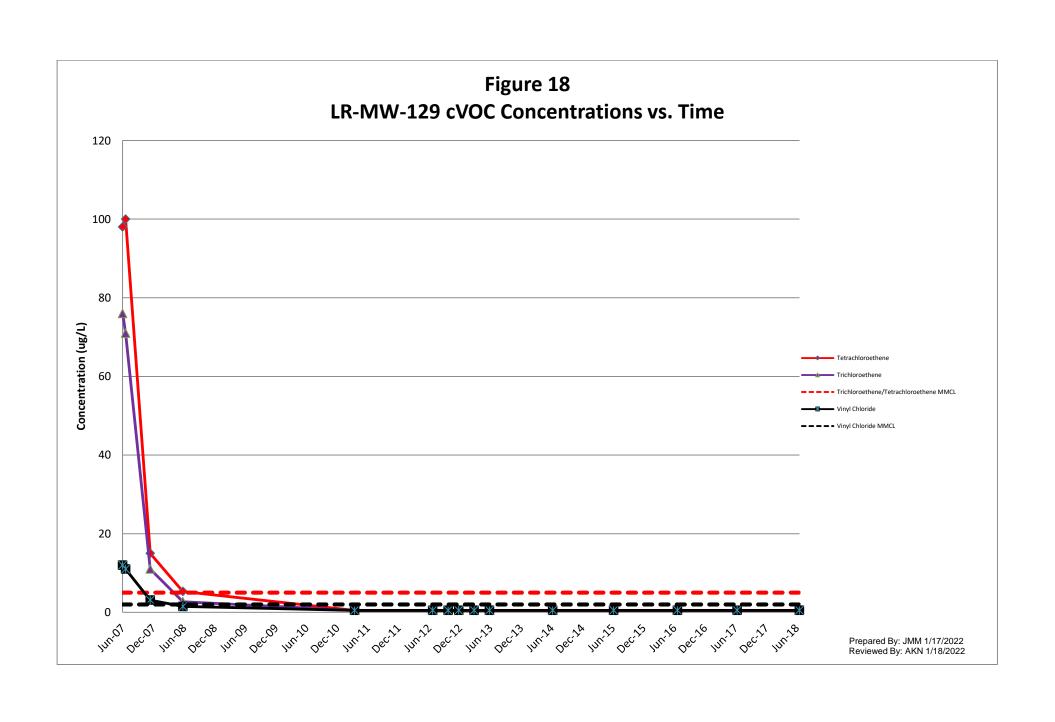

Source: http:nwis.waterdata.usgs.gov Prepared By: S. Mooney, 1/24/2022 Checked By: S. Mizusawa, 1/25/2022

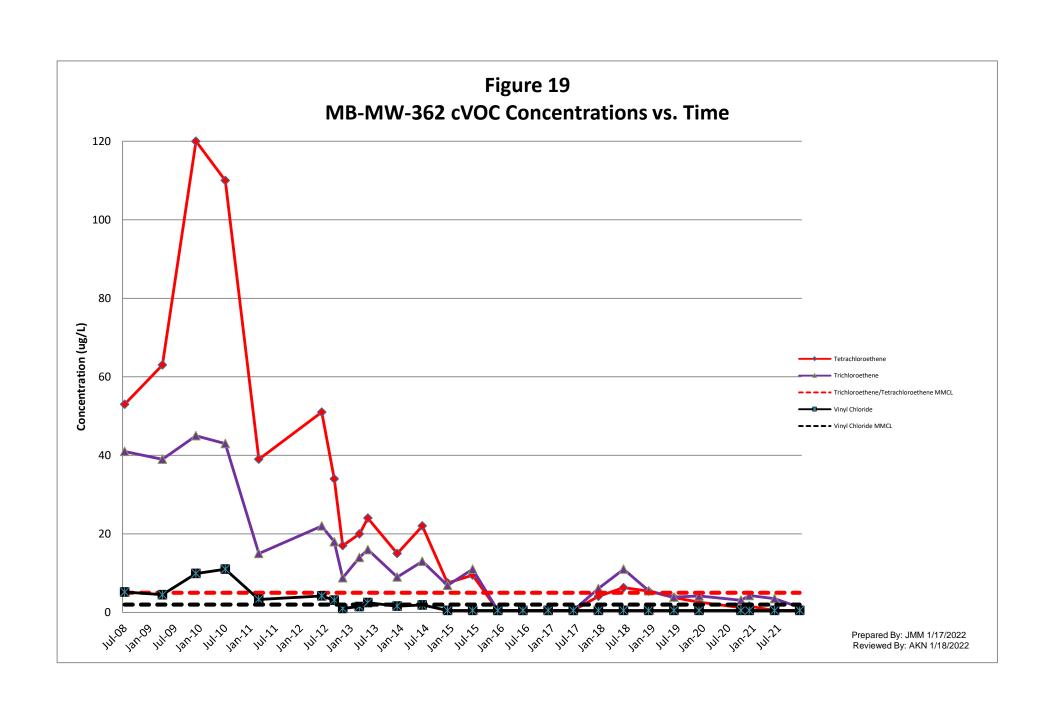


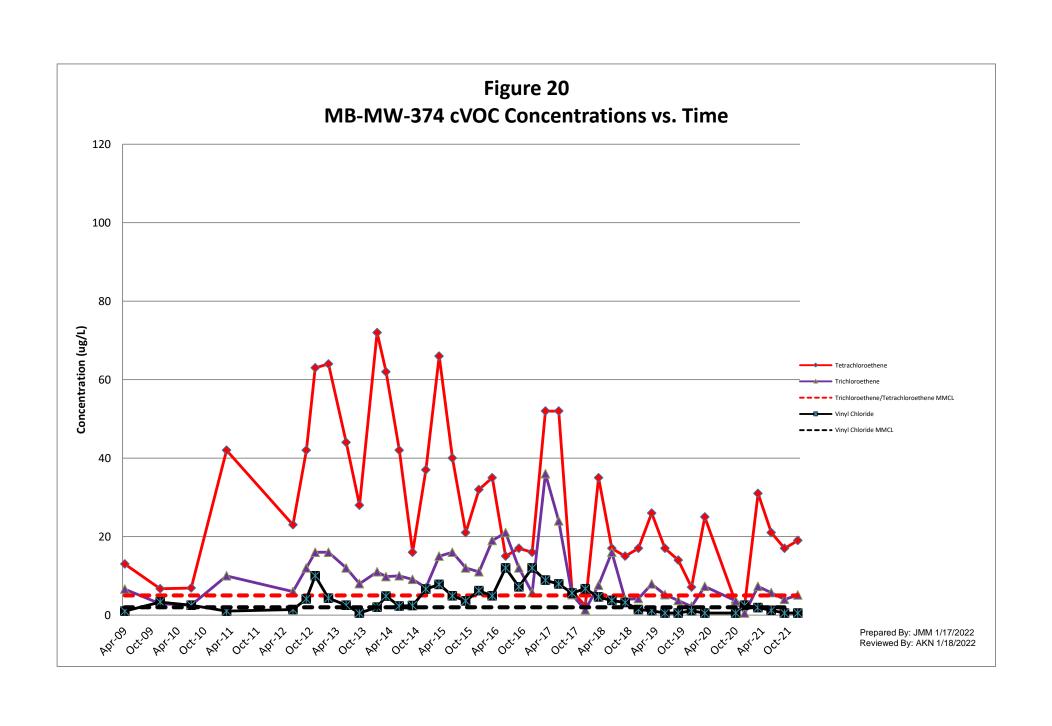


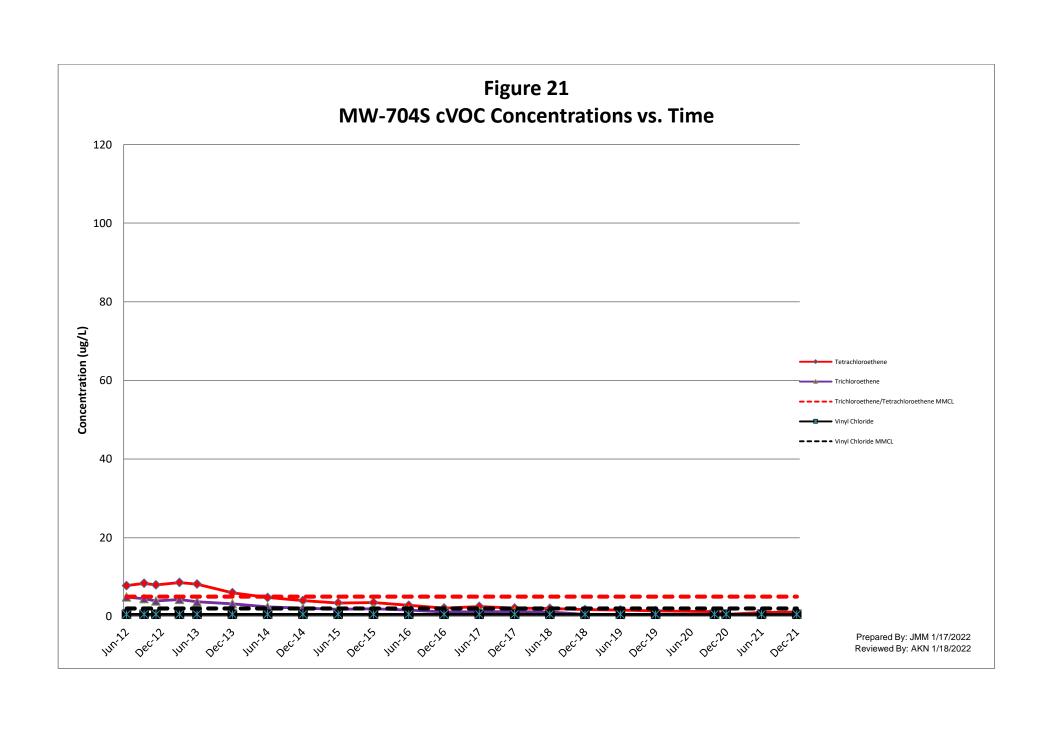


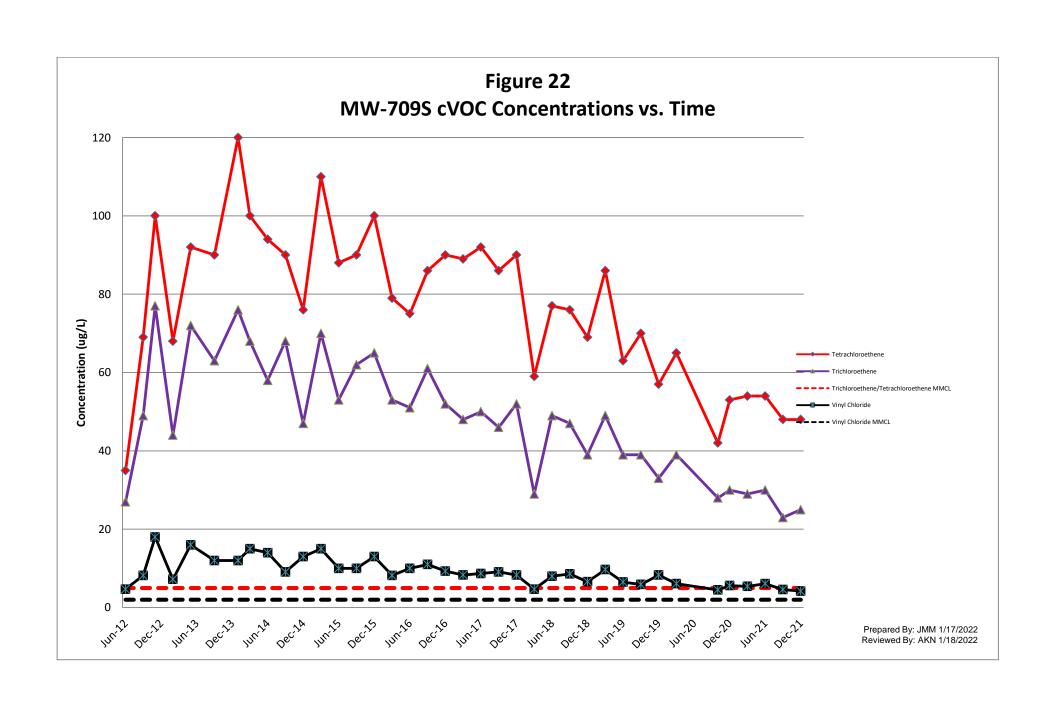


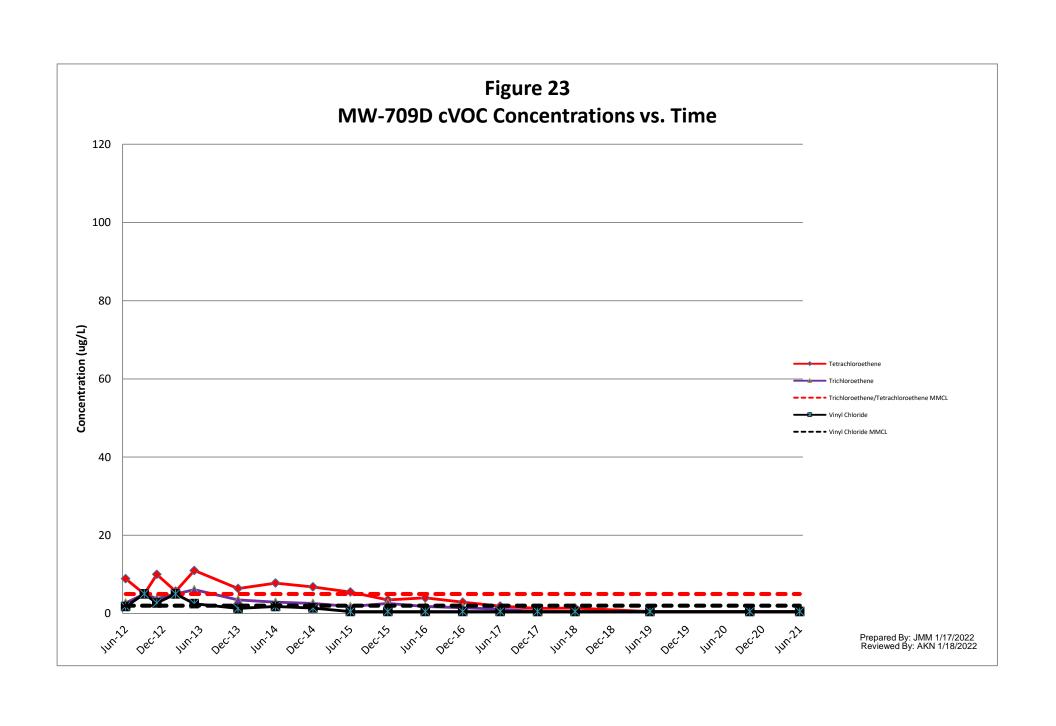


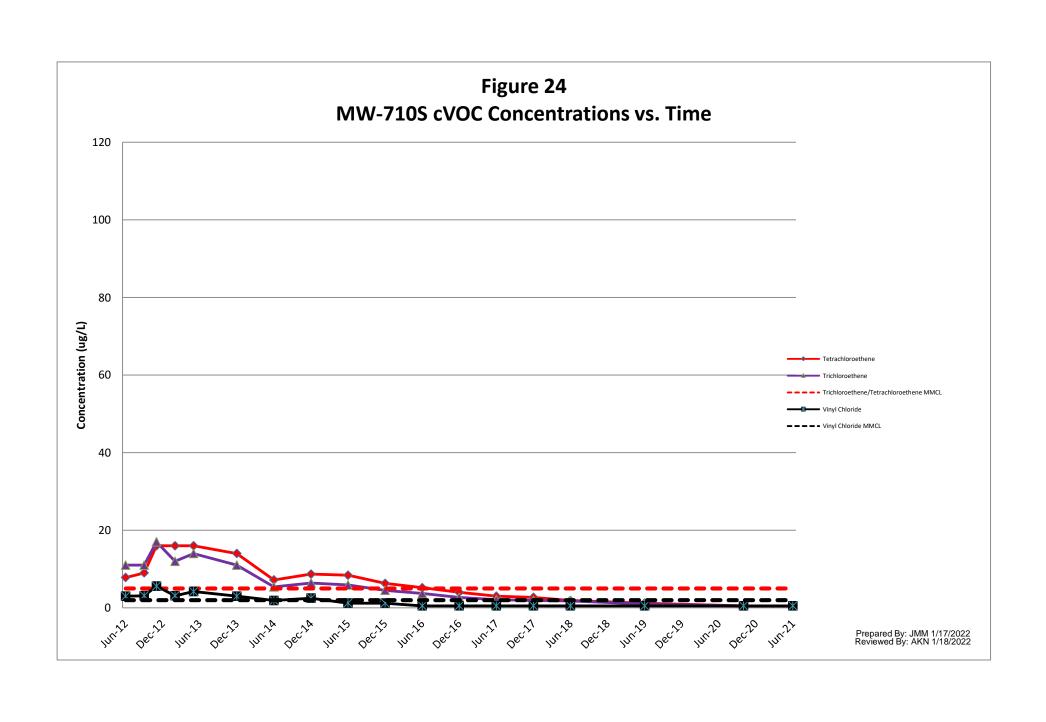


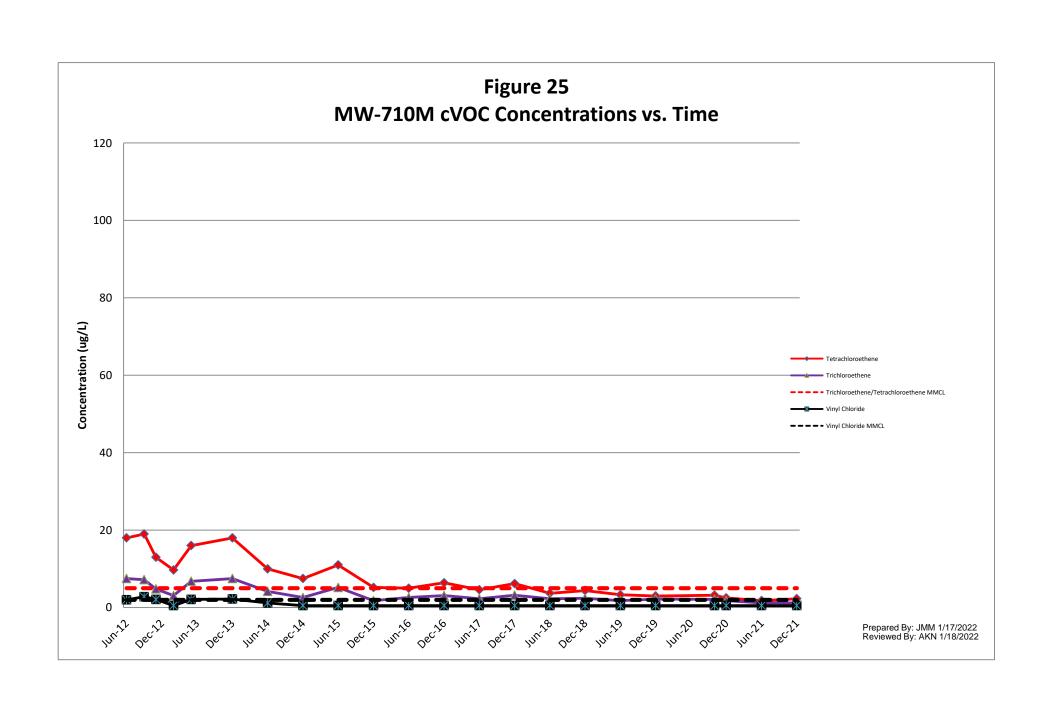


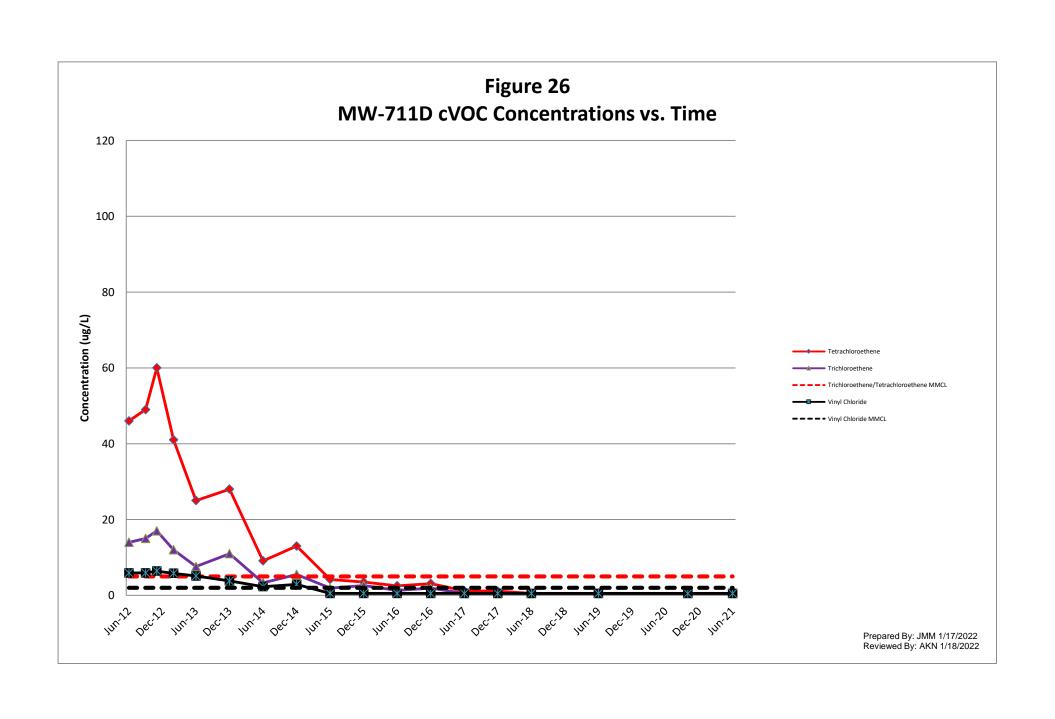


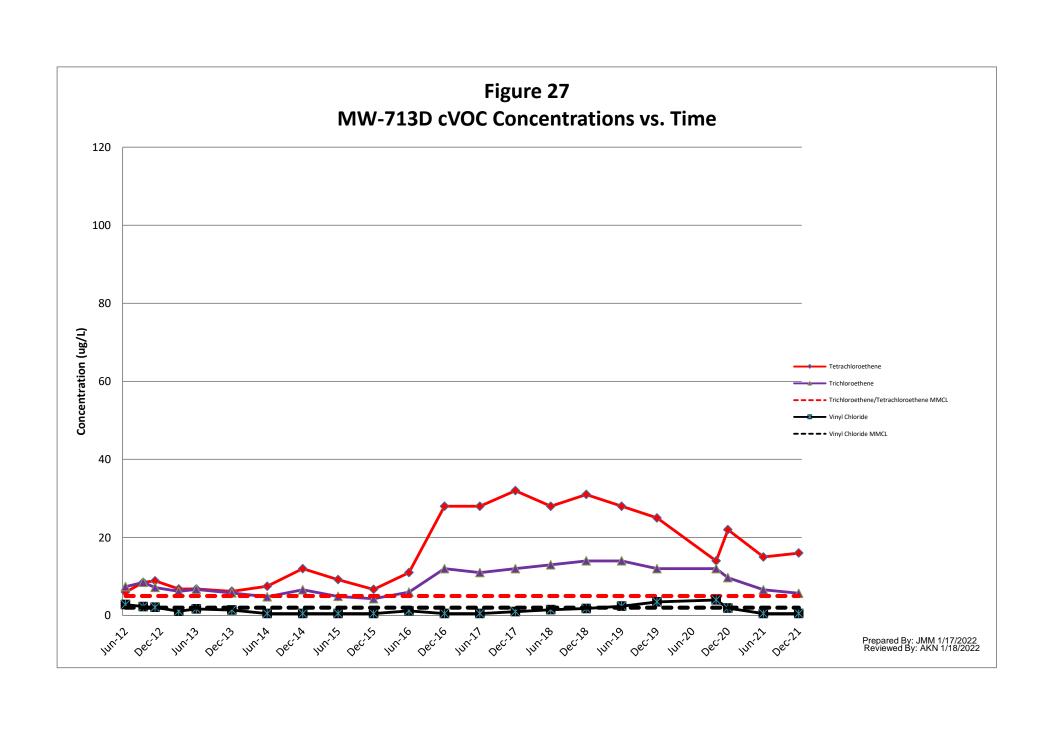


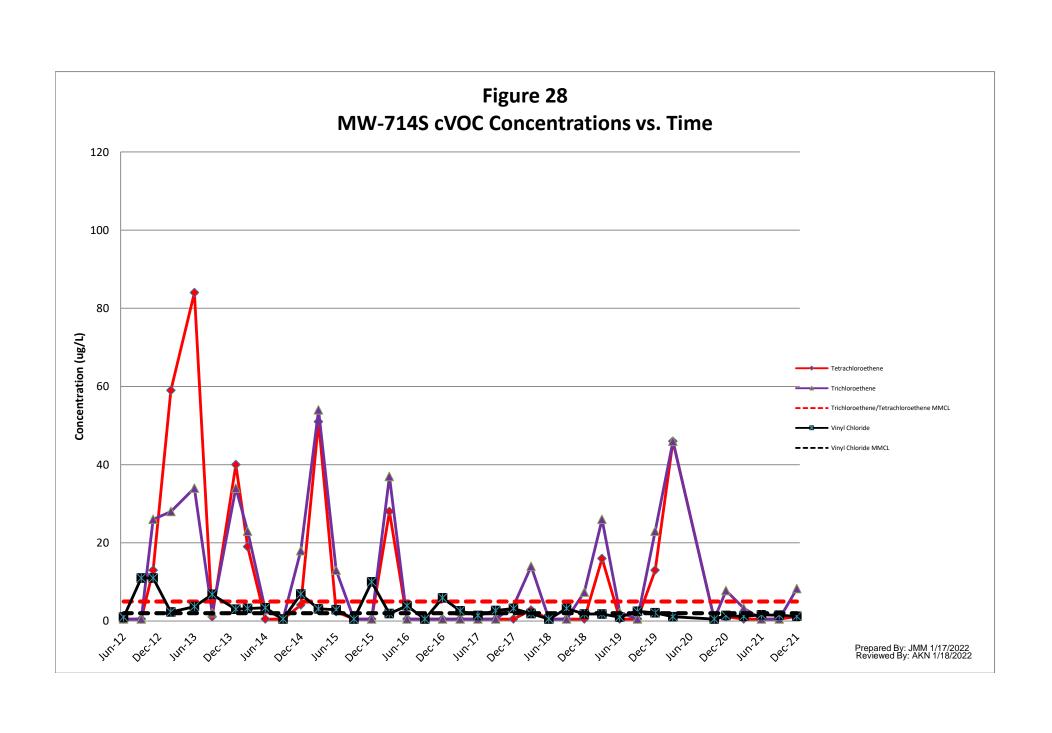












wood.

Tables

Table 1
Sampling Frequency of Wells in the Monitoring Program
Former Bird Machine Company Site Neponset Street, Walpole, MA

Plume	Sampling	Well ID	Sampling Plan						
	Frequency		Mar	Jun	Sep	Dec			
	Quarterly	MW-706S	Х	Χ	Х	Х			
	Semi-Annual	LR-MW-122		Χ		Х			
Arsenic		LR-MW-121		Χ					
Arsenic	A	MW-703S		Χ					
	Annual	MB-MW-371		Χ					
		MW-705S		Χ					
OCB	Quarterly	MW-702B		Χ					
		NP-MW-601		Χ					
	Annual	MW-700S							
		MW-701S							
		MW-702D							
		NP-MW-602							
		NP-MW-603							
	Quarterly	MW-709S	Х	Х	Χ	Х			
		MB-MW-374	Х	Χ	Χ	Х			
		MW-714S	Х	Χ	Χ	Х			
		MW-704S		Χ		Х			
		MW-709D		Χ					
		MW-710S		Χ					
		MW-710M		Χ		Х			
	Semi-Annual	MB-MW-362		Χ		Х			
		MW-707D		Χ					
		MW-711D		Χ					
		MW-713D		Χ		Х			
		MW-704D		Χ					
VOCs		MB-MW-360		Χ					
		MB-MW-361		Χ					
		LR-MW-124							
		LR-MW-129							
		MW-710D							
		MB-MW-363		Χ					
	Annual	MW-715S		Χ					
		MW-708B							
		MW-708D							
		MW-711S							
		MW-713S		Х					
		MW-712S							
		MW-714D		Х					
		Sub Total Per Event	4	26	4	9			

 Created by:
 C. Keating
 9/6/2018

 Approved by:
 K. Henry
 9/6/2018

Table 2. MNA Sampling Parameters and Container Types

Analytes	Method	Containers (number, size, and type)	Preservation Requirements (chemical,	Maximum Holding Time (preperation/ analysis)	
Arsenic MWs: 12	21, 122, 371, 703, 7	705, 706 (see Table 1 for sampli	ing frequency of monitoring wells)		
Arsenic	SW-846 6020A	one, 500 mL, polyethylene	NH0 ₃ to pH<2, Cool to 4° C	6 months from collection	
		363, 374, 601-603, 700S, 701S, pling frequency of monitoring w	702D/B, 704S/D, 707D, 708D/B, 709S/D, 710S/M/D, 7 ells)	11S/D, 712S, 713S/D,	
VOCs	SW-846 8260C	two, 40 mL, septum sealed amber glass vials	HCl to pH<2, Cool to 4° C, protect from light, no headspace	14 days from collection	

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	LR-MW-121	LR-MW-121	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-122
		ple Date:		6/23/21	12/12/17	12/12/17	6/20/18	12/20/18	12/20/18	6/11/19
		mple ID:	L2043814-15	410-46393-1	L1745732-09	L1745732-11	L1823386-12	L1852851-05	L1852851-01	L1925347-03
	Sam	Sample Type:		N	N	FD	N	N	FD	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	ND	ND	8.1	7.9	26	0.9	0.9	2.5
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l								
1,2,3-TRICHLOROBENZENE	NA	ug/l								
1,2,4-TRICHLOROBENZENE	70	ug/l								
1,2-DICHLOROBENZENE	600	ug/l								
1,2-DICHLOROETHANE	5	ug/l								
1,3-DICHLOROBENZENE	100	ug/l								
1,4-DICHLOROBENZENE	5	ug/l								
ACETONE	6300	ug/l								
CHLOROBENZENE	100	ug/l								
CIS-1,2-DICHLOROETHENE	70	ug/l								
NAPHTHALENE	140	ug/l								
p-ISOPROPYLTOLUENE	NA	ug/l								
TETRACHLOROETHENE	5	ug/l								
TRANS-1,2-DICHLOROETHENE	100	ug/l								
TRICHLOROETHENE	5	ug/l								
VINYL CHLORIDE	2	ug/l								

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-122	LR-MW-124	LR-MW-129	MB-MW-360
	Sam	ple Date:	12/23/19	10/14/20	12/14/20	6/24/21	12/2/21	6/20/18	6/20/18	6/22/18
	Lab Sa	ample ID:	L1961461-03	L2044349-07	L2056063-04	410-46393-7	L2166365-11	L1823386-14	L1823386-15	L1823868-17
	Sam	ole Type:	Ν	N	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	13.4	45.4	2.2	16	15			
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l						ND	ND	ND
1,2,3-TRICHLOROBENZENE	NA	ug/l						ND	ND	ND
1,2,4-TRICHLOROBENZENE	70	ug/l						ND	ND	ND
1,2-DICHLOROBENZENE	600	ug/l						ND	ND	ND
1,2-DICHLOROETHANE	5	ug/l						ND	ND	ND
1,3-DICHLOROBENZENE	100	ug/l						ND	ND	ND
1,4-DICHLOROBENZENE	5	ug/l						ND	ND	ND
ACETONE	6300	ug/l						ND	ND	ND
CHLOROBENZENE	100	ug/l						ND	ND	ND
CIS-1,2-DICHLOROETHENE	70	ug/l						ND	ND	ND
NAPHTHALENE	140	ug/l						ND	ND	ND
p-ISOPROPYLTOLUENE	NA	ug/l						ND	ND	ND
TETRACHLOROETHENE	5	ug/l						ND	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l						ND	ND	ND
TRICHLOROETHENE	5	ug/l						ND	ND	ND
VINYL CHLORIDE	2	ug/l						ND	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-360	MB-MW-360	MB-MW-360	MB-MW-361	MB-MW-361	MB-MW-361	MB-MW-361	MB-MW-362
	Sam	ple Date:	6/14/19	10/14/20	6/23/21	6/22/18	6/14/19	10/14/20	6/23/21	12/12/17
	Lab Sa	ample ID:	L1925786-02	L2044349-05	L2134596-02	L1823868-18	L1925786-01	L2044349-04	L2134596-08	L1745732-06
	Sample Type			N	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	5.7						
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	1.6	ND	ND	ND	ND	ND	4.1
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	6.1						
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-362							
	Sam	ple Date:	6/21/18	12/20/18	6/11/19	12/23/19	10/15/20	12/15/20	6/24/21	12/2/21
	Lab Sa	ample ID:	L1823868-08	L1852851-08	L1925347-09	L1961461-10	L2044349-14	L2056063-07	L2134596-20	L2166365-08
	Sam	ole Type:	Ν	N	Ν	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	6.5	3.5	2.5	3.2	3.4	3.9	4.2	1.4
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	6.3	5.4	3.8	2.6	1.2	1.6	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	11	5.5	3.9	4.2	3.1	4.3	3.5	1.3
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-363	MB-MW-363	MB-MW-363	MB-MW-363	MB-MW-371	MB-MW-371	MB-MW-371	MB-MW-371
	Sam	ple Date:	6/21/18	6/11/19	10/14/20	6/24/21	6/20/18	6/20/18	6/11/19	10/13/20
	Lab Sa	ample ID:	L1823868-06	L1925347-10	L2044349-08	L2134596-26	L1823386-13	L1823386-16	L1925347-04	L2043814-14
	Sample Type:		Ν	N	N	N	N	FD	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l					0.9	0.9	1	0.6
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND	ND	ND	ND				
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND	ND	ND	ND				
1,2,4-TRICHLOROBENZENE	70	ug/l	ND	ND	ND	ND				
1,2-DICHLOROBENZENE	600	ug/l	ND	ND	ND	ND				
1,2-DICHLOROETHANE	5	ug/l	ND	ND	ND	ND				
1,3-DICHLOROBENZENE	100	ug/l	ND	ND	ND	ND				
1,4-DICHLOROBENZENE	5	ug/l	ND	ND	ND	ND				
ACETONE	6300	ug/l	ND	ND	ND	ND				
CHLOROBENZENE	100	ug/l	ND	ND	ND	ND				
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	ND	ND	ND				
NAPHTHALENE	140	ug/l	ND	ND	ND	ND				
p-ISOPROPYLTOLUENE	NA	ug/l	ND	ND	ND	ND				
TETRACHLOROETHENE	5	ug/l	ND	ND	ND	ND				
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND	ND	ND	ND				
TRICHLOROETHENE	5	ug/l	ND	ND	ND	ND				
VINYL CHLORIDE	2	ug/l	ND	ND	ND	ND				

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-371	MB-MW-371	MB-MW-374	MB-MW-374	MB-MW-374	MB-MW-374	MB-MW-374	MB-MW-374
	Sam	ple Date:	6/24/21	6/24/21	12/12/17	3/22/18	3/22/18	6/21/18	9/28/18	9/28/18
	Lab Sa	ample ID:	410-46393-3	410-46393-4	L1745732-07	L1809946-01	L1809946-06	L1823868-03	L1839360-04	L1839360-02
	Sam	ple Type:	N	FD	Ν	N	FD	N	N	FD
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	ND	ND						
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l			ND	ND	ND	ND	ND	ND
1,2,3-TRICHLOROBENZENE	NA	ug/l			ND	ND	ND	ND	ND	ND
1,2,4-TRICHLOROBENZENE	70	ug/l			ND	ND	ND	ND	ND	ND
1,2-DICHLOROBENZENE	600	ug/l			ND	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	5	ug/l			ND	ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	100	ug/l			ND	ND	ND	ND	ND	ND
1,4-DICHLOROBENZENE	5	ug/l			ND	ND	ND	ND	ND	ND
ACETONE	6300	ug/l			ND	ND	ND	ND	ND	ND
CHLOROBENZENE	100	ug/l			ND	ND	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	70	ug/l			18	10	9.9	7.3	3.9	3.6
NAPHTHALENE	140	ug/l			ND	ND	ND	ND	ND	ND
p-ISOPROPYLTOLUENE	NA	ug/l			ND	ND	ND	ND	ND	ND
TETRACHLOROETHENE	5	ug/l			2.4	34	35	17	15	15
TRANS-1,2-DICHLOROETHENE	100	ug/l			1.8	1.1	1	ND	ND	ND
TRICHLOROETHENE	5	ug/l			1.3	7.5	7.6	16	4	4
VINYL CHLORIDE	2	ug/l			6.7	4.6	4.5	3.7	3.2	2.9

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-374							
	Sam	ple Date:	12/21/18	3/18/19	6/12/19	9/10/19	12/23/19	12/23/19	3/5/20	10/13/20
	Lab Sa	ample ID:	L1852851-12	L1910551-03	L1925347-20	L1941176-07	L1961461-09	L1961461-05	L2010088-05	L2043814-09
	Sam	ole Type:	Ν	N	N	N	N	FD	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	2.7	2.2	1.4	1.2	1.4	1.5	1.7	4.7
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	17	26	17	14	6	7.1	25	3.1
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	4.2	7.9	5.2	3.7	2	2.2	7.3	3.6
VINYL CHLORIDE	2	ug/l	1.4	1.1	ND	ND	1.1	1.1	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MB-MW-374	MB-MW-374	MB-MW-374	MB-MW-374	MB-MW-374	MW-700S	MW-701S	MW-701S
	Sam	ple Date:	12/15/20	3/18/21	6/23/21	9/21/21	12/2/21	6/19/18	6/19/18	6/19/18
	Lab Sa	mple ID:	L2056063-10	L2113626-03	L2134596-07	L2150919-05	L2166365-05	L1823386-01	L1823386-02	L1823386-05
	Sample Type:			N	N	N	N	N	Ν	FD
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	8.4	8.7	5.2	2.4	2.1	ND	ND	ND
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	2.8	31	21	17	19	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	7.3	5.7	4	5.1	ND	ND	ND
VINYL CHLORIDE	2	ug/l	2.5	1.9	1.2	ND	ND	ND	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-702B	MW-702D						
	Sam	ple Date:	12/11/17	12/11/17	3/22/18	6/19/18	9/10/19	10/12/20	6/22/21	6/19/18
	Lab Sa	mple ID:	L1745732-01	L1745732-10	L1809946-08	L1823386-07	L1941176-04	L2043814-04	L2134596-01	L1823386-08
	Sample Type:			FD	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	17	14	14	12	9.3	7.3	7.2	ND
1,2,4-TRICHLOROBENZENE	70	ug/l	53	47	40	27	11	5	14	ND
1,2-DICHLOROBENZENE	600	ug/l	2.2	1.9	2	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	1.7	1.5	1.7	1.4	1.2	ND	1	ND
1,4-DICHLOROBENZENE	5	ug/l	4.1	3.5	3.7	2.7	1.2	ND	1	ND
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	1.3	1.1	1.1	ND	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	70	ug/l	ND							
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND							
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND							
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-702D	MW-702D	MW-703S	MW-703S	MW-703S	MW-703S	MW-704D	MW-704D
	Sam	ple Date:	6/12/19	6/12/19	6/20/18	6/12/19	10/12/20	6/24/21	6/22/18	6/14/19
	Lab Sa	mple ID:	L1925347-21	L1925347-24	L1823386-17	L1925347-16	L2043814-01	410-46393-5	L1823868-15	L1925786-04
	Sam	ole Type:	Ν	FD	Ν	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l			0.7	1.1	1.4	ND		
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND	ND					ND	ND
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND	ND					ND	ND
1,2,4-TRICHLOROBENZENE	70	ug/l	ND	ND					ND	ND
1,2-DICHLOROBENZENE	600	ug/l	ND	ND					ND	ND
1,2-DICHLOROETHANE	5	ug/l	ND	ND					ND	ND
1,3-DICHLOROBENZENE	100	ug/l	ND	ND					ND	ND
1,4-DICHLOROBENZENE	5	ug/l	ND	ND					ND	ND
ACETONE	6300	ug/l	ND	ND					ND	ND
CHLOROBENZENE	100	ug/l	ND	ND					ND	ND
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	ND					ND	ND
NAPHTHALENE	140	ug/l	ND	ND					ND	ND
p-ISOPROPYLTOLUENE	NA	ug/l	ND	ND					ND	ND
TETRACHLOROETHENE	5	ug/l	ND	ND					1.3	1.2
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND	ND					ND	ND
TRICHLOROETHENE	5	ug/l	ND	ND					ND	ND
VINYL CHLORIDE	2	ug/l	ND	ND					ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-704D	MW-704D	MW-704S	MW-704S	MW-704S	MW-704S	MW-704S	MW-704S
	Sam	ple Date:	10/14/20	6/23/21	12/13/17	6/22/18	12/19/18	6/14/19	12/23/19	10/14/20
	Lab Sa	mple ID:	L2044349-02	L2134596-09	L1745946-06	L1823868-13	L1852851-04	L1925786-03	L1961461-01	L2044349-01
	Sam	ole Type:	Ν	N	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND							
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	ND	2.1	2	1.7	1.6	1.4	1.2
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	ND	1.2	1.1	ND	ND	ND	ND
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-704S	MW-704S	MW-704S	MW-705S	MW-705S	MW-705S	MW-705S	MW-705S
	Sam	ple Date:	12/15/20	6/23/21	12/1/21	6/19/18	6/12/19	10/12/20	10/12/20	6/23/21
	Lab Sa	mple ID:	L2056063-09	L2134596-06	L2166365-01	L1823386-11	L1925347-15	L2043814-05	L2043814-06	410-46393-2
	Sam	ole Type:	N	N	N	N	N	N	FD	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l				ND	ND	ND	ND	ND
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND	ND	ND					
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND	ND	ND					
1,2,4-TRICHLOROBENZENE	70	ug/l	ND	ND	ND					
1,2-DICHLOROBENZENE	600	ug/l	ND	ND	ND					
1,2-DICHLOROETHANE	5	ug/l	ND	ND	ND					
1,3-DICHLOROBENZENE	100	ug/l	ND	ND	ND					
1,4-DICHLOROBENZENE	5	ug/l	ND	ND	ND					
ACETONE	6300	ug/l	ND	ND	ND					
CHLOROBENZENE	100	ug/l	ND	ND	ND					
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	ND	ND					
NAPHTHALENE	140	ug/l	ND	ND	ND					
p-ISOPROPYLTOLUENE	NA	ug/l	ND	ND	ND					
TETRACHLOROETHENE	5	ug/l	ND	1	1.1					
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND	ND	ND					
TRICHLOROETHENE	5	ug/l	ND	ND	ND					
VINYL CHLORIDE	2	ug/l	ND	ND	ND					

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-706S							
	Sam	ple Date:	12/13/17	3/22/18	3/22/18	6/21/18	9/28/18	9/28/18	12/20/18	3/18/19
		mple ID:	L1745946-05	L1809946-05	L1809946-02	L1823868-05	L1839360-05	L1839360-01	L1852851-06	L1910551-02
	Sam	ole Type:	Ν	N	FD	N	N	FD	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	115	17.4	17.9	5.3	77.6	69.9	4.9	29.4
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l								
1,2,3-TRICHLOROBENZENE	NA	ug/l								
1,2,4-TRICHLOROBENZENE	70	ug/l								
1,2-DICHLOROBENZENE	600	ug/l								
1,2-DICHLOROETHANE	5	ug/l								
1,3-DICHLOROBENZENE	100	ug/l								
1,4-DICHLOROBENZENE	5	ug/l								
ACETONE	6300	ug/l								
CHLOROBENZENE	100	ug/l								
CIS-1,2-DICHLOROETHENE	70	ug/l								
NAPHTHALENE	140	ug/l								
p-ISOPROPYLTOLUENE	NA	ug/l								
TETRACHLOROETHENE	5	ug/l								
TRANS-1,2-DICHLOROETHENE	100	ug/l								
TRICHLOROETHENE	5	ug/l								
VINYL CHLORIDE	2	ug/l								

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-706S							
	Sam	ple Date:	3/18/19	6/11/19	6/11/19	9/10/19	9/10/19	12/23/19	12/23/19	3/5/20
	Lab Sa	mple ID:	L1910551-05	L1925347-01	L1925347-22	L1941176-06	L1941176-02	L1961461-02	L1961461-04	L2010088-02
	Sam	ole Type:	FD	N	FD	N	FD	Ν	FD	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	26.9	5.1	5.1	57.5	58.8	42.5	41.8	38.5
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l								
1,2,3-TRICHLOROBENZENE	NA	ug/l								
1,2,4-TRICHLOROBENZENE	70	ug/l								
1,2-DICHLOROBENZENE	600	ug/l								
1,2-DICHLOROETHANE	5	ug/l								
1,3-DICHLOROBENZENE	100	ug/l								
1,4-DICHLOROBENZENE	5	ug/l								
ACETONE	6300	ug/l								
CHLOROBENZENE	100	ug/l								
CIS-1,2-DICHLOROETHENE	70	ug/l								
NAPHTHALENE	140	ug/l								
p-ISOPROPYLTOLUENE	NA	ug/l								
TETRACHLOROETHENE	5	ug/l								
TRANS-1,2-DICHLOROETHENE	100	ug/l								
TRICHLOROETHENE	5	ug/l								
VINYL CHLORIDE	2	ug/l								

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round Bird Machine Company

		Location:	MW-706S							
	Sam	ole Date:	3/5/20	10/13/20	12/14/20	12/14/20	3/18/21	3/18/21	6/24/21	9/21/21
		mple ID:	L2010088-03	L2043814-10	L2056063-05	L2056063-03	L2113626-05	L2113626-06	410-46393-6	L2150919-01
	Sam	ole Type:	FD	N	N	FD	N	FD	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	41.4	80.9	13.2	12.4	11.4	11.5	96	17.2
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l								
1,2,3-TRICHLOROBENZENE	NA	ug/l								
1,2,4-TRICHLOROBENZENE	70	ug/l								
1,2-DICHLOROBENZENE	600	ug/l								
1,2-DICHLOROETHANE	5	ug/l								
1,3-DICHLOROBENZENE	100	ug/l								
1,4-DICHLOROBENZENE	5	ug/l								
ACETONE	6300	ug/l								
CHLOROBENZENE	100	ug/l								
CIS-1,2-DICHLOROETHENE	70	ug/l								
NAPHTHALENE	140	ug/l								
p-ISOPROPYLTOLUENE	NA	ug/l								
TETRACHLOROETHENE	5	ug/l								
TRANS-1,2-DICHLOROETHENE	100	ug/l								
TRICHLOROETHENE	5	ug/l								
VINYL CHLORIDE	2	ug/l								

Notes:

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-706S	MW-706S	MW-706S	MW-707D	MW-707D	MW-707D	MW-707D	MW-707D
	Sam	ple Date:	9/21/21	12/1/21	12/1/21	12/11/17	6/19/18	6/12/19	10/13/20	6/23/21
	Lab Sa	ample ID:	L2150919-02	L2166365-02	L2166365-04	L1745732-03	L1823386-09	L1925347-18	L2043814-07	L2134596-04
	Sam	ole Type:	FD	N	FD	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l	18.2	4.5	4.7					
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l				ND	ND	ND	ND	ND
1,2,3-TRICHLOROBENZENE	NA	ug/l				ND	ND	ND	ND	ND
1,2,4-TRICHLOROBENZENE	70	ug/l				ND	ND	ND	ND	ND
1,2-DICHLOROBENZENE	600	ug/l				ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	5	ug/l				ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	100	ug/l				ND	ND	ND	ND	ND
1,4-DICHLOROBENZENE	5	ug/l				1.1	ND	ND	ND	ND
ACETONE	6300	ug/l				ND	ND	ND	ND	ND
CHLOROBENZENE	100	ug/l				1.1	ND	ND	ND	ND
CIS-1,2-DICHLOROETHENE	70	ug/l				ND	ND	ND	ND	ND
NAPHTHALENE	140	ug/l				ND	ND	ND	ND	ND
p-ISOPROPYLTOLUENE	NA	ug/l				ND	ND	ND	ND	ND
TETRACHLOROETHENE	5	ug/l		_	_	2.6	1.4	1.1	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	_			ND	ND	ND	ND	ND
TRICHLOROETHENE	5	ug/l				1.6	ND	ND	ND	ND
VINYL CHLORIDE	2	ug/l				ND	ND	ND	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-708B	MW-708B	MW-708D	MW-709D	MW-709D	MW-709D	MW-709D	MW-709D
	Sam	ple Date:	6/20/18	6/20/18	6/20/18	12/13/17	6/22/18	6/12/19	10/13/20	6/24/21
	Lab Sa	ample ID:	L1823386-20	L1823386-18	L1823386-21	L1745946-02	L1823868-12	L1925347-12	L2043814-11	L2134596-27
	Sam	ole Type:	Ν	FD	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND							
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	ND	ND	1.3	1.4	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND							
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-709S							
	Sam	ple Date:	12/13/17	3/22/18	6/21/18	9/28/18	12/20/18	3/18/19	6/12/19	9/10/19
	Lab Sa	ample ID:	L1745946-01	L1809946-04	L1823868-10	L1839360-06	L1852851-10	L1910551-01	L1925347-11	L1941176-08
	Sam	ple Type:	Ν	N	N	N	N	N	Ν	Ν
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	3.7	1.9	3.2	3	2.9	3.2	2.8	2.5
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	17	9.4	19	16	13	15	14	13
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	90	59	77	76	69	86	63	70
TRANS-1,2-DICHLOROETHENE	100	ug/l	1	ND	1	ND	ND	ND	ND	ND
TRICHLOROETHENE	5	ug/l	52	29	49	47	39	49	39	39
VINYL CHLORIDE	2	ug/l	8.3	4.7	8	8.6	6.6	9.7	6.5	5.9

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-709S							
	Sam	ple Date:	12/23/19	3/5/20	10/13/20	12/15/20	3/18/21	3/18/21	6/24/21	6/24/21
	Lab Sa	mple ID:	L1961461-12	L2010088-06	L2043814-12	L2056063-12	L2113626-01	L2113626-02	L2134596-22	L2134596-23
	Sam	ole Type:	N	N	N	N	N	FD	N	FD
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	2.3	2.6	1.9	2.1	2	1.9	2	1.9
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	10	11	9.7	10	9.9	9.6	10	10
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	57	65	42	53	54	54	54	46
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	33	39	28	30	29	28	30	28
VINYL CHLORIDE	2	ug/l	8.3	6.1	4.5	5.6	5.4	5.3	5.9	6.1

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-709S	MW-709S	MW-709S	MW-709S	MW-710D	MW-710M	MW-710M	MW-710M
	Sam	ple Date:	9/21/21	9/21/21	12/2/21	12/2/21	6/21/18	12/13/17	6/21/18	12/20/18
	Lab Sa	mple ID:	L2150919-03	L2150919-06	L2166365-06	L2166365-07	L1823868-11	L1745946-03	L1823868-09	L1852851-09
	Sam	ole Type:	Ν	FD	N	FD	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	1.7	1.6	1.7	1.7	ND	ND	ND	ND
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	8.1	8.1	8.5	8.2	ND	1.9	1.1	1.5
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	46	48	48	48	ND	6.2	3.7	4.4
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	22	23	25	25	ND	3.2	2.3	2.4
VINYL CHLORIDE	2	ug/l	4.5	4.6	4.2	4.2	ND	ND	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-710M	MW-710M	MW-710M	MW-710M	MW-710M	MW-710M	MW-710S	MW-710S
	Sam	ple Date:	6/12/19	12/23/19	10/15/20	12/15/20	6/24/21	12/2/21	12/13/17	6/21/18
	Lab Sa	mple ID:	L1925347-14	L1961461-06	L2044349-13	L2056063-11	L2134596-25	L2166365-10	L1745946-04	L1823868-07
	Sam	ole Type:	N	N	N	N	N	N	N	Ν
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	ND	ND	ND	ND	ND	1	ND
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	3.3	3	3.2	2.5	1.8	2.3	2.7	1.9
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	1.8	2.2	2.1	1.8	1.2	1.2	1.9	1.8
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-710S	MW-710S	MW-710S	MW-711D	MW-711D	MW-711D	MW-711D	MW-711D
	Sam	ple Date:	6/12/19	10/15/20	6/24/21	12/12/17	6/21/18	6/12/19	10/13/20	6/23/21
	Lab Sa	mple ID:	L1925347-13	L2044349-12	L2134596-28	L1745732-08	L1823868-02	L1925347-19	L2043814-08	L2134596-10
	Sam	ole Type:	Ν	N	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND							
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	1.2	ND	ND	1.1	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	1	ND						
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-711S	MW-712S	MW-713D	MW-713D	MW-713D	MW-713D	MW-713D	MW-713D
	Sam	ple Date:	6/20/18	6/21/18	12/12/17	6/22/18	12/20/18	12/20/18	6/11/19	12/23/19
	Lab Sa	mple ID:	L1823386-23	L1823868-04	L1745732-05	L1823868-14	L1852851-07	L1852851-02	L1925347-08	L1961461-08
	Sam	ole Type:	Ν	N	N	N	N	FD	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND	ND	8.3	11	15	16	17	13
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	ND	32	28	29	31	28	25
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	ND	12	13	13	14	14	12
VINYL CHLORIDE	2	ug/l	ND	ND	1	1.5	1.8	1.6	2.4	3.5

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location: N		MW-713D	MW-713D	MW-713D	MW-713D	MW-713D	MW-713S	MW-713S
	Sam	ple Date:	10/15/20	12/15/20	12/15/20	6/24/21	6/24/21	12/2/21	6/22/18	6/11/19
	Lab Sa	ample ID:	L2044349-10	L2056063-06	L2056063-02	L2134596-21	L2134596-29	L2166365-09	L1823868-19	L1925347-07
	Sam	ole Type:	N	N	FD	N	FD	N	N	Ν
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	29	10	9.1	5.4	6.2	2.6	3	3
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	14	22	21	15	14	16	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	1.4	ND						
TRICHLOROETHENE	5	ug/l	12	9.7	9.1	6.6	6.2	5.7	ND	ND
VINYL CHLORIDE	2	ug/l	4	1.9	1.7	ND	ND	ND	2.2	1.8

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:		MW-713S	MW-713S	MW-714D	MW-714D	MW-714D	MW-714D	MW-714S
	Sam	ple Date:	10/15/20	10/15/20	6/24/21	6/20/18	6/11/19	10/13/20	6/23/21	12/12/17
	Lab Sa	mple ID:	L2044349-09	L2044349-11	L2134596-24	L1823386-22	L1925347-06	L2043814-13	L2134596-11	L1745732-04
	Sam	ole Type:	Ν	FD	N	N	N	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	3.3	3.4	3.4	ND	ND	ND	ND	13
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND							
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	3.8						
VINYL CHLORIDE	2	ug/l	1.7	1.7	2	ND	ND	ND	ND	3.2

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-714S							
	Sam	ple Date:	3/22/18	6/21/18	9/28/18	12/21/18	3/18/19	3/18/19	6/11/19	6/11/19
	Lab Sa	ample ID:	L1809946-03	L1823868-01	L1839360-03	L1852851-11	L1910551-04	L1910551-06	L1925347-05	L1925347-23
	Sam	ple Type:	Ν	N	Ν	N	N	FD	N	FD
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	14	2.7	9.3	12	11	12	6.2	6.3
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	2.8	ND	ND	ND	16	16	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	14	ND	ND	7.4	25	26	2.2	2.1
VINYL CHLORIDE	2	ug/l	1.9	ND	3.2	1.8	1.7	1.8	1	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-714S							
	Sam	ple Date:	9/10/19	9/10/19	12/23/19	3/5/20	3/5/20	10/14/20	12/15/20	3/18/21
	Lab Sa	ample ID:	L1941176-05	L1941176-03	L1961461-07	L2010088-01	L2010088-04	L2044349-03	L2056063-08	L2113626-04
	Sam	ole Type:	Ν	FD	N	N	FD	N	N	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND							
1,2,4-TRICHLOROBENZENE	70	ug/l	ND							
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND							
1,4-DICHLOROBENZENE	5	ug/l	ND							
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	4.2	4.1	9	9.8	10	ND	8.8	8
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	ND	13	42	46	ND	1.1	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	ND	23	43	46	ND	7.8	3.3
VINYL CHLORIDE	2	ug/l	2.5	2.5	2.1	1	1.1	ND	1.4	1.2

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	MW-714S	MW-714S	MW-714S	MW-715S	MW-715S	MW-715S	MW-715S	NP-MW-601
	Sam	Sample Date:		9/21/21	12/2/21	6/22/18	6/14/19	10/14/20	6/23/21	12/11/17
	Lab Sa	ample ID:	L2134596-03	L2150919-04	L2166365-03	L1823868-16	L1925786-05	L2044349-06	L2134596-05	L1745732-02
	Sam	ole Type:	N	N	N	N	N	N	Ν	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	ND	17						
1,2,4-TRICHLOROBENZENE	70	ug/l	ND	34						
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	ND	1.6						
1,4-DICHLOROBENZENE	5	ug/l	ND	2.6						
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	8	5.6	9.6	ND	ND	ND	ND	ND
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND	ND	1.2	ND	ND	ND	ND	ND
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND	ND	8.3	ND	ND	ND	ND	ND
VINYL CHLORIDE	2	ug/l	1.6	1.5	1.2	ND	ND	ND	ND	ND

ND = Not Detected Green Fill = Detect > MMCL

Table 3. COC Detections for September - December 2021 Groundwater Monitoring Round
Bird Machine Company

		Location:	NP-MW-601	NP-MW-601	NP-MW-601	NP-MW-601	NP-MW-601	NP-MW-601	NP-MW-602	NP-MW-603
	Sam	ple Date:	3/22/18	6/19/18	6/12/19	10/12/20	10/12/20	6/24/21	6/19/18	6/19/18
	Lab Sa	ample ID:	L1809946-07	L1823386-03	L1925347-17	L2043814-02	L2043814-03	L2134596-19	L1823386-06	L1823386-04
	Sam	ole Type:	Ν	N	N	N	FD	N	Ν	N
Analyte	MMCL	Units								
Dissolved Metals										
ARSENIC	10	ug/l								
Volatile Organics										
1,1-DICHLOROETHENE	7	ug/l	ND							
1,2,3-TRICHLOROBENZENE	NA	ug/l	12	11	8.2	12	14	11	ND	ND
1,2,4-TRICHLOROBENZENE	70	ug/l	20	11	3.1	10	12	5.6	ND	ND
1,2-DICHLOROBENZENE	600	ug/l	ND							
1,2-DICHLOROETHANE	5	ug/l	ND							
1,3-DICHLOROBENZENE	100	ug/l	1.4	1.1	ND	1.2	1.5	ND	ND	ND
1,4-DICHLOROBENZENE	5	ug/l	2	1.2	ND	ND	1.2	ND	ND	ND
ACETONE	6300	ug/l	ND							
CHLOROBENZENE	100	ug/l	ND							
CIS-1,2-DICHLOROETHENE	70	ug/l	ND							
NAPHTHALENE	140	ug/l	ND							
p-ISOPROPYLTOLUENE	NA	ug/l	ND							
TETRACHLOROETHENE	5	ug/l	ND							
TRANS-1,2-DICHLOROETHENE	100	ug/l	ND							
TRICHLOROETHENE	5	ug/l	ND							
VINYL CHLORIDE	2	ug/l	ND							

ND = Not Detected Green Fill = Detect > MMCL

wood.

Appendix A Public Notification Letter

Draft RMR Transmittal Letter Including PIP Mailing List Notice of Document Availability

Wood Massachusetts, Inc. 271 Mill Road, 3rd Floor Chelmsford, MA 01824 USA

T: 978-692-9090

www.woodplc.com

February 17, 2022

Mr. Gerard Martin
Massachusetts Department of Environmental Protection
Southeast Regional Office
Bureau of Waste Site Cleanup
20 Riverside Drive, Lakeville, Massachusetts 02347

Re: Phase V Status and Remedial Monitoring Report 100 Neponset Street Walpole, Massachusetts RTN 4-3024222

Dear Mr. Martin,

On behalf of Baker Hughes, Wood Massachusetts, Inc. (Wood MA) is providing this Phase V Status and Remedial Monitoring Report (RMR) for the Bird Machine Company Site at 100 Neponset Street in Walpole, Massachusetts. Baker Hughes is submitting this RMR pursuant to 310 CMR 40.0890 of the Massachusetts Contingency Plan (MCP). The Site is listed as Release Tracking Number (RTN) 4-3024222 under the MCP.

This RMR documents the operation of a Comprehensive Remedial Action that is expected to be a Permanent Solution for the Site, and that was installed as described in the Phase IV Final Inspection Report. A Permanent Solution will achieve a condition of No Significant Risk for current and reasonably foreseeable site uses. As documented in the Class C-2 Response Action Outcome Statement submitted to the Massachusetts Department of Environmental Protection (MassDEP) on December 16, 2011, the Site already achieves the requirements of a Temporary Solution.

A copy of the Executive Summary of this report is attached to this letter, which is being sent by U.S. Mail to members of the Public Involvement Plan (PIP) mailing list. A paper copy of the RMR is being provided to the PIP repository at the Walpole Public Library (Telephone Number: 508-660-7341) at 143 School Street. The electronic report has been uploaded to the MassDEP (http://public.dep.state.ma.us/SearchableSites/Search.asp) and is also being provided today to the Town of Walpole for upload to their website: http://www.walpole-ma.gov/economic-development/pages/bird-machine-information.

Comments on this RMR can be submitted to Chris Clodfelter of Baker Hughes at the following address:

Chris Clodfelter Senior HS&E Specialist Baker Hughes 12645 West Airport Boulevard Sugar Land, Texas 77478-6120 Cell: (832) 668-0112

Please contact me at (978) 692-9090 if you have any questions regarding the Public Involvement process for this document

Sincerely,

Wood Massachusetts, Inc.

KinMHe

Kim M. Henry LSP No. 7122

cc: Mr. Jim Johnson, Walpole Town Administrator

Ms. Melissa Ranieri, Walpole Health Director Ms. Landis Hershey, Walpole Conservation Agent

Public Involvement Plan Mailing List

Enclosure:

Copy of Phase V RMR Executive Summary

Copy of Phase V RMR Executive Summary

On behalf of Baker Hughes, Wood Massachusetts, Inc. (Wood MA), completed this Phase V Status and Remedial Monitoring Report (RMR) for the former Bird Machine Company (BMC) Site located in Walpole, Massachusetts. Baker Hughes is submitting this RMR pursuant to 310 CMR 40.0890 of the Massachusetts Contingency Plan (MCP). This RMR documents the operation of a Comprehensive Remedial Action that is expected to be a Permanent Solution for the Site, and that was installed as described in the Phase IV Final Inspection Report (FIR; AMEC 2012). A Permanent Solution will achieve a condition of No Significant Risk (NSR) for current and reasonably foreseeable site uses. As documented in the Class C-2 Response Action Outcome (RAO) Statement submitted to the Massachusetts Department of Environmental Protection (MassDEP) on December 16, 2011, the Site already achieves the requirements of a Temporary Solution (AMEC 2011a).

Release Abatement Measures (RAMs) have been conducted at several locations between 2005 and 2011 to reduce the mass and concentrations of contaminants at the Site. The Phase II Comprehensive Site Assessment (CSA) reports (AMEC 2011b, AMEC 2011c) indicate that a condition of NSR exists for all areas of the Site except groundwater, where some monitoring well concentrations exceed drinking water criteria (Massachusetts Maximum Contaminant Levels or MMCLs). It is unlikely that groundwater at the Site will be used for drinking water, but the Site is within a Potential Drinking Water Source Area designated by the Town of Walpole (Walpole 2007). Considering this designation, groundwater at the Site is categorized as GW-1 under the MCP. The CSA reports found no current pathway between Site contaminants and the Town's water supply wells to the northeast, but the potential for contaminant movement from a portion of the Site warrants further monitoring.

Areas of groundwater contamination exceeding MMCLs were identified for arsenic, chlorinated Volatile Organic Compounds (cVOCs), and 1,4-dichlorobenzene (DCB). A Monitored Natural Attenuation (MNA) remedy consisting of active monitoring of natural processes was selected to achieve clean up goals and was installed in accordance with Phase IV of the MCP. MNA is considered an Active Remedial Monitoring Program under the MCP and has been designed and constructed to provide a Permanent Solution that achieves a condition of NSR, as described in the FIR (AMEC 2012).

The August 2013 Phase V Status and Remedial Monitoring Report (RMR; AMEC 2013a) coincided with one year of initial process monitoring as described in the FIR. At that time, it was determined that initial process monitoring had confirmed that key MNA processes were underway and a transition to long-term performance monitoring was appropriate. Long-term monitoring is designed to confirm that site conditions remain suitable for MNA, and that overall contaminant concentrations and mass are decreasing within a reasonable timeframe.

The long-term monitoring program performed until 2018 included quarterly sampling at six locations within the plumes that have had significant fluctuations in recent contaminant concentrations above the MMCLs, semi-annual sampling at nine other wells within the horizontal and vertical extent of the plume areas where previous quarterly sampling shows little variation in concentrations, and annual sampling at 23 wells along the plume lateral or vertical edges where concentrations are below MMCLs. The results over the first five years of monitoring showed consistent results with concentrations at many wells below ½ the MMCL, which is the selected remedial goal for the Site. As a result, some monitoring wells were selected for reduced sampling frequency, or removal from the long-term monitoring program. These changes were implemented beginning in the third quarter of 2018. The current Operation, Maintenance, and Monitoring

(OMM) program is summarized in **Table 1** and includes performance of long-term monitoring in March (quarterly), June (quarterly, semi-annual, and annual), September (quarterly), and December (quarterly and semi-annual). Analytes for long-term monitoring consist of the contaminants exceeding MMCLs and their primary breakdown products.

Groundwater sampling results from the September 2021 and December 2021 rounds indicate that MNA processes continue to reduce the overall mass and concentrations of contaminants at the Site. Concentrations within the DCB plume have continued to decline steadily, and the remedial goals have now been achieved for all wells within the plume. While some wells in the interior of the cVOC plume continue to show fluctuating concentrations above the MMCL, the plume is stable or contracting as evidenced by the overall decreasing contaminant trends. Recent arsenic results indicate that the overall plume is stable (i.e. not expanding), however they also show that concentrations within the plume interior can vary significantly. No significant changes to the Conceptual Site Model (CSM) are warranted based on the latest measurements.

wood.

Appendix B

BWSC Transmittal Form

(To be included in paper copy following eDEP submittal of final version)

BWSC 108

Release Tracking Number

		8 - 1011110 01
4	-	3024222

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

A. SITE LOCATION	!:	
1. Site Name:	BAKER HUGHES INC FMLY	BIRD MACHINE CO
2. Street Address:	100 NEPONSET ST	
3. City/Town:	WALPOLE	4. ZIP Code:
5. Check here if the	e disposal site that is the se	ource of the release is Tier Classified. Check the current Tier Classification Category:
a. Tier I	□ b. Tier ID	□ c. Tier II
B. THIS FORM IS B	EING USED TO: (check	all that apply)
1. Submit a Phas e	e I Completion Stateme	nt, pursuant to 310 CMR 40.0484.
2. Submit a Revis	sed Phase I Completion	Statement, pursuant to 310 CMR 40.0484.
3. Submit a Phase	e II Scope of Work, purs	suant to 310 CMR 40.0834.
4. Submit an inte 310 CMR 40.0500		is report does not satisfy the response action deadline requirements in
☐ 5. Submit a final	Phase II Report and Co	Exampletion Statement, pursuant to 310 CMR 40.0836.
6. Submit a Revis	sed Phase II Report and	Completion Statement, pursuant to 310 CMR 40.0836.
7. Submit a Phase	e III Remedial Action Pl	lan and Completion Statement, pursuant to 310 CMR 40.0862.
8. Submit a Revis	sed Phase III Remedial A	Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.
9. Submit a Phase	e IV Remedy Implement	tation Plan, pursuant to 310 CMR 40.0874.
10. Submit a Mod	lified Phase IV Remedy	Implementation Plan, pursuant to 310 CMR 40.0874.
11. Submit an As -	-Built Construction Rep	ort, pursuant to 310 CMR 40.0875.
12. Submit a Pha	se IV Status Report, pur	rsuant to 310 CMR 40.0877.
13. Submit a Pha	se IV Completion State	ment, pursuant to 310 CMR 40.0878 and 40.0879.
Specify the out	tcome of Phase IV activiti	es: (check one)
	peration, Maintenance or M Temporary Solution.	Monitoring of the Comprehensive Remedial Action is necessary to achieve a
-	ements of a Permanent Solwill be submitted to DEP.	lution have been met. A completed Permanent Solution Statement and Report
c. The require	ements of a Temporary So	lution have been met. A completed Temporary Solution Statement and Report

Revised: 09/03/2013 Page 1 of 5

(BWSC104) will be submitted to DEP.

BWSC 108

Release Tracking Number

1 - 3024222	
-------------	--

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

В.	THIS FORM IS BEING USED TO (cont.): (check all that apply)											
	14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.											
~	15. Submit a Phase V Status Report, pursuant to 310 CMR 40.0892.											
V	16. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)											
	a. Type of Report: (check one) 🔲 i. Initial Report 🔽 ii. Interim Report 🗀 iii. Final Report											
	b. Frequency of Submittal: (check all that apply)											
	i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.											
	ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.											
	iv. A Remedial Monitoring Report(s) submitted annually, concurrent with a Status Report.											
	c. Status of Site: (check one) 🔲 i. Phase IV 🔲 ii. Phase V 🔽 iii. Remedy Operation Status 🗀 iv. Temporary Solution											
	d. Number of Remedial Systems and/or Monitoring Programs: 1											
	A separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form.											
	17. Submit a Remedy Operation Status, pursuant to 310 CMR 40.0893.											
~	18. Submit a Status Report to maintain a Remedy Operation Status , pursuant to 310 CMR 40.0893(2).											
	 19. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status (ROS), pursuant to 310 CMR 40.0893(5) (check one, or both, if applicable). □ a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions"). □ b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Section D, "Person Undertaking Response Actions"). c. Number of Persons Maintaining an ROS not including the primary representative: 											
	20. Submit a Termination of a Remedy Operation Status, pursuant to 310 CMR 40.0893(6).(check one)											
	 a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 CMR 40.0893(6)(b) for resuming the ROS are attached. b. Submit a notice of Termination of ROS. 											
Г	21. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.											
	Specify the outcome of Phase V activities: (check one)											
	a. The requirements of a Permanent Solution have been met. A completed Permanent Solution Statement and Report (BWSC104) will be submitted to DEP.											
	b. The requirements for a Temporary Solution have been met. A completed Temporary Solution Statement and Report (BWSC104) will be submitted to DEP.											
	22. Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894.											
	23. Submit a Temporary Solution Status Report , pursuant to 310 CMR 40.0898.											
	24. Submit a Plan for the Application of Remedial Additives near a sensitive receptor, pursuant to 310 CMR 40.0046(3).											
	a. Status of Site: (check one)											
	☐ i. Phase IV ☐ ii. Phase V ☐ iii. Remedy Operation Status ☐ iv. Temporary Solution											

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

BWSC 108

Release	Tracking	Number
---------	----------	--------

Ļ	-	3024222
---	---	---------

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B indicates that a **Phase II, Phase III, Phase IV or Phase V Completion Statement** and/or a **Termination of a Remedy Operation Status** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that a **Phase II Scope of Work** or a **Phase IV Remedy Implementation Plan** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Temporary Solution Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP#:	7122			
2. First Name:	KIMM		3. Last Name:	HENRY
4. Telephone:	9786929090	5. Ext.:	6. Email:	
7. Signature:	KIM M HENRY			
8. Date:	2/17/2022 (mm/dd/yyyy)		9. LSP Stamp:	owealth of Massa

Revised: 09/03/2013 Page 3 of 5

V

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC 108

Release Tracking Number

- 3024222

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

D. PE	RSON UI	NDERTA	KING	RESPONS	SE ACTIONS:				
1. Che	eck all tha	t apply:	□ a.	change in	contact name	▼ b. cł	nange of address	c. change i	in the person undertaking
2. Nan	ne of Org	anization:		BAKER HU	GHES INC				
3. Cor	ntact First	Name:	CHRIS	8			4. Last Name:	CLODFELTER	
5. Stre	eet:	12645 WES	T AIRP	ORT BOULE	VARD		6. Title:	GLOBAL REMEDIATI	ON LEAD
7. City	//Town:	SUGAR L	.AND		8. Sta	te: TX	•	9. ZIP Code:	774786120
10. Te	lephone:	8326680	112		11. Ext:		12. Email:		
	1. RP or F 2. Fiduc 3. Agend	PRP Final Property of Publication	a. Over the control of the control o	vner er RP or PF ender or M lity on a Ri	b. Operator RP Specify: unicipality with	Exempt St		d. Transporter y M.G.L. c. 21E,	s. 2)
F. RE	QUIRED	ATTACH	MEN'	Γ AND SU	BMITTALS:				
	and/or ap		issued			-		, ,	t to any order(s), permit(s) entifying the applicable
		here to co	-		ief Municipal Of	ficer and the	he Local Board of	Health have been	notified of the submittal or
			-	hat the Chi Action Plar		ficer and th	ne Local Board of	Health have been	notified of the availability
			-	hat the Chi nplementat	-	ficer and th	ne Local Board of	Health have been	notified of the availability
			-		ief Municipal Of hase IV Remedia		he Local Board of	Health have been	notified of any field work
								0893(5)), check ho (transferee) is atta	ere to certify that a ched.
		_			• •		` •	40.0893(5)), chemittal is attached.	ck here to certify that a
			-	-updatable	•	vided on th	nis form is incorre	ct, e.g. Release Ac	ddress/Location Aid. Send

Revised: 09/03/2013 Page 4 of 5

9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

BWSC 108

Release Tracking Number

4	-	3024222
---	---	---------

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

$\overline{}$	CEDTIFICAT	TON OF DEDS	ON LINDEDT.	AKING RESPONSE	ACTIONS
₩.	CERTIFICAL	TON OF PERS	LUN LUNIJEK LA	AKING KRSPUNSE.	AL HUNN

				:	
form, (ii) that, based on reformation contained in the formation contained in the following submitted to make the half this submitted is mannent, for willfully submitted in the following submitted submitted in the following submitted s	information contained in my inquiry of those ind is submittal is, to the basis attestation on behalf ade am/is aware that the mitting false, inaccurate Modification of a Reflection of the act on behalf of all and written correspondent tement of fee amount a	n this subrividuals in est of my of the entere are signer, or incompered Op persons pedence from as per 4.03	nittal, inclumediately knowledge ity legally inificant per inplete information State of MassDEF (3).	responsible for obtaining the information, the and belief, true, accurate and complete, and (iii) responsible for this submittal. I/the person or entitualties, including, but not limited to, possible fines mation. atus (ROS), I attest under the pains and penalties response actions under the ROS as stated in 310 P with respect to performance of response actions	ty s
response actions under t	he ROS, and I am awa	re that the	re are signi	ficant penalties, including, but not limited to,	;
CHRIS CLODFELTER			3. Title:	GLOBAL REMEDIATION LEAD	
S	Signature				
BAKER HUGHES INC			5. Date:	2/17/2022	
(Name of person or e	entity recorded in Section	n D)		(mm/dd/yyyy)	
k here if the address of t	he person providing co	ertification	is differen	nt from address recorded in Section D.	
n:	9.	State:		10. ZIP Code:	_
ne:	12. Ext.:		13. Email:		
				URANCE FEE OF UP TO \$10,000 PER EGIBLY COMPLETE ALL RELEVANT	
	nd am familiar with the inform, (ii) that, based on reform, (ii) that, based on reformation contained in the ally authorized to make the chalf this submittal is mannent, for willfully submittal is an annent, for willfully submittal am fully authorized 93(5)(d) to receive oral OS, and to receive a stand that any material receive response actions under the sand imprisonment, for CHRIS CLODFELTER BAKER HUGHES INC (Name of person or expected the sand imprisonment in the sand imprisonment in the sand imprison or expected in the sand in the sand imprison or expected in the sand i	nd am familiar with the information contained in form, (ii) that, based on my inquiry of those indicormation contained in this submittal is, to the billy authorized to make this attestation on behalf this submittal is made am/is aware that the inment, for willfully submitting false, inaccurate the indicates that this is a Modification of a Reference in the factor of the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that this is a Modification of a Reference in the indicates that the indicates in the indicates that the indicates in the indic	India m familiar with the information contained in this submormation contained in this submormation contained in this submittal is, to the best of my light authorized to make this attestation on behalf of the enteredalf this submittal is made am/is aware that there are significant, for willfully submitting false, inaccurate, or income build an income build an income build authorized to act on behalf of all persons provided to receive a statement of fee amount as per 4.03 at that any material received by the Primary Representative response actions under the ROS, and I am aware that there is and imprisonment, for willfully submitting false, inaccurate, or income build an imprisonment, for willfully submitting false, inaccurate, or income building in this submitting in this submitting false, inaccurate, or income building in this submitting in this submitting false, inaccurate, or income building in this submitting in this submitting false, inaccurate, or income building in this submitting in this submitting false, inaccurate, or income building in this submittal is attention to the submitted in the submittal is attention to the submitted in the submi	Indiam familiar with the information contained in this submittal, inclusion, (ii) that, based on my inquiry of those individuals immediately formation contained in this submittal is, to the best of my knowledge lly authorized to make this attestation on behalf of the entity legally ehalf this submittal is made am/is aware that there are significant performent, for willfully submitting false, inaccurate, or incomplete informent, for willfully submitting false, inaccurate, or incomplete informent. By indicates that this is a Modification of a Remedy Operation State I am fully authorized to act on behalf of all persons performing 193(5)(d) to receive oral and written correspondence from MassDEROS, and to receive a statement of fee amount as per 4.03(3). If that any material received by the Primary Representative from Mass response actions under the ROS, and I am aware that there are signifies and imprisonment, for willfully submitting false, inaccurate or incomplete. CHRISCLODFELTER Signature BAKER HUGHES INC (Name of person or entity recorded in Section D) k here if the address of the person providing certification is different from the incomplete information in the incomplete information is different from the incomplete information in the incomplete information is different from the incomplete information in the incomplete information in the incomplete information in the information in the incomplete information in the informatio	and am familiar with the information contained in this submittal, including any and all documents accompanying this form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the ormation contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) lly authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity health this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines ment, for willfully submitting false, inaccurate, or incomplete information. By indicates that this is a Modification of a Remedy Operation Status (ROS), I attest under the pains and penalties hat I am fully authorized to act on behalf of all persons performing response actions under the ROS as stated in 310 93(5)(d) to receive oral and written correspondence from MassDEP with respect to performance of response actions OS, and to receive a statement of fee amount as per 4.03(3). If that any material received by the Primary Representative from MassDEP shall be deemed received by all the persons response actions under the ROS, and I am aware that there are significant penalties, including, but not limited to, es and imprisonment, for willfully submitting false, inaccurate or incomplete information. CHRISCLODFELTER Signature 5. Date: 6LOBAL REMEDIATION LEAD (Name of person or entity recorded in Section D) Reference of the person providing certification is different from address recorded in Section D.

Page 5 of 5 Revised: 09/03/2013

Supporting Information Remedy Operation Status Report RTN 4-3024222 Former Bird Machine Company Site Walpole, MA

Supporting information for the Remedy Operation Status Report is provided in the Phase V Status and Remedial Monitoring Report dated February 17, 2022.

4. Other

Describe:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup CRA REMEDIAL MONITORING REPORT Pursuant to 310 CMR 40.0800 (SUBPART H)

Release Tracking Number

BWSC108 -A

Remedial System or Monitorin	$\frac{1}{1}$		of: 1	4	3024222	2
A. DESCRIPTION OF ACTIVE OPERATION AN	 ID MAINTENA!	NCE ACTIV	TTY:			
1. Type of Active Operation and Maintenance Activ a. Active Remedial System: (check all that app i. NAPL Recovery iv. Groundwater Recovery vii. Air Stripping viii. Sp	ity: (check all tha	tapply) /Bioventing	□ iii. Vaj □ vi. Aq		arbon Adsorption Carbon Adsorp xidation	
 □ x. Other Describe: □ b. Active Exposure Pathway Elimination Meas Active Exposure Pathway Mitigation System 		eck one):	i. Indoor Air	□ ii. Dı	rinking Water	
☐ c. Application of Remedial Additives: (check a ☐ i. To the Subsurface ☐ ii. To C ☐ d. Active Remedial Monitoring Program Without and E are not required; attach supporting information. Reactive Wall ☐ ii. Natural Attenuat	Groundwater (Injusted in the Application attack) attacks attacks are seen at the control of the	on of Remedi and/or sketo	al Additives: (ches needed by			s C, D
 Mode of Operation: (check one) a. Continuous b. Intermittent c. System Effluent/Discharge: (check all that apply) a. Sanitary Sewer/POTW b. Groundwater Re-infiltration/Re-injection: (c c. Vapor-phase Discharge to Ambient Air: (ch d. Drinking Water Supply e. Surface Water (including Storm Drains) f. Other Describe: 	check one)	One-time Evo i. Downgrac i. Off-gas C	lient □ ii. U	. Other:	s Controls	
B. MONITORING FREQUENCY:						
1. Reporting period that is the subject of this submit	tal: From	m: <u>7/1/2021</u> (mm/	To:		n/dd/yyyy)	
2. Number of monitoring events during the reportin ☐ a. System Startup: (if applicable) ☐ i. Days 1, 3, 6, and then weekly thereafter, ☐ ii. Other Describe:				· ·		
 ▶ D. Post-system Startup (after first month) or M ☐ i. Monthly ☑ ii. Quarterly ☐ iii. Annually ☐ iv. Other Describe: 			1.4.11.	4		
3. Check here to certify that the number of requi	<u>~</u>					
C. EFFLUENT/DISCHARGE REGULATION: (ch □ 1. NPDES: (check one) □ a. Remediation	General Permit	□b	. Individual Per	mit	e established)	
c. Emergency l	Exclusion	Effe	ective Date of P	ermit:		
☐ 2. MCP Performance Standard MCP Citati	ons(s):				(mm/dd/yyyy	y)
☐ 3. DEP Approval Letter Date of Letter:						

Page 1 of 3 Revised: 11/13/2013

(mm/dd/yyyy)

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

CRA REMEDIAL MONITORING REPORT

Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program: 1	1
--	---

of	4	ĺ
OI.	1	

В	SWS	C1()8	-A
В	WS	C10)8	-A

Release Tracking Number

	_		_
4	-	3024222	

a. Name:				b. Grad	le:		
c. License No:		d. Licens	e Exp. Dat	te:			
	(mm/dd/yyyy)						
2. Not Required							
3. Not Applicable							
			CTIVE R	EMEDIAL MONITORIN	NG PROGRA	M DURING	
ORTING PERIOD: (ch					.		
	-		e or more	days during the Reporting	g Period.		
a. Days System was Fully Functional:				b. GW Recover	_		
c. NAPL Recovered (gals):			d. GW Discharg				
e. Avg. Soil Gas Reco	very Rate (sc	fm):		f. Avg. Spargin	g Rate (scfm):	
2. Remedial Additives:	(check all tha	nt apply)					
a. No Remedial Add	itives annlied	during the Re	norting Pe	riod			
a. No Reilleulai Aud	nuves applied	during the No	porting i'c	iiou.			
□ h Enhanced Biorem	ediation Add	itives annlied.	(total quar	ntity applied at the site for	the current re	enorting neriod	47
		itives applied:	(total quar	ntity applied at the site for	the current re	eporting period	d)
i. Nitrogen/Phosph	norus:		` •	ii. Peroxides:			
		Quantity	(total quan		Date	Quantity	Units
i. Nitrogen/Phosph	norus:		` •	ii. Peroxides:			
i. Nitrogen/Phosph	norus:		` •	ii. Peroxides:			
i. Nitrogen/Phosph	Date		` •	ii. Peroxides:			
i. Nitrogen/Phosph Name of Additive	Date S:	Quantity	Units	Name of Additive iv. Other:	Date	Quantity	Units
☐ i. Nitrogen/Phosph Name of Additive	Date		` •	Name of Additive			
i. Nitrogen/Phosph Name of Additive	Date S:	Quantity	Units	Name of Additive iv. Other:	Date	Quantity	Units
i. Nitrogen/Phosph Name of Additive	Date S:	Quantity	Units	Name of Additive iv. Other:	Date	Quantity	Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive	Date S: Date	Quantity Quantity	Units Units	Name of Additive iv. Other: Name of Additive	Date	Quantity Quantity	Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive	Date S: Date	Quantity Quantity	Units Units	Name of Additive iv. Other: Name of Additive	Date	Quantity Quantity	Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive c. Chemical oxidatio i. Permanganates:	Date Date State Date Date	Quantity Quantity Additives appli	Units Units Units	Name of Additive iv. Other: Name of Additive uantity applied at the site ii. Peroxides:	Date Date for the currer	Quantity Quantity Quantity nt reporting per	Units Units Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive	Date S: Date	Quantity Quantity	Units Units	Name of Additive iv. Other: Name of Additive	Date	Quantity Quantity	Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive c. Chemical oxidatio i. Permanganates:	Date S: Date Date on/reduction a	Quantity Quantity Additives appli	Units Units Units	Name of Additive iv. Other: Name of Additive uantity applied at the site ii. Peroxides:	Date Date for the currer	Quantity Quantity Quantity nt reporting per	Units Units Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive c. Chemical oxidatio i. Permanganates:	Date S: Date Date on/reduction a	Quantity Quantity Additives appli	Units Units Units	Name of Additive iv. Other: Name of Additive uantity applied at the site ii. Peroxides:	Date Date for the currer	Quantity Quantity Quantity nt reporting per	Units Units Units
i. Nitrogen/Phosph Name of Additive iii. Microorganism Name of Additive c. Chemical oxidatio i. Permanganates:	Date S: Date Date on/reduction a	Quantity Quantity Additives appli	Units Units Units	Name of Additive iv. Other: Name of Additive uantity applied at the site ii. Peroxides:	Date Date for the currer	Quantity Quantity Quantity nt reporting per	Units Units Units
□ i. Nitrogen/Phosph Name of Additive □ iii. Microorganism Name of Additive □ c. Chemical oxidatio □ i. Permanganates: Name of Additive	Date S: Date Date on/reduction a	Quantity Quantity Additives appli	Units Units Units	Name of Additive iv. Other: Name of Additive uantity applied at the site ii. Peroxides: Name of Additive	Date Date for the currer	Quantity Quantity Quantity nt reporting per	Units Units Units

Revised: 11/13/2013 Page 2 of 3

Massachusetts Department of Environmental Protection

Bureau of Waste Site Cleanup

CRA REMEDIAL MONITORING REPORT

Pursuant to 310 CMR 40.0800 (SUBPART H)

Remedial System or Monitoring Program: $\boxed{1}$

-	
of:	1

BWSC108 -A

Release Tracking Number

4	-	3024222
---	---	---------

Name of Additive	Date	Quantity	Units	Name of Additive	Date	Quantity	Units
Traine of Fractive	Butt	Quantity	Cinto	Traine of Fractive	Butt	Quantity	Cints
e. Check here if an	ny additional l	Remedial Add	itives were	applied. Attach list of add	litional additi	ves and includ	e Name
Additive, Date Appli	ed, Quantity A	Applied and Ur	nits (in gal	s. or lbs.)			
HUTDOWNS OF ACT	IVE REMED	IAL SYSTEM	OR ACT	IVE REMEDIAL MONIT	ORING PR	OGRAM: (ch	eck all th
y)							
1. The Active Remedi	al System had	lunscheduled	shutdown	s on one or more occasion	s during the	Reporting Per	iod.
a. Number of Unsched	duled Shutdov	wns:	bТ	otal Number of Days of U	nscheduled S	Shutdowns:	
		-		our rumoer of Buys of C	inscribuarea ,		
c. Reason(s) for Unsc	heduled Shut	downs:					
2. The Active Remedi	al System had	scheduled sh	utdowns o	on one or more occasions of	luring the Re	eporting Period	l .
a. Number of Schedul	led Shutdown	s:	b. T	otal Number of Days of S	cheduled Sh	utdowns:	
c. Reason(s) for Sche	duled Shutdo	wns:					
3. The Active Remedia eporting Period.	al System or A	Active Remedi	al Monitor	ring Program was permano	ently shutdov	vn/discontinue	d during
a. Date of Final Syste	m or Monitor	ing Program S	hutdown:				
				(mm/dd/yyyy)	_		
☐ b. No Further Efflu	ent Discharge	es.					
☐ c. No Further Appli	cation of Ren	nedial Additive	es planned	; sufficient monitoring cor	npleted to de	emonstrate con	pliance
310 CMR 40.0046.							
310 CMR 40.0046. ☐ d. No Further Subm	nittals Plannec	l .					

G. SUMMARY STATEMENTS: (check all that apply for the current reporting period)

- 1. All Active Remedial System checks and effluent analyses required by the approved plan and/or permit were performed when applicable.
- 2. There were no significant problems or prolonged (>25% of reporting period) unscheduled shutdowns of the Active Remedial System.
- ▼ 3. The Active Remedial System or Active Remedial Monitoring Program operated in conformance with the MCP, and all applicable approval conditions and/or permits.
- 4. Indicate any Operational Problems or Notes:

▼ 5. Check here if additional/supporting Information, data, maps, and/or sketches are attached to the form.

Revised: 1/13/2013 Page 3 of 3 Supporting Information Remedial Monitoring Report RTN 4-3024222 Former Bird Machine Company Site Walpole, MA

Supporting information for the Remedial Monitoring Report is provided in the Phase V Status and Remedial Monitoring Report dated February 17, 2022.

wood.

Appendix C
Sampling Logs

FIELD INSTRUMENTALL	CALIBRATION RECORD
PROJECT NAME BAKER HUGHES BIRD MACHIN	TASK NO . 0005 DATE 9/21/21
PROJECT NUMBER: 36511800 8 7	HELD CREW JEP / SPM
PROJECT LOCATION: WALPOLE MA	SAMPLIE NAME JACE PETTERSON
WEATHER CONDITIONS (AM) SVANY, 54°F	SAMPLER SIGNATURE 17
WEATHER CONDITIONS (PM): CLOUDY, 73°F	CHUCKED BY DATE
MULTI-PARAMETER WATER QUALITY METER	
METER TYPE 451 AM CALIBRATION	PM CALIBRATION CHECK
	0905 Start Time: 1234 End Time: 1248
UNIT ID NO. 10 5/007 42	
Standard Motor "	Acceptance Criteria Standard Meter Acceptance
Units Value Value	(AM) Value Value Criteria (PM)
pH (4) SU 4.0 4.0 +	- 0.1 pH Units
	- 0.1 pH Units 7.0 6 - 7.7 +/- 0.3 pH Units
	0.1 pH Units
	-10 mV 238 231.0 +/- 10 mV
The state of the s	- 3% of standard 1000 1610 +/- 5% of standard
	-2% of standard 110.8
	-0.2 mg/L - 9.72 +/-0.5 mg/L of
	0.5 mg/L DO (<0.1) — standard
Temperature "C 17.5	22.8
Baro Press mmHg 768.3	772.9
TUPRIDITY METER Standard	Meter Standard Meter *Acceptance
METER TYPE HACH Units Value	Value Value Criteria (PM)
MODEL NO	All and the second seco
UNIT ID NO. 13/200029873 Standard NTU 10	10.5 10 11.1 +/- 0.3 NTU of stan.
Standard NTU 20	21.8 20 21.7 +/- 5% of standard
Standard NTU 100	98.6 100 98.3 +/- 5% of standard
Standard NTU 800	800 802 +/-5% of standard
PHOTOIONIZATION DETECTOR METER TYPE Background ppmy <0.1	<0.1 within 5 ppmv of BG
METER TYPE Background ppmv <0.1 MODEL NO.	VO.1 William 5 [grain of 500
UNIT ID NO. Span Gas ppmv 100	100 +/- 10% of standard
O ₂ -LEL 4 GAS METER	
METER TYPE Methane % 50	50 +/- 10% of standard
MODEL NO. O2 % 20.9	20.9 +/- 10% of standard
UNIT ID NO. H ₂ S ppmv 25	25 +/- 10% of standard
CO ppniv 50	50 +/- 10% of standard
OTHER METER	
METER TYPE	See Notes Below
MODEL NO.	See Notes Below for Additional
UNIT ID NO	Information
Equipment calibrated within the Acceptance Criteria specified for each of the parameter	ers listed above
Equipment (not) calibrated within the Acceptance Criteria specified for each of the pa	rameters listed above**
MATERIALS RECORD	Cal. Standard Lot Number Exp. Date
	PH(4) 16F419 06/23
Deionized Water Source:	pH(7) 16E003 06/23
Lot#/Date Produced:	PH(10) 196278 05/73
Trip Blank Source: Lah	ORF 067L348 09/21
Sample Preservatives Source: Lab Disposable Filter Type: 0.45um cellulose	Conductivity 14F 703 06/22 10 Turb Stan A1123 08/22
Disposable Finer Type.	20 Turb Stan 41/2 0 08/22
Calibration Fluids / Standard Source: DO Calibration Fluid (c) 1 mg/L) Portland FOS	100 Turb. Stan A / 144 08 / 22
- DO Candalon Finds (Co.) Ing-Co	800 Turb Stan A1138 08/22
- Other	PID Span Gas
- Other - Other	O ₂ -LEL Span Gas
- Oliki	D0

NOTES:

wood.

^{*} a Vision eitherwise inted, caldwarm procedure and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Caldwarm (QASOP-Field). difficulty and Low Stress Purping and Sampling (EQASOP-Field) (Administrative procedure) (EQASOP-Field). Administrative procedure are interested from instrument appears in a middle of the instrument recommendation.

** El moder reading is not within acceptance criteria, clean/replace purper and re-caldward back up more if a middle. It project requirements reacontain use of the instrument. Clean/replace purper and visitions are acceptance criteria on all data shoets and key book errors.

** El moder reading is not within acceptance criteria. Clean/replace purper and re-caldward back up more if a middle. It project requirements reacontain use of the instrument. Clean/replace purper and Sampling and Sa

		RUMEN	SECTION.	LABORA	TION RECO	RD	
	CAFAR VAL	Ker H	6.345		7.856-80	. 0005	DATE 9/21/21
PROJECT NUMBER 3 6-5/	-				EMPTOCKER	SPA	TEP
PROJECT LOCATION:					SAMPLER NAME	-	heepe
WEATHER CONDITIONS (AM):	530 13	4 ty 64	adv _		VAMPLER SIGNA	ATURE. =	
WEATHER CONDITIONS (PM):	7/0 40	SHIY CL	de		CHECKED BA		DATE
MULTI-PARAMETER WATER QUA	LITY METER				100.0		CHRONE.
METER TYPE 757	-		BRATION			ALIBRATION	
MODEL NO. 556 415 UNITID NO. 5010/631	Start Time	1824	End Time:	0401	Start Time:	1240 End	1207
Units	Standard Value	/ Ne		'Acceptance 'riteria (AM)	Standard Value	Value	*Acceptance Criteria (PM)
pH (4) SU	4.0	4.0	4/-0	1 pH Units		1 4	
pH.(7) SU	7.0	7.	0 -1-0	1.1 pH Units	7.0	6.0	+/- 0.3 pH Units
pH (10) SU	10.0	9.9	12 4/-6	1 pH Units	220	294.3	e en de
Redox +/- m	4	239		0 mV	238 -240	Annual Control of the	+/- 10 mV
Sp. Conductivity μS/cr	C. C	1000		% of standard	1000 -1413-	1087	+/- 5% of standard
DO (saturated) %	100	101.		of standard		100.2	-%
DO (saturated) mg/L ^{1 (sa)}	(Nat) ().	9.4	0 +/-().2 mg/L		8.23	+/- 0.5 mg/L of sat val-
DO (<0.1) mg/l		1 -		5 mg/L	DO (<0,1)	-0	< 0.5 mg/L
Temperature "C		S/A =	9-18.98			24.99	"C
Baro, Press. mmH	g	76	813			777.9	mmHg
METER TYPE CONTCO		Units	Standard Value	Meter Value	Standard Value	Meter Value	"Acceptance Criteria (PM)
MODEL NO. +WE LATE		2422	44	3.02	100	222	and the second
UNIT ID NO. 190927/6	Standard	NTU	10	0.00	10	0.00	+/- 5% of standard
	Standard	NTU	20	17.8	20	15.0	
	Standard	NTU	100	77.0	100	70.6	
BUOTOLONIZATION BETERTOR	Standard	NTU	800	773	800	700	
PHOTOIONIZATION DETECTOR METER TYPE	Background	ppmv	<0.1		<0.1		within 5 ppmv of BG
MODEL NO.							
UNIT ID NO.	Span Gas	ppmy	100		100		+/- 10% of standard
O2-LEL 4 GAS METER							
METER TYPE	Methane	49	50		50		+/- 10% of standard
MODEL NO.	02	%	20.9		20.9		
UNIT ID NO.	H ₂ S	ppmv	25		25	_	
	CO	ppmv	50		50		
OTHER METER							
METER TYPE		_					See Notes Below
MODEL NO.		_			_	-	for Additional
UNIT ID NO.		_	_				Information
Equipment calibrated within the A	Contract Contracts in	ment for any	College College	C beautistics	_		
LANGE CONTRACTOR OF THE PARTY O	the Acceptance Crises	na specimen ii	a cacatot are par	amesers unter above	Cal. Standard Lot	Vumber	Exp. Date
MATERIALS RECORD				pH (4)	15F619	Vullinet	6/23
Deionized Water Source:				pH (7)	16 FAD 3		6/73
Lot#/Date Produced:				pH (10)	16 Ez 78		5/23
Trip Blank Source:	Lab			ORP	061362		9/21
Sample Preservatives Source:	Lab			Conductivity	19 = 703		6/22
Disposable Filter Type:	0.45am.			10 Turb. Stan.	239D		05/21
Calibration Fluids / Standard Source:				20 Turb. Stan.	239D		05/21
- DO Calibration Fluid (<0.1 mg/L)				100 Turb. Stan.	239 D		05/21
- Other				800 Turb. Stan PID Spon Gas	239D	-	08/21
- Other				O ₂ -LFL Span Gus	_	-	
- Other				DO	-		
NOTES:		100,1240				-	
PH, ORP, om PM calibration	d Check.	th Yity	Dio	Not	calibrate		wood.
110 CALLATA FLON							

* = Unless otherwise used, calibration procedures and acceptance errors and in general accombined with USEPA Region 1 SOPs to Field Internation Calibration (EQASOPS wild Collegement and Low Street Purpose and Sampling (EQASOPS GROUND); each dated (1/1/2010) Additional acceptance centers obtained from increases regional contents recombinate to within acceptance errors, clearly-place probe and re-calibrate, or one calibrated back up meter of available. If you just requirements recombine use of the instrument, clearly-document any document any document and placed by the calibrated back up to the calibrated based on Oxygen Solubility a Indicated Personn Court from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP Field Calibration), sheed (1/10/2010).

WOOD.										MGET OF L
FIELD DA	TA REC	ORD - LOV	W FLOW G	ROUNDWA	(A)					
PHOLECT	Beker	Homeo 0	VIAMA	and I		46	2-ML-3	7.11	1	
	1			6		1	P/2015	- brd	1	19/1/2
AMPLE ID	-	-	24			140	1/21/10/15	1201		DATE 9/21/18/
TIME ST	ART // C	O END	1232		STREET	36	51186083	7		BOTTLETIME /230
VATER LEVE		TTINGS	MEASU	REMENT POINT			1.7	-n *		
DOLLEGTE COLLEGTE		_		P OF WELL RISER P OF PROTECTIVE		GASING ST		7700	CASING	/WELL A = 5
NITIAL DEPTH	150		OT	HER		IFFEM GE	SOME CO.	-7 28M	DIFFER	ENCE O. 27Ft
TO WATER		0 F		Z7.03	5	PID AMBIENT A	-	PPMV	WELL	Z-0 W
FINAL DEPTH TO WATER		7 =	(TOR)		-		-	1777		
1 - 0 0 0		-	LENGT		FT	MOUTH	_	PPMV	INTEGR	ITY CAP 6
DRAWDOWN	0.	01 1		OF DRAWDOWN V		PRESSURE			1	LOCKED
		h) or x 0.65 [4-in:		OTAL VOLUME PUR	AGED	TO PUMP	_	PSI	1	COLLAR
PURGET		24 01		0.003		REFILL TIMER	-	SEC	DISCHA	NGE SEC
(purge rate	(militars per	minute) x time do	uration (minutes)	x 0.00026 gatimi)		SETTING			SETTING	
URGE DATA										
	DEPTH TO	PURGE RATE (ml/min)	TEMP. (deg. C)	SPEC COND (uSitm)	pH (units)	DISS 02 (mg/L)	TURBIDITY (NTU)	ORP (mV)	SAMPLE	
(5-min.)	(0.3 tt)	(100-400)	(3%)	(3%)	(4/-01)	(10%) (>0.5)	(10%) [>5]	(+/- 10 mV)	DEPTH	COMMENTS
	5.30	200	Star	+ Pum	P				-25'	
125	5.34	200	19.87	1/0	5.84	7.15	0.07	53.1		
35 5	.35	200	18.74	116	5.75	9.96	0.02	35.5		
-	35	700	18.58	132	5.79	9.64	0.07	36.9		
	35	700	18.71	134	5.73	4.49	0.07	51.4		
	·36	Zod	18.11	148	5.65	0.30	0.02	51.7		
700 5	.36	200	17.79	173	5.65	0.00	0.02	52.1		
1205 5	37	700	17.43	17.8	5.62	7.32	0.07	94.0		
	37	200	17.97	182	5.59	3.10	2.75	59.9		
	.37		17.73	183	5.31	3.08	0.07	69.0		
220 5	.37	700	15.00	183		3.04	1.67	73.0		
	37		18.09	184	5.30	3.01	0.02	76.7	-	
	.37	Zou	Collec	+ Suffe					1	
232	Pampa	ort			-			-	4	
Security 1	BLADDER O BLADDER			KQ R TEFLON LINED SITY POLYETHYLEN	VE	□ PC	OF PLAMP MATERIAL DLYVINYL CHLORID AINLESS STEEL JOON (Dedicated)	E		TYPE OF BLADOER MATERIAL TEFLON OTHER
ANALYTICAL In the Control of the Con	Vo(ERS		MBER 60		ESERVATION THOO	N VOLUME BEQUIRE 3 X 404		SAMPLE COLLECTED	OC
PURGE OBSI PURGE WATE CONTAINERIZ	Я	-	NUMBER OF GA	3, 24		TES:				wood
IIGNATURE.	11	-	51/4							Prepared by Checked by

WOOD.										PAGE 1 DF 1
FIELD D	ATA REC	ORD - LO	W FLOW	GROUNDWA	tion					
PROJECT	Ritt .	1000-				41	V-7065	-	1	
-	Mah -	13900		-		1.1	(A)		1	DATE 9/2//21
AMPLE ID	1-1-7	003				No.			1	
TIME	START 09	90 END	1039		JOHNSON	36	5118008	7		BOTTLETIME 1030
QC SAM COLLEG		8/45/49	P 2 10	REMENT POINT IP OF WELL RISER IP OF PROTECTIVE	CASING	PROTECTI CASING ST (FROM GR	EAR D. C	Z _{ET}	PROTEC CASING DIFFERS	/WELL 10 3//
NITIAL DEP		97 =	T WELL			PID	STORY .		WELL	20
TO WAT		65 =		N /A	5 FT	PID WELL	IH	PPMV	WELL	YES NO NA
DHAWDO		28 G		OF DRAWDOWN V		MOUTH		PPMV	INTEGR	CASING Z
		ch) or x 0 65 (4-in:	on)) TO	TOTAL VOLUME PU		TO PUMP		PSI	1	COLLAR Z = =
PURO (purge ri		95 G/ r minute) x time di	AL	Ø. /4 ×0.00026 gal/m/)		REFILL TIMER SETTING	-	SEC.	DISCHAI TIMER SETTING	SEC
URGE DA	ATA .									
TIME	DEPTH TO WATER (%) (03%)	PURGE RATE (mt/min), (100-400)	TEMP (deg C) (3%)	SPEC COND (uS/cm) (3%)	pH (units) (+/-0.1)	DISS 02 (mg/L) (10%)	TURBIDITY (NTU) (10%) (>5)	OAP (mV) (+/- 10 mV)	SAMPLE DEPTH	ATTAL YO
0940	1.42	-	Dh	19:41	140 (0.1)	(>0.5)	(10.4) (30)	(40-10-104)	-10'	COMMENTS
2445	2.73	150	1871	154	6.15	0.27	117	77.8	1	
2950	3.05	150	18:31	154	6.10	0.16	9.73	76.1	1	
5955	3.22	150	18.20	143	6.07	0.17	8.30	72.7		
000	3.HZ	150	18.08	150	6-07	0.24	3.43	69.0		
005	3.50	150	18.05	100	5.98	0.28	4.87	68.4	1	
010	3.5%	150	18.05	117	5.97	0.38	3.53	70.0		
015	3.59	150	18.00	195	5.42	0.19	4.88	78.1	1	
020		150	17.69	196	5.93	0.43	4.95	79.0		
025	3.60	150	17.70	193	5.42	0.45	4.91	72,3		
	3.65	150		-		0.77	7.71	1213		
030	P. 140		Collec	T Strit	1				N	
034	Pamp	717						-	4	
					1	1		1		
						1				
								-		
OHIDATE	ot poculativ	TATION			1			1		
	NT DOCUMEN F PUMP	INTON	TYPE OF TUBE	NG.		TYPE	E PUMP MATERIA			TYPE OF BLADDER MATERIAL
-	D BLADDER		_	R TEFLON LINED		□ PC	LYVINYL CHLORID	-		TEFLON
	ACO BLADDER		=	SITY POLYETHYLE	NE.		AINLESS STEEL			OTHER
X GE	OPUMP		LDPE			⊠ Si	LICON (Dedicated)			
	AL PARAMETI	ERS	140	тноо		RESERVATIO	N VOLUME		SAMPLE	
to Be Collected		3 . 3		MBER		ETHOD	BEQUIRE		COLLECTED	
IZI	0.854190	1 AS	501	10B	41	103	1 1 120	ne Pasac	ואלו	
	0.124.00	112		10		100				
H									H	
H										
					- 3					
URGE OB	SERVATIONS				N	OTES:	1 20	1.1		
PURGE WAT			NUMBER OF G	ALLONS 1.95		Dur-	1 611	ected		wood.
ONTAINER	IZED YES	(NO)	GENERATED	1.17	-					11000.
				20.						Prepared by
GNATURE	/	1	1	SVM						Checked by

NOOD.										PAGE 1 DE 1
IELD D	ATA REC	ORD - LOV	V FLOW C	ROUNDWA	-184	APLING				
HOUSET	BIRD	MACH	NE			1	W-709	5	1	
AMPLE ID	MW	-709		7	live r	-	DUSTRIAL		i	DATE 9/21/21
T.	START 09		1035	=						11
-		-		-10-1-0-2-50-0	JOH WUNTER	H 365	118001	0 /		BOTTLE TIME 103 5
GC SAM COLLEC		1 1	N 70	REMENT POINT P OF WELL RISER P OF PROTECTIVE HER	CASING	PROTECTIVE CASING STI (FROM GRO	CKUP SEE	VEY FT	PROTEG CASING DIFFERI	/WELL SEE
TO WAT		24 F		eoru F		PID		-	WELL	
FINAL DEP			(TOR)	15.10	FT	AMBIENT A	A P	PPMV	DIAMET	ER 2.0 IN
TO WAT		24 F	SCREE		FT	PID WELL MOUTH	-	PPMV	WELL	YES NO NA
DRAWDOV		.00 BA		OF DRAWDOWN V		PAESSURE			1	CASING
(initial - f	Irai x 0 16 (2-inc	h) of x 0.65 (4-inc		OTAL VOLUME PUR		TO PUMP	_	PSI	Į.	COLLAR # = =
TOTAL VI		70 04		0.00		REFILL TIMER	-	SEC	DISCHA!	RGE SEC
(purge ra		minute) x time du	ration (minutes)	x 0.00026 gal/mil)		SETTING			SETTING	3
URGE DA	TA					I numb as I				
TIME	DEPTH TO WATER (t.)	PURGE RATE (mirmin)	TEMP (deg C)	SPEC COND (uS/cm)	pH (units)	(mgL)	TURBIDITY (NTU)	ORP (mV)	SAMPLE	
(5 min.)	(0.3 ft.)	(100-400)	(3%)	(3%)	(+/-0.1)	(10%) (>0.5)	(10%) (>5)	(e/: 10 mV)	DEPTH	COMMENTS
0930	3.24	160	BEGIA	101100					~13'	
9945	3.24	160	17.2	305.6	-	0.31	18.0	1515	1	
955	3.24	160	17.4	279.7		0.31	34.0	90.1		
005	3.24	160	17.9	276.6		0.12	28.4	103.4		
015	3.24	160	17.5	273.4	6.16		14.6	1035		
020	3:24	160	17.5	272.1		6.05	12.1	1039		
025	324	160	17.5	270.4		0.05	11.1	104.		
030	3.24	160	17.5	268.5	_	0.05	11.4	1039		
035	3.24	160	Cell	CT SAM	at			-	~13'	
								-		
				-		-		+		
				1						
		-								
TYPE O	NT DOCUMENT DE PLMP TO BLADDER MCO BLADDER TOPUMP			NG R TEFLON LINED SITY POLYETHYLES	VE.	PO ST	F PUMP MATERIAL LYVINYL CHLORID AINLESS STEEL ICON (Dedicatint)			TYPE OF BLADGER MATERIAL TEFLON OTHER
-	AL PARAMETE									
e Be Collected				THOD MBER		ESERVATION THOD	VOLUME REQUIRE	D	SAMPLE	
123	VOCS					cL	3× 4041		1 7 7 7	
	0003		82	.60			o. Join	our time		
H									H	
H										
H									H	
					E.	CEN-				
URGE OB	SERVATIONS	0	NUMBER OF G	ALLONS		TES:				Wand
CONTAINER			GENERATED	2.70)					wood.
Contract of the last of the la										
	. 0	10	_							Prepared by

URGE OF			NUMBER OF GA GENERATED	2.00		TES:				wood
X00000000	VOCs		82	60	Hc		3×40m1	MA VIA	000000000 V	
NALYTIC Be Collected	AL PARAMETE	AS		THOO MBER		ESERVATION THOO	VOLUME BEQUIRE	Q	SAMPLE COLLECTED	
TYPE C	NT DOCUMENT OF PUMP ED BLADDER MOO BLADDER COPUMP		_	KG R TEFLON LINED SITY POLYETHYLEN	ΙE	PO	E PUMP MATERIA; LYVINYL CHLORID NNLESS STEEL CON (Dedicated)			TYPE OF BLADDER MATERIAL TEFLON OTHER
210_	7.58	140	COLLE			5.10			~11'	
200	7.55	140	19.8	204.5	6.63	3.72	3.43	-81.8		
155	7.45	140	19.7	205.7	6.65	3.82	3.54	-83.5		
30	7.45	140	19.9	204.5		4.58	5.99	-78.1		
20	7.45	140	19.7	211.6	-	5.63	19.2	-39.8	1	
TIME Smin)	7-45	PURGE RATE (mi/min) (100-400)	(deg C) (2%)	SPEC COND (US/em) (3%)	pH (units) (+/- 0.1.)	(mg/L) (10%) (>0.5)	TURBIDITY (NTU) (10%) (>5)	(mV) (+/- 10 mV)	SAMPLE DEPTH	COMMENTS
RGE DA						DISS 02		1		
PURO PURO (puro) H		GA minute) x time du		Ø +0 (0 x 0 00026 gal/ml)		REFILL TIMER SETTING	-	SEC	DISCHA TIMER SETTING	AGE SEC
VOLUM (initial - f		02 GA	Contract Con	OF DRAWDOWN VO		PRESSURE TO PUMP	_	PPMV	INTEGR	CASING Z COCKED Z COCKED
NAL DEP TO WAT		59 1	_	1 / / /		PID WELL		PEMV	WELL	VES NO NA
TIAL DEP	TH -	45 1	7	EPTH 12 AD		CASING STI (FROM GRO PID		LUGY FT	GASING DIFFERI	ENCE SDRVEY IT
OC SAME		TTINGS	200	REMENT POINT P OF WELL RISER		PROTECTIV			PROTEC	
TIME	TART 111	S byo	1210		JULIU NAME	34	5118 00	87]	BOTTLE TIME 1210
MPLE ID	MW.	-714	\$		WILT	IN	DUSTRIAL	MCP	j	DATE 9/21/21
							W-714			

44		ELD INSTR		<u>ATION</u>	CALIBRA'	TION RECO		
PROJECT NAME:	BAKER HWAY		chite			TASK NO:	.0005	DATE: 12/1/2/
PROJECT NUMBER:	3657180					FIELD CREW:	<u>5 %</u>	M, TEP
PROJECT LOCATION:	Ve 1101	e MA				SAMPLER NAM	E:	an Hookey
WEATHER CONDITION	NS (AM):	46° Fath				SAMPLER SIGN	ATURE:	- factor
WEATHER CONDITION	NS (PM):	390 C/c	ar			CHECKED BY:		DATE:
MULTI-PARAMETEI	R WATER QUAI	LITY METER						
METER TYPE YS	I		AM CALIBE	RATION		PM	CALIBRATIO	
	Qua +10	Start Time: /	757 E	nd Time:	1321	Start Time:	1625 Er	nd Time: /65/
UNIT ID NO. ZoK	101866	Standard	Meter	*Ac	ceptance Criteria	Standard	Meter	*Acceptance
	Units	Value	/ Value		(AM)	Value	Value	Criteria (PM)
_	H (4) SU	4.0	7.00	_	0.1 pH Units		6,21	
· ·	H (7) SU	7.0	7.00		0.1 pH Units	7.0	0, 7	+/- 0.3 pH Units
<u> </u>	I(10) SU	10.0	772	_	0.1 pH Units	240	736.	1
	Redox +/- mV				10 mV	240	10/15	/- +/- 10 mV
Sp. Conduc	•		1000		3% of standard	1413	1098	+/- 5% of standard
DO (satu		100	44.7		2% of standard		44.4	
	rated) mg/L ^{1 (see Ch}		11.80		0.2 mg/L		11.55	+/- 0.5 mg/L of sat. value
DO (-	<0.1		_ < 0	5 mg/L	DO (<0.1)		< 0.5 mg/L
Tempe			10.7			•	9.300	°C
Baro.	Press. mmHg		<u> 757. </u>				756,4	mmHg
TURBIDITY METER	<i>4</i> 1:		Units	Standard	Meter	Standard	Meter	*Acceptance
METER TYPE FIA			Cinia	Value	Value	Value	Value	Criteria (PM)
MODEL NO. 7/0		0. 1.1	NUMBER OF	10	9 58	10	105	
UNIT ID NO. 1308	O COI 7787	Standard	NTU NTU	10	7.1	10	710	+/- 5% of standard
		Standard		20	(0-1	20	71.0	
		Standard	NTU NTU	100 800	191	100 800	828	
PYTOTOTONIZATION	DETECTOR	Standard	NIU		<u> 790 </u>	800	<u> </u>	
PHOTOIONIZATION METER TYPE		Background	ppmv	<0.1		<0.1		within 5 ppmv of BG
MODEL NO.		Duonground	PP	1011		1412		
UNIT ID NO.		Span Gas	ppmv	100		100		+/- 10% of standard
O ₂ -LEL 4 GAS METE	R							
METER TYPE		Methane	%	50		50		+/- 10% of standard
MODEL NO.		O_2	%	20.9		20.9		-
UNIT ID NO.		H_2S	ppmv	25		25		_
		CO	ppmv	50		50		_
OTHER METER								
METER TYPE								
MODEL NO.								- See Notes Below
UNIT ID NO.								— for Additional
								 Information
Equipment calib	rated within the Acce	eptance Criteria specifi	ed for each of th	e parameters	s listed above.			
		Acceptance Criteria s		•				
MATERIALS RECOR		,		p		Cal. Standard Lot	Number	Exp. Date
in in the contract of the cont					pH (4) 4	GH1174		AU (-/23
Deionized Water Source	:				pH (7) 1	GT081		Scl /73
Lot#/Date Produced	d:				pH (10)			
Trip Blank Source:		Lab			ORP	041367		SeP/71
Sample Preservatives So	urce:	Lab			Conductivity 4	GI580		SEP 172
Disposable Filter Type:		0.45μm			10 Turb, Stan.	11/23		Acg-27
Calibration Fluids / Star					20 Turb. Stan.			AUG-27
- DO Calibration Fluid	l (<0.1 mg/L)				100 Turb. Stan. A			AU9-27
- Other					800 Turb. Stan.	<u> </u>		<u> 409-27 </u>
- Other					PID Span Gas O ₂ -LEL Span Gas			
- Other					DO DO			
NOTES:					υ0			
NOIES:								_

^{* =} Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-Field Calibration) and Low Stress Purging and Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-Field Calibration), dated 1/19/2010.

PROJECTNA	tio R	AKER					TASK NO:	0005	DATE: 12 Wasse
PROJECT NAM PROJECT NUM		3651	HULDHES 180087			MACHINE	FIELD CREW:	JE	DATE: 12/1/2021
PROJECT LOC			POLE , M				SAMPLER NAME		E PETTERON
	NDITIONS (AN		OVERCAS		46°F		SAMPLER SIGN/		an
	NDITIONS (PM		DVERCAS		13°F		CHECKED BY	7	DATE
MULTI-PARA	METER WAT	ER QUAL	ITY METER				1	- A	
METER TYPE	451				LIBRATIO		-	ALIBRATION	CHECK
MODEL NO.	PRO QUA		Start Time:	253	End Tin	ne: 1316	Start Time:	604 End T	ime: 1615
UNIT ID NO.	10E160	334							
17.0		Units	Standard Value		eter alue	*Acceptance Criteria (AM)	Standard Value	Meter Value	*Acceptance Criteria (PM)
	pH (4)	SU	4.0	4	0	+/- 0.1 pH Units		-	
	pH (7)	SU	7.0	7.		+/- 0.1 pH Units	7.0	7.04	+/- 0.3 pH Units
	pH (10)	SU	10.0			+/- 0.1 pH Units	238		
	Redox	+/- mV	一班多	23		+/- 10 mV	240	237.3	+/- 10 mV
117	Conductivity	µS/cm	-141,000	100	0	+/- 3% of standard	1000	1073	+/- 5% of standard
	OO (saturated)	% 1	100	99		+/- 2% of standard	1000	101.5	96
T.	OO (saturated) n			11		+/- 0,2 mg/L		11.41	+/-0.5 mg/L of sat value
	DO (<0.1)	mg/L	<0.1	-		< 0.5 mg/L	DO (<0.1)		< 0.5 mg/L
	Temperature	"C			.7			10.4	"C
	Baro. Press.	mmHg		15	9.3			759-7	mmHg
TURBIDITY N METER TYPE	HACH			Units	Standa		Standard Value	Meter Value	*Acceptance Criteria (PM)
MODEL NO.	21000				· artic	tance	rana.	vande	Salkerine to the
UNIT ID NO.	1568 act	43227	Standard	NTU	10	9.62	10	7.64	+/- 5% of standard
	-		Standard	NTU	20	19.9	20	20.2	
			Standard	NTU	100		100	102	
			Standard	NTU	800	802	800	726	
A STATE OF THE STA	ATION DETE			200			0.1	33-53-5-	
METER TYPE MODEL NO.		_	Background	bbut	<0.1		<0.1		within 5 ppmv of BG
UNIT ID NO.			Span Gas	ppmy	100		100		+/- 10% of standard
O2-LEL 4 GAS	METER								
METER TYPE			Methane	96	50		50		+/- 10% of standard
MODEL NO			O_2	-76	20.9		20.9		
UNIT ID NO.			H ₂ S	ppmy	.25		25		
			CO	ppmy	50		50		
OTHER METI	ER								
METER TYPE					_				See Notes Below
MODEL NO.		-		_	_		_		for Additional
UNIT ID NO.	_	_		_	-		-		Information
Equipm	none collingues of make	un thin A name	stance Criteria specifi	ad for and	h of the exercise	nature licted above			
						parameters listed above**			
MATERIALS		a within the	resepance emeter a	pecificalo	Section of the	patrioris insere monte.	Cal. Standard Lot	Number	Exp. Date
MATERIAL	RECORD					pH (4)	1641124		8/23
Deionized Water	Source:					pH (7)	161081		9/23
Lot#/Date						pH (10)	_		
Trip Blank Sour			Lab			ORP	16F 704		422
Sample Preserva		_	0.45µm		_	Conductivity 10 Turb. Stan.	16F703		8/22
Disposable Filter Calibration Fluid		ource:	W.A.Shini			20 Turb. Stan.	A11 20	_	8/22
	on Fluid (<0.1 n					100 Turb. Stan	A1144		8/22
- Other						800 Turb. Stan.	A1138		8/22
- Other						PID Span Gas			
- Other						O_LEL Span Gas			
						DO			-
NOTES:									
								1	wood.

^{* =} Unless otherwise noted, calibration procedures and acceptance enteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-Field Calibration) and Low Stress Purging and Sampling (EQASOP-GW101), each dated 1/19/2010, Additional acceptance enteria obtained from instrument specific manufactures recommendations.

^{** #} If mores reading is not within acceptance criteria, clearly deciment and re-calibrate, or use calibrated back-up more if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all idea shows and by bank merics.

acceptance erricts on an usual success and my mose current.

1 a DO Squasted standard value is calculated based on Oxygen Solubility as Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-Field Calibration), dated 1/10/2010.

FIELD INSTRUMENTATION C			
PROJECT NAME: BIRD MACHINE	TASK NO:	,000 S	DATE: <u>/2/2/2</u>
PROJECT NUMBER: 3651180087.000 S	FIELD CRE		
PROJECT LOCATION: WALTOLE MA	SAMPLER		E PETTERON
WEATHER CONDITIONS (AM): CLOUDY 44 F - RAIN		SIGNATURE:	
WEATHER CONDITIONS (PM): CLOUPY, 57°F	CHECKED	BY:	DATE:
MULTI-PARAMETER WATER QUALITY METER			
METER TYPE 45/ AM CALIBRATION		PM CALIBRATION	СНЕСК
MODEL NO. PRO DVATRO Start Time: 0837 End Time: 08	Start T	ime: 1406 End	Time: /4/9
UNIT ID NO. 106100334		,	. 11. 1
Units Standard Meter *Accepta	ce Criteria Stand	ard Meter	*Acceptance
Value Value (.	M) Valu	ie Value	Criteria (PM)
pH (4) SU 4.0 <u>4.0</u> +/- 0.1 p	Units		
pH (7) SU 7.0 7.0 +/- 0.1 p			+/- 0.3 pH Units
pH (10) SU 10.0 238 +/- 0.1 p	Units 23	38	
Redox +/- mV -240-238 +/- 10 m	· -24 ($\rightarrow 226.6$	+/- 10 mV
Sp. Conductivity μS/cm 1545 1000 +/- 3% 0	(A / C	3 1057	+/- 5% of standard
DO (saturated) % 100 <u>98.5</u> +/- 2% o	standard	96.7	%
DO (saturated) mg/L ^{1 (see Chart 1)} \longrightarrow //. 9 0 +/- 0.2 n	/L	- 10-21	+/- 0.5 mg/L of sat. value
DO (<0.1) mg/L <0.1 - < 0.5 mg	DO (•	<0.1)	< 0.5 mg/L
Temperature °C 7.2		12.9	"C
Baro, Press. mmHg 752.5		747.0	mmHg
TURBIDITY METER Standard	Meter Stand	ard Meter	*Acceptance
METER TYPE HACH Units Value	Value Valu	ie Value	Criteria (PM)
MODEL NO. 2100 Q	_	- 00	
UNIT ID NO. 1508 COY3227 Standard NTU 10	9.39 10		+/- 5% of standard
Standard NTU 20	18.9 20	19.5	
Standard NTU 100	97.9 100		
Standard NTU 800	910 800	7 <u>8'S</u>	
PHOTOIONIZATION DETECTOR			
METER TYPE Background ppmv <0.1			within 5 ppmv of BG
MODEL NO Span Gas ppmv 100	100	1	+/- 10% of standard
	100	J	17- 10 % Of Standard
O ₂ -LEL 4 GAS METER METER TYPE Methane % 50	50	1	+/- 10% of standard
	20.		+/- 10% of Standard
	25		
· · · · · · · · · · · · · · · · · · ·	50		
		<u> </u>	
OTHER METER			
METER TYPE			See Notes Below
MODEL NO.			for Additional
UNIT ID NO.			Information
Equipment calibrated within the Acceptance Criteria specified for each of the parameters liste			
Equipment (not) calibrated within the Acceptance Criteria specified for each of the parameter			
MATERIALS RECORD		d Lot Number	Exp. Date
	pH (4) (mH / L		9/23
Deionized Water Source:	pH (7) 16102	<u> </u>	7/2
Lot#/Date Produced: Lab	PH (10)	D4	3/22
Sample Preservatives Source: Lab		23	6/22
	Turb. Stan. A 1 2_5	<u> </u>	8/22
		0	8/2-2
	Turb. Stan. 4//40	7	9/22
	Turb. Stan. A 135	}	8172
- Other	ID Span Gas		
	EL Span Gas		<u></u>
	DO	-	***
NOTES:			_
			₫

^{* =} Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-Field Calibration) and Low Stress Purging and Sampling

⁽EQASOF-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from

acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chan from the USEPA Region | SOP for Field Instrument Calibration (EQASOP-Field Calibration), dated 1/19/2010.

[6]	ELD INSTR	RUMENTA	ATION	CALIBRA.	I ION RECOR		
	es Bird Mac					1005	DATE: <u>/2/2/2/</u>
	087.000	7.			FIELD CREW:	SPM, 7	
PROJECT LOCATION: Walfile	GOT Ch	10			SAMPLER NAME:		Roder
WEATHER CONDITIONS (AM):	994 (p	114			SAMPLER SIGNA	IUKE:	DATE.
WEATHER CONDITIONS (PM):		714 Clas	red God		CHECKED BY:		DATE:
MULTI-PARAMETEB WATER QUAL	ITY METER						
METER TYPE /5/		AM CALIBR				ALIBRATION	
MODEL NO. YIB Quath	Start Time:	0 <i>844</i> Ei	nd Time:	0914	Start Time: /	508 End 7	Time: 1532
UNIT ID NO. 26 K 10 (866				.,			
Units	Standard	Meter	*Acc	eptance Criteria	Standard	Meter	*Acceptance
	Value	/1 Value		(AM)	Value	Value	Criteria (PM)
pH (4) SU	4.0	4.00).1 pH Units		101	
рН (7) SU	7.0	<u> 7.00</u>).1 pH Units	7.0	6.//	+/- 0.3 pH Units
pH (10) SU	10.0		+/- 0).1 pH Units	•	77/~	
Redox +/- mV	240.7 38	738	+/- 1	0 mV	⁻²⁴⁰⁻ 738	(5/.2	+/- 10 mV
Sp. Conductivity µS/cm	14131	1094	+/- 3	% of standard	-1413/ 000	1048	+/- 5% of standard
DO (saturated) %	100	98.6	_ +/- 2	% of standard		93.0	%
DO (saturated) mg/L ^{1 (see Cha}	art 1)	11.73	+/- 0).2 mg/L	 -	9.29	+/- 0.5 mg/L of sat. value
DO (<0.1) mg/L	<0.1		- < 0.5	i mg/L	DO (<0.1)		< 0.5 mg/L
Temperature "C		ア.ア		_		15.3	"C
Baro. Press. mmHg		749.5				744.3	mmHg
TURBIDITY METER			 Standard	Meter	Standard	Meter	*Acceptance
METER TYPE 4ACh		Units	Value	Value	Value	Value	Criteria (PM)
MODEL NO. ZIND Q				1 -		,	
UNIT ID NO. 13-806 027782	Standard	NTU	10	4.70	10	10.0	+/- 5% of standard
	Standard	NTU	20	20.50	20	70.5	
	Standard	NTU	100	<u> 104</u>	100	103	
	Standard	NTU	800	80Z	800	799	
PHOTOIONIZATION DETECTOR							
	Background	ppmv	< 0.1		<0.1		within 5 ppmv of BG
MODEL NO.			100				
UNIT ID NO.	Span Gas	ppmv	100		100		+/- 10% of standard
O ₂ -LEL 4 GAS METER							
METER TYPE	Methane	%	50		50		+/- 10% of standard
MODEL NO.	O ₂	%	20.9		20.9		
UNIT ID NO.	H_2S	ppmv	25		25		
	со	ppmv	50		50		
OTHER METER					ļ		
METER TYPE							See Notes Below
MODEL NO.					<u> </u>		for Additional
UNIT ID NO.						·	Information
Equipment calibrated within the Accep	otance Criteria specif	fied for each of the	e parameters	listed above.			
Equipment (not) calibrated within the	Acceptance Criteria :	specified for each	of the paran	neters listed above**.			
MATERIALS RECORD					Cal. Standard Lot N	umber	Exp. Date
				·	1641174		/ 1 09/23
Deionized Water Source:				рН (7) <u>Д</u>	<u>G[081</u>		Sef 173
Lot#/Date Produced:			1002-000000	pH (10)			
	Lab				146367		Sep/2/
	Lab			Conductivity_			501/27
Disposable Filter Type:	0.45µm			10 Turb. Stan.			Av 9-22
Calibration Fluids / Standard Source:				20 Turb. Stan.	, . <u>V</u>		AUG - 2 2
- DO Calibration Fluid (<0.1 mg/L)				100 Turb. Stan.	· / . · · · · · · · · · · · · · · · · ·		AU9-22
- Other				800 Turb. Stan.	11.28 <u></u>		Av9-22
- Other				PID Span Gas			
- Other				O ₂ -LEL Span Gas			
NOTES:							
SPI Cah luctor LY Addies	- 44 t .m					_	

SPL. CONJUCTIVE TY MOTHING GOT by + for failed.

^{* =} Unless otherwise noted, calibration procedures and acceptance criteria are in general accordance with USEPA Region 1 SOPs for Field Instrument Calibration (EQASOP-Field Calibration) and Low Stress Purging and Sampling (EQASOP-GW001), each dated 1/19/2010. Additional acceptance criteria obtained from instrument specific manufacturer recommendations.

** = If meter reading is not within acceptance criteria, clean/replace probe and re-calibrate, or use calibrated back-up meter if available. If project requirements necessitate use of the instrument, clearly document any deviations from acceptance criteria on all data sheets and log book entries.

1 = DO Saturated standard value is calculated based on Oxygen Solubility at Indicated Pressure Chart from the USEPA Region 1 SOP for Field Instrument Calibration (EQASOP-Field Calibration), dated 1/19/2010.

WOOD.								PAGE 1 OF 1	
FIELD DATA RECO	ORD - LOW FL	OW GROUNDWA	ΓER SA	MPLING					
PROJECT Bakel L	lughs Birsh	o Chike	WEL	LID Z R	-MW-12	2			
SAMPLE ID / R - M		9010-4	SITE T		dustrial			DATE 17/02/7/	
SAME CE ID	<u>16 \</u>	148						1////	
QC SAMPLE	ATER LEVEL / PUMP SETTINGS MEASUREMENT POINT QC SAMPLE TOP OF WELL RISER PROTECTIVE PROTECTIVE								
COLLECTED		TOP OF PROTECTIVE	CASING	CASING ST (FROM GRO		, 7 FT.	CASING DIFFER	ENCE O, 20 FT.	
INITIAL DEPTH 7-8	7 FT.	WELL DEPTH		PID			WELL		
EINAL DEPTH 7		(TOR) 6.84	FT.	AMBIENT A	я	PPMV	DIAMET		
FINAL DEPTH 6-3	FT.	SCREEN LENGTH	FT.	PID WELL MOUTH		PPMV	WELL	YES NO N/A	
DRAWDOWN 0.5	6 GAL	RATIO OF DRAWDOWN V	DLUME	PRESSURE				YES NO N/A ITY: CAP CASING LOCKED COLLAR	
(initial - final x 0.16 (2-inch)	or x 0.65 (4-inch))	TO TOTAL VOLUME PUF	IGED	TO PUMP		PSI		COLLAR Z = =	
TOTAL VOL.	17 GAL.	0.316		REFILL TIMER		SEC.	DISCHA TIMER	SEC.	
(purge rate (milliliters per m	ninute) x time duration (minutes) x 0.00026 gal/ml)		SETTING			SETTIN	G	
PURGE DATA				T Dicc on		I			
TIME DEPTH TO F		MP. SPEC. COND. g. C) (uS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (NTU)	ORP (mV)	SAMPLE		
(5 min.) (0.3 ft.)	(100-400) (3	(3%)	(+/- 0.1)	(10%) (>0.5)	(10%) (>5)	(+/- 10 mV)	DEPTH	COMMENTS	
1340 Stat.	+ Yamy		/ = -		71:	10.7		inthal DTV: 2.8/3'	
1345 9418 3.93	180 12.		6.72	0.88	64.7	19.3			
350 4.54	180 17.7		6.67	0.92	165.7 1337 1337	2.7 -14.8		Octob Relient of	
1355 4.75 1400 4.93	100 17.4 100 17.3	194.7	6.67	15.95	337 774	-43.1		PUM PLINCED to	
1405 4.99	100 17.4	149.9	668	1.06	71.1	-53.9		Reduce Porther	
1/116 35 4 4	104 /7.4	710.0	6.71	1.06	89.9	-67.9		ICAUX PAILAY	
	100 17.5	214.1	6.73	0.74	95.5	-81.6			
1420 5.60	100 12.6	24.5	6.75	0.66	74.5	-88.8			
	00 12.6		6.75	0.42	81.8	-92.5			
	00 12.7		6.76	0.60	54.4	-95.5			
	00 17.8		6.78	0.83	33.8 73.2	-97.0			
1440 6.31 11 1444 Collect	50 17.7 Sample	202.5	6.79	1.70	7).(-16.4		WELL GOING DRY -	
1448 Pamb 0.56	, 30 ^m 1/4				:			BUBBLES	
THE PART OF I					1.5		***	AS FF NTU = 1.51	
EQUIPMENT DOCUMENTA	TION				•				
TYPE OF PUMP		OF TUBING			F PUMP MATERIAL			TYPE OF BLADDER MATERIAL	
QED BLADDER SIMCO BLADDER		FLON OR TEFLON LINED GH DENSITY POLYETHYLEN	E		LYVINYL CHLORIDE AINLESS STEEL			TEFLON OTHER	
⊠ GEOPUMP	☒□			=	.iCON (Dedicated)				
ANALYTICAL PARAMETER	s						244515		
ANALYTICAL PARAMETER To Be Collected ArSekJC (-/C/)		METHOD <u>NUMBER</u>		ESERVATIOI THOD	VOLUME <u>REQUIRED</u>	. !	SAMPLE COLLECTED	2	
Arsenic (10/3	Filtered	60208	UN	03/4%	170m2		\boxtimes		
		-	•	<i>)</i> , · ·					
							H		
DUDGE OPGEOVERIONS			<u></u>	TEC.	· ····································				
PURGE OBSERVATIONS PURGE WATER	NUMBE	ER OF GALLONS /		OTES:				wood.	
CONTAINERIZED YES	GENER							** UUU.	
SIGNATURE:	oria //							Prepared by: 5My	
ISIGNATURE:			i					Checked by:	

WOOD.	PAGE 1 OF 1
FIELD DATA RECORD - LOW FLOW GROUNDWATER S.	AMPLING
PROJECT Baker Hughs Bird healthe w	ELL ID MB-14V-362
1 1447 4 7 4 7	TYPE INJUSTY 191 DATE 12/2/21
TIME START 1/76 END /158 JOB NUM	3/02/0-0-
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT	Dell' 7 777 00 07 - 00 7
QC SAMPLE TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER	PROTECTIVE CASING STICKUP (FROM GROUND) Flush Ft. PROTECTIVE CASING / WELL O.35 FT.
INITIAL DEPTH 1.42 FT. WELL DEPTH 1917	PID WELL
TO WATER 1.42 FT. WELL DEPTH 79.62 FT. (TOR)	AMBIENT AIR PPMV DIAMETER N.
TO WATER 1-47 FT. SCREEN LENGTH FT.	PID WELL MOUTH PPMV WELL YES NO N/A INTEGRITY: CAP CASING
VOLUME U-0076 GAL. RATIO OF DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch))	PRESSURE LOCKED LOCKED COLLAR COLLAR COLLAR
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)	REFILL DISCHARGE TIMER SEC. SETTING SETTING
PURGE DATA	
TIME DEPTH TO PURGE RATE TEMP. SPEC. COND. pH WATER (it.) (ml/min) (deg. C) (uS/cm) (units)	DISS. 02 TURBIDITY ORP (mg/L) (NTU) (MV) DEPTH
(5 min.) (0.3 ft.) (100-400) (3%) (3%) (+/- 0.1)	(10%) (>5) (+/- 10 mV) COMMENTS
1120 1.43 Start Keller 1125 1.47 200 14.1 154.3 6.90	0.31 2.55 -4.2
130 147 700 41 154.4 6.76	0.19 3.96 2.7
1/139 1.97 200 14.1 153.7 6.72	0.18 1.65 4.7
1140 1.48 200 14.1 153.5 6.69	0.18 7.62 7.0
11(45 1.48 600 14.1) 155.0 6.66	0.18 1.23 8.6
1150 1.48 200 14.0 152.9 6.64	0.16 1.60 10.0
1198 Pump all	V
1195 rump at L	
EQUIDITATION	
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING OED BLADDER TEFLON OR TEFLON LINED	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TEFLON
SIMCO BLADDER HIGH DENSITY POLYETHYLENE GEOPUMP LDPE	STAINLESS STEEL OTHER OTHER
ANALYTICAL PARAMETERS To Be Collected METHOD F	RESERVATION VOLUME SAMPLE
NUMBER A	REQUIRED COLLECTED
₩ VOC9 8260 HG	1/42 3×40ml
	704
	\exists
	
PURGE OBSERVATIONS	IOTES:
PURGE WATER NUMBER OF GALLONS 1.976	WOOD. Prepared by: SPM
	- SPM
SIGNATURE: /// MACA	Prepared by: V Checked by:

WOOD.									PAGE 1 OF 1
FIELD DATA REC	ORD - LO	W FLOW	GROUNDWAT	TER SA	MPLING	i			
PROJECT By /of 1	ighs Bird	MACION		WEL	L 1D 140	-MV-374	1		
SAMPLE ID M B - M	W-374			SITE T		15+Va)			DATE 12/2/21
	DO ENI	1056	=	JOB NUMB	FR 365	1180087.00	o \$		BOTTLE TIME 1055
WATER LEVEL / PUMP SI			REMENT POINT	000 1101110				J	110 / /
QC SAMPLE COLLECTED			P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE CASING ST			PROTEG CASING	
			HER		(FROM GRO		FT.	DIFFER	
INITIAL DEPTH TO WATER 5.0	0 9	T. WELL C	27.0	FT.	PID AMBIENT A		PPMV	WELL DIAMET	er 7 IN.
FINAL DEPTH 5.1	4 _F	T. SCREE			PID WELL		1 1 3414) WELL	
	08 6	LENGTI		FT.	MOUTH		PPMV	INTEGR	HTV: CAR
VOLUME U- C (initial - final x 0.16 {2-inc			OF DRAWDOWN VO		PRESSURE TO PUMP		PSI		CASING Z LOCKED Z COLLAR Z
TOTAL VOL.	117 -		5.0027		REFILL			DISCHA	RGE
PURGED	-	AL.] uration (minutes)	x 0.00026 gai/mi)		TIMER SETTING		SEC.	TIMER SETTIN	G SEC.
PURGE DATA									
TIME DEPTH TO WATER (ft.)	PURGE RATE (ml/min)	TEMP. (deg. C)	SPEC, COND, (uS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (NTU)	ORP (mV)	SAMPLE	
(5 min.) (0.3 ft.)	(100-400)	(3%)	(3%)	(+/- 0.1)	(10%) (>0.5)	(10%) (>5)	(+/- 10 mV)	DEPTH	COMMENTS
1000 5.04	<u>57</u> av	t Yump	1/-	- 1.0		a / 9	1713 4	~2 ,5 ′	Salafledelth: 125'
1005 7.13	700	13.7	1319	7.40	0.29	3.64	13/ ^	M4	ORP: 143.1 hV
100-12-3	200 200	13.6 13.6	136.7	6.90	0.18	7 66		Ph Ph	Wate incorrect
014 1.13	200	13.4	136.4	684		43.64 3.64	-4.1	771	MAINTER POPULA
1025 5:14	200	13.4	36.1	6.79	0.21	3.36	-10.5		
1030 5.14	200	14,1	141.5	6.75	0.19	7.17	-22.3		
1035 19.14	200	14.Z	50.5	6.74	0.19	2.69	-29.3		
1040 5.14	200	14.3	182.3	6.73	0.18].[6	-38.0		
1045 5.14	200	19.3	183.5	6.74	0.19	1.34	-40.4		
	<i>20</i> 0	14.3	185.6	6.74	Dil	14.44	-43.3		
1075 Collect	7'7	ample			<u></u>				
10/0 100/40	1 /				<u> </u>				
EQUIPMENT DOCUMENT	ATION	TYPE OF TUBIN	ıc		TVDE C	F PUMP MATERIAL			TYPE OF BLADDER MATERIAL
QED BLADDER			R TEFLON LINED			LYVINYL CHLORIDE	.		TEFLON
SIMCO BLADDER			SITY POLYETHYLEN	Ε	-	AINLESS STEEL			OTHER
GEOPUMP	'DC	LDPE			[_/\] SIL	ICON (Dedicated)			
ANALYTICAL PARAMETE To Be Collected	:ns		THOD		ESERVATION			SAMPLE	
NOCs		_	ho ho		cl Cl	REQUIRED		COLLECTED	ž.
		0 6	טט	М	C &	3×40ml	YUQ	H	
								님	
PURGE OBSERVATIONS				NC	TES:				MAAA
PURGE WATER CONTAINERIZED YES	®	NUMBER OF GA GENERATED	2.91	2					wood.
1									Prepared by: SPA
SIGNATURE:	rame		ラ						Checked by:

WOOD.		umi No		PAGE 1 OF 1
FIELD DATA RECORD - LOW FLOW GR	ROUNDWATER SAI			
PROJECT BIRD MACHINE	WELI		5	
SAMPLE ID MW - 704 S	SITE TY			DATE 12/1/2021
TIME START (35 9 END 1510	JOB NUMBE	R 3451180087.	0005	BOTTLE TIME 1 5) 6
QC SAMPLE TOP O		PROTECTIVE CASING STICKUP (FROM GROUND)	CAS	OTECTIVE BING / WELL FERENCE SARVEY FT.
INITIAL DEPTH 3.54 FT. WELL DEP		PiD	WE	
FINAL DEPTH 7.84 FT. SCREEN LENGTH		AMBIENT AIR PID WELL MOUTH	we	LL YES NO N/A
DRAWDOWN VOLUME	F DRAWDOWN VOLUME FAL VOLUME PURGED	PRESSURE TO PUMP	PSI	EGRITY: CAP CASING LOCKED COLLAR
TOTAL VOL.		REFILL TIMER	DIS SEC. TIM	CHARGE SEC.
(purge rate (milliliters per minute) x time duration (minutes) x 0.		SETTING		TTING
PURGE DATA		DISS. 02 TURNISTY	·····	
TIME DEPTH TO WATER (ft.) (ml/min) (deg. C) (5 min.) (0.3 ft.) (100-400) (3%)	SPEC. COND. pH (uS/cm) (units) (3%) (+/- 0.1)	(mg/L) TURBIDITY (NTU) (10%) (10%) (>5)	ORP (mV) SAMP((+/- 10 mV)	
1359 3.54 110 BELAN	PURGE		~ 9)
	408.4 6.53	2.59 40.8 2.89 68.5	156.0	
	273-7 6.51 244 6.57	3.05 60.7	123.5 44.4	
	234.7 Le.62		25.1	
1435 6.70 110 9.9	233.5 6.62		23.5	
1440 7.00 110 9.9	2338 6.70	204 57.2	20.5	
	234.1 6-71	2.04 50.8	17.0	
	234.6 6.69	1.78 45.9	18.4	
1455 0.07 110 10,4 :	234.9 6.69 234.4 6.69	1.58 48.2	25.8	-
		1.46 51.2	23.6 1	
1510 9.00 110 coute			29)
		<u> </u>		
EQUIPMENT DOCUMENTATION TYPE OF PUMP QED BLADDER SIMCO BLADDER HIGH DENSITY GEOPUMP LDPE	EFLON LINED Y POLYETHYLENE	TYPE OF PUMP MATERIAL POLYVINYL CHLORIDE STAINLESS STEEL SILICON (Dedicated)		TYPE OF BLADDER MATERIAL TEFLON OTHER
ANALYTICAL PARAMETERS To Be Collected METHO NUMBE		ESERVATION VOLUME THOD REQUIRED	SAMP COLLEC	
₩ V0Cs 8260) (†·	CL 3×40ml	VOA VAL	
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED YES NO GENERATED	1	TES:		wood.
SIGNATURE: Junk				Prepared by: Checked by:

WOOD.	PAGE 1 OF 1
FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING	
PROJECT Baker Hughs Bird Mothine WELL ID My-7065	
SAMPLE ID AV-7065 SITE TYPE INJUSTIALITY	DATE 17/1/2/
TIME START /450 END /6/5 JOB NUMBER 365/180087.005	BOTTLE TIME 1605
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER PROTECTIVE	PROTECTIVE
OC SAMPLE COLLECTED MS/MSD, DU P-1 TOP OF WELL RISER PROTECTIVE CASING STICKUP CASING STICKUP (FROM GROUND) FT.	CASING / WELL DIFFERENCE FT.
INITIAL DEPTH 1.98 FT. WELL DEPTH 17 IF PID	WELL >
FINAL DEPTH (TOR) (TOR) 12-15 FT. AMBIENT AIR PPMV	DIAMETER IN.
TO WATER 4.44 FT. SCREEN PID WELL PPMV	WELL YES NO N/A INTEGRITY: CAP
DRAWDOWN VOLUME 0.40 GAL. RATIO OF DRAWDOWN VOLUME PRESSURE	CASING Z = =
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED TO PUMP PSI	COLLAR
TOTAL VOL. PURGED 9.42 GAL. C.O. 96 REFILL SEC.	DISCHARGE SEC.
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml) SETTING	SETTING
PURGE DATA	
TIME	SAMPLE
(5 min.) (0.3 ft.) (100-400) (3%) (3%) (4/- 0.1) (10%) (10%) (>5) (+/- 10 mV)	DEPTH COMMENTS
1460 1.98 Yump on	~10
1455 2.83 200 10.5 138.5 6.46 0.55 22.3 146.7	
1760 17.08 200 (0.0) 17.00 6.21 0.17 20.4 140.0	
1505 3.46 200 10.9 (24.6 6.19 0.33 14.8 137.7 1510 3.82 200 11.0 118.7 6.17 0.36 18.5 129.0	
1515 3.98 Zeo 11.0 24.2 6.16 0.40 16.5 120.0	
1500 4.07 Zeo 11.2 123.5 615 0.46 19.1 106.1	
1525 4.13 Zor 11.4 115.0 6.13 15.57 13.9 87.5	
1530 4.19 200 11.5 111.0 6.12 0.69 12.1 67.1	
1535 4.76 200 1.6 176.3 6.12 D.71 17.4 53.0	
1540 4.30 200 11.6 113.1 6.11 0.79 11.9 43.0 1545 4.36 200 11.5 113.8 6.11 0.73 8.42 39.2	
1556 4.44 206 11.7 110.2 6.10 0.93 8.31 33.9	
11555 14.49 17.00 11.8 11.1.1 16.10 16.90 18.13 127.1	
1606 4.49 206 11.6 110.5 6.11 0.89 9.07 24.2	
LOUSEN COLLECT SOMPLE PUMPOFF® 1615	
EQUIPMENT DOCUMENTATION	TYPE OF BLADDER MATERIAL
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL OED BLADDER TEFLON OR TEFLON LINED POLYVINYL CHLORIDE	TEFLON
SIMCO BLADDER HIGH DENSITY POLYETHYLENE STAINLESS STEEL	OTHER
GEOPUMP LDPE SILICON (Dedicated)	
ANALYTICAL PARAMETERS TO BO Collected METHOD PRESERVATION VOLUME	SAMPLE
CO 1 6/13W 1 002	COLLECTED
Arschi (Well 1 1997 6020 B 1/1/03 120 ML	
PURGE OBSERVATIONS NOTES:	111001
PURGE WATER CONTAINERIZED YES (NO) GENERATED NUMBER OF GALLONS 1,47	WOOD.
	Prepared by: St M
SIGNATURE: ASSA PARAMETERS	Checked by:

WOOD.		PAGE 1 OF 1						
FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING								
PROJECT BIRD MACHINE	WELL ID MW - 7095	·						
SAMPLE ID MW - 709 S	SITE TYPE MO INDUSTRIA	L DATE 12/2/21						
TIME START 1055 END 1157 JOB	NUMBER 3651180087.00	OS BOTTLE TIME 1155						
WATER LEVEL / PUMP SETTINGS QC SAMPLE COLLECTED DV P/MS/MSD MEASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CASIN		PROTECTIVE CASING/WELL FT. DIFFERENCE						
INITIAL DEPTH 2.80 ST WELL DEPTH	PID							
FINAL DEPTH TO WATER 3.17 FT. SCREEN LENGTH 10 FT.	AMBIENT AIR F	PMV DIAMETER 2.0 IN. WELL YES NO N/A PMV INTEGRITY: CAP						
DRAWDOWN VOLUME O.OS9 GAL. RATIO OF DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch))	NE PRESSURE	CASING V						
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/ml)	REFILL TIMER SETTING	DISCHARGE SEC. SEC. SETTING						
PURGE DATA								
TIME WATER (ft.) (ml/min) (deg. C) (uS/cm) (ur	pH	V) SAMPLE						
1055 0.80 170 BEGIN PURDE		~13'						
1100 3.17 170 14.3 230.5 6.		.2 1						
1115 3.24 170 14.4 236.9 67		.2						
1125 3.25 170 14.6 237.2 6								
1135 3.17 176 14.5 237.4 6.	34 0.35 12.4 68							
N 1 - D 1 / 1 / D 1 /	34 0.31 4.8 71.							
		ا ط٠٠٥						
1150 3.17 170 14.6 237.1 6:		N13						
1156 3:17 176 COLLECT SAMPLE		N J						
EQUIPMENT DOCUMENTATION								
TYPE OF PUMP GED BLADDER SIMCO BLADDER HIGH DENSITY POLYETHYLENE GEOPUMP LDPE	TYPE OF PUMP MATERIAL POLYVINYL CHLORIDE STAINLESS STEEL SILICON (Dedicated)	TYPE OF BLADDER MATERIAL TEFLON OTHER						
ANALYTICAL PARAMETERS To Bo Collected METHOD NUMBER	PRESERVATION VOLUME METHOD REQUIRED	SAMPLE <u>COLLECTED</u>						
Vo Cs 8260	HCL 3x40ml vo4	nar 🖺						
		L						
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED YES GENERATED PURGE WATER NUMBER OF GALLONS GENERATED	NOTES:	wood.						
CONTAINERIZED YES NO GENERATED 2.45	-							
SIGNATURE:		Prepared by: Checked by:						
		alle.						
AST*								

WOOD.							PAGE 1 OF 1
FIELD DATA RECORD - LOV	W FLOW GROUNDWA	TER SAI	MPLING				
PROJECT BIRD MACHI	NE	WEL	. iD	W-710N	\		
SAMPLEID MW-710M	1	SITETY	PE MC	P INDUST	RIAL		DATE 12/2/21
TIME START 120 END	1325	JOB NUMBE	R 36	51180087	. ୪୭ ଧର		BOTTLE TIME 1315
WATER LEVEL / PUMP SETTINGS	MEASUREMENT POINT						
QC SAMPLE COLLECTED	TOP OF WELL RISER TOP OF PROTECTIVE	CASING	PROTECTIV	CKUP SEE	رب		3/WELL SEE
INITIAL DEPTH 1.10	OTHER		(FROM GRO	10ND) 301-VE	FT.	DIFFEF	RENCE NIEVEYFI.
	WELL DEPTH 31.9		PID AMBIENT AI	в –	PPMV	DIAME:	TER ZO IN.
FINAL DEPTH OF YS FT			PID WELL			WELL	YES NO N/A
DRAWDOWN 0.088			MOUTH		PPMV	INTEGR	CASING 🔀 🚃 🚃
VOLUME GAI (initial - final x 0.16 (2-inch) or x 0.65 (4-inch	(h)) TO TOTAL VOLUME PUF		PRESSURE TO PUMP		PSI		COLLAR = = =
TOTAL VOL. 3.14 GAI	0.029		REFILL TIMER		SEC.	DISCH/ TIMER	ARGE SEC.
(purge rate (milliliters per minute) x time du			SETTING		000.	SETTIN	
PURGE DATA		,	· - · · · · · · · · · · · · · · · · · ·				
TIME DEPTH TO PURGE RATE WATER (ft.) (ml/min)	TEMP. SPEC. COND. (deg. C) (uS/cm)	pH (units)	DISS, O2 (mg/L)	TURBIDITY (NTU)	ORP (mV)	SAMPLE	
(5 min.) (0.3 ft.) (100-400)	(3%) (3%)	(+/- 0.1)	(10%) (>0.5)	(10%) (>5)	(+/- 10 mV)	DEPTH	COMMENTS
1212 1.90 160	BEGIN PURGE		0.77		M 1 M	<u>~301</u>	
1215 2.33 160	14.3 [89.]	6.62	0.37	16.4	813 988		
	14.2 183.1 14.3 177.8	6.09	0.23	11.7	97.8		
1245 2.47 60	14.2 174.2	6.03	0.24	11.4	101.8		
1250 2.44 (60)	14.2 173.4	5.86	0.25	10.3	107.4		
265 2.45 leo	14.2 172.0	-	0.25	9.00	111.2		
1300 245 160	14.2 174.3	6.58	0.24	4.82	67.4		
1316 2.45 160	14.0 176.3	6.57	0.22	4.66	68.9		
1320 2.45 160	14.0 175.5	6.60	0.20	4.55	69.4	V.	
1325 2.45 160	COLLECT SAM	RE				-30'	
EQUIPMENT DOCUMENTATION					<u>. </u>		<u> </u>
	TYPE OF TUBING			F PUMP MATERIAL			TYPE OF BLADDER MATERIAL
QED BLADDER	TEFLON OR TEFLON LINED HIGH DENSITY POLYETHYLEN	E		LYVINYL CHLORIDE AINLESS STEEL			TEFLON OTHER
GEOPUMP [LOPE		SIL SIL	ICON (Dedicated)			
ANALYTICAL PARAMETERS To Be Collected	METHOD	PRE	SERVATION	VOLUME		SAMPLE	
	<u>NUMBER</u>		<u>THOD</u>	REQUIRED		COLLECTE	2
≥ VOCs	8260	HCL	- :	3x4oun no	A VIAL	. 🖺	
						Ħ	
						Ш	
		г				····	
PURGE OBSERVATIONS PURGE WATER	NUMBER OF GALLONS	NO	TES:				wood.
	GENERATED 3.04	<u>. </u>	_				WUUU.
1 Res	10				e.		Prepared by:
SIGNATURE:							Checked by:
()							

WOOD.								PAGE 1 OF 1
FIELD DATA RECORD - I	OW FLOW G	ROUNDWAT	ER SAI	MPLING	i			
PROJECT Baker Hugh	8 Bitd nachin	,	WEL	LID ML	1-7130			
SAMPLE ID 191/- 7/30	<i></i>		SITE T	YPE In	dustrial			DATE 17/2(2)
TIME START Z 30	END 312		JOB NUMBI	ER 369	1180087.0	705		BOTTLE TIME 13/0
WATER LEVEL / PUMP SETTINGS		REMENT POINT					-	
QC SAMPLE COLLECTED	TOF	OF WELL RISER OF PROTECTIVE C	ASING	CASING ST	ICKUP / d	3 _{FT.}		G/WELL A 30
INITIAL DEPTH 7 23		HER		(FROM GRO	JUNU) [7 , 7	<u> </u>	DIFFEF	SENCE [//-/ FI.]
TO WATER 2-7 J	FT. WELL D	EPTH 33.71	FT.	PID AMBIENT A	IR	PPMV	WELL DIAMET	TER N.
FINAL DEPTH 2.88	FT. SCREEN		FT.	PID WELL MOUTH		PPMV	WELL INTEGR	YES NO N/A
DRAWDOWN 0.024		OF DRAWDOWN VO		PRESSURE			"***20" 	CASING Z Z Z COLLAR
(initial - final x 0.16 (2-inch) or x 0.65		DTAL VOLUME PURG		TO PUMP		PSI		
TOTAL VOL. 1.47	GAL.	<i>/. 0 2</i>		REFILL TIMER		SEC.	DISCH/ TIMER	SEC.
(purge rate (milliliters per minute) x tir	ne duration (minutes) a	(0.00026 gal/ml)		SETTING			SETTIN	JG
PURGE DATA THAT DEPTH TO PURGE RA	TE TEMP.	SPEC. COND.	pН	DISS. O2	TURBIDITY	ORP		
WATER (ft.) (mi/min)	(deg. C)	(uS/cm) (3%)	pH (units) (+/- 0.1)	(mg/L) (10%)	(NTU) (10%) (>5)	(mV) (+/- 10 mV)	SAMPLE DEPTH	
1230 2-73 Perhaps		(3 70)	(47-0.1)	(>0.5)	(1078) (23)	(47- 10 1514)		COMMENTS
1235 2.86 200	13.6	27 9.1	7.00	0.44	14.0	25.0	43/	
1240 2.86 180	13.6	777 7	6.92	0.37	15.6	25.0		
1245 2.86 180	13.6	727.0	6.88	0.26	13.6	25.0		
1250 7.86 180 1255 2.87 181	13.5		6.87 6.86	0.25	17.5	25.1		
1300 7.88 180			6.85	0.22	11.5	26.2		
1310 Collect San	P 14	,						
312 Pump OFF								<u> </u>
					<u> </u>			
EQUIPMENT DOCUMENTATION		<u> </u>	<u></u>	J		4	I	
TYPE OF PUMP	TYPE OF TUBIN				F PUMP MATERIAL	-		TYPE OF BLADDER MATERIAL
QED BLADDER SIMCO BLADDER	=	RTEFLON LINED ITY POLYETHYLENE	į	·	LYVINYL CHLORIDE AINLESS STEEL	:		TEFLON
GEOPUMP	Z LDPE			SIL	ICON (Dedicated)			
ANALYTICAL PARAMETERS To Be Collected		HOD		ESERVATIO			SAMPLE	
	8 260	<u>1BER</u>		1400 L/4°C	REQUIRED 3 X 4 o 1		COLLECTE	2
\(\lambda \) \(\lambda \)	0 600		nci	- 17 -) X 401	ጣር		
							Ħ	
PURGE OBSERVATIONS			NO	TES:				
PURGE WATER	NUMBER OF GA	LLONS /. 97						WOOD.
CONTAINERIZED YES (NO)	GENERALEU	1.1/						WOOD. Prepared by: SPM
SIGNATURE: Mar Roman								Prepared by:

WOOD.												PAGE 1 C)F 1
FIELD DAT	ΓA REC	ORD - LO\	N FLOW G	ROUNDWA1	TER SAI	MPLING							
PROJECT	BIRIS	MACH	INE		WELI	LID M	7W-714	5					
SAMPLE ID		-7145			SITETY	YPE	MCP		ĺ		DATE	12/2/	21
	RT 09.				JOB NUMBE	B 36	51180087.	0005			BOTTLE TIME	1030	
WATER LEVEL				REMENT POINT	0001101101		<u> </u>						
QC SAMPLE COLLECTED			TO:	P OF WELL RISER P OF PROTECTIVE (CASING	PROTECTIV CASING ST	CKUP SEE				CTIVE S/WELL	SEE SURVET FT.	7
INITIAL DEPTH		4-	OTI	HER		(FROM GRO	OND) Sylvote	FT.	ן נ	DIFFER	ENCE	SURVEY FT.	_
TO WATER	<u> </u>	42 F	T. WELL D (TOR)	12.99	FT.	PID AMBIENT AI	в	PPMV		WELL DIAMET	ren 2	P.O IN.	
FINAL DEPTH TO WATER	7.	57 F	r. SCREEN		FT,	PID WELL MOUTH		PPMV		WELL	RITY: CAP	YES NO	N/A
DRAWDOWN VOLUME	0.	024 GA		OF DRAWDOWN V		PRESSURE		11,1210	, .]	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CASING LOCKED		
		n) or x 0.65 (4-inc		OTAL VOLUME PUF		TO PUMP		PSI]		COLLAR	<u> </u>	
TOTAL VOL. PURGED	1.	6 GA				REFILL TIMER		SEC.] -	DISCHA		SEC	<u>;. </u>
(purge rate (m	nilliliters per	minute) x time du	ration (minutes)	x 0.00026 gal/ml)		SETTING			,	SETTIN	lG		
	ертн то	PURGE RATE	TEMP.	SPEC, COND.	pН	DISS. O2	TURBIDITY	ORP	Π				
TIME WA	ATER (ft.) (0.3 ft.)	(ml/min) (100-400)	(deg. C) (3%)	(uS/cm) (3%)	(units) (+/- 0.1)	(mg/L) (10%)	(NTU) (10%) (>5)	(mV) (+/- 10 mV)	1 06	MPLE EPTH		IENTO	
(5 min.)	58	160	BEGIN	PURGOE	, ,	(>0.5)	, , , , ,		2	//	COMM	ENIS	
	.57	160	12.7	268.6	6.65		236	-18.6	,		FLOC	IN PU	RGE
1000 7.	. 57	160	12.6	189.7	6.75		18.1	-53.4	-	\vdash	WATER	INITIA	44
1010 7. 1015 7.	57	160	12.8	185.1	6.79	0.70	13.86	-67.3 -80.6					
020 7	57	140	12.9	193.5	638	0.70	3.58	82.1					
loss 7	7.57	160	13.0	184.1	6.89	0.70	3.16	-84.0	1	,			
1030 7	<u>. 57</u>	160	COLLEG	TSAMPL					<u> ~ </u>	1			
								_		,			
								<u></u> ,					
						1			+				
									1				
EQUIPMENT D TYPE OF PU		ATION	TYPE OF TUBIR	<u>vg</u>		TYPE C	OF PUMP MATERIAL				TYPE OF	BLADDER MAT	ERIAL
QED BL				R TEFLON LINED SITY POLYETHYLEN	.r		DLYVINYL CHLORIDE AINLESS STEEL	•	•		TEFL		
GEOPU	BLADDER MP		LDPE	SILT POLITEINICE	46		LICON (Dedicated)					-·· <u></u>	
ANALYTICAL F	ARAMETE	RS	ME	THOD	PR	, IESERVATIO	N VOLUME		SA	AMPLE			
				IMBER	ME	THOD	REQUIRED			LECTE	<u>D</u>		
∖ ÞÆ V	OCS		82	260	lf	2L	3xyom/	JOH VIA					
									ĺ				
									Ì				
									[
									Ì	Ħ			
									,				
PURGE OBSE	RVATIONS				NO	OTES:		•			44		
PURGE WATER CONTAINERIZE		(NO)	NUMBER OF G	ALLONS	,						W	00	O.
	<u></u>	D	10									Prepared by:	
SIGNATURE:	How	Les										Checked by:	
	//												
1	V												

wood.

Appendix D Laboratory Results

MCP Presumptive Certainty Data Usability Assessment

Site Name: Bird Machine

Project Number: <u>3651180087.0005.****</u> Laboratory Name: <u>Alpha Analytical</u>

SDG Number: <u>L2150919</u>

Wood Sample IDs: MW-709S, DUP-1, MB-MW-374, MW-714S, MW-706S, DUP-2, and TRIP BLANK

	Analysis	
Data Reviewed	VOCs – 8260C	Dissolved Arsenic- 6020B
Chain of Custody	\checkmark	√
Sample Receipt (Preservation & Temperature)	One VOA vial was received broken for sample MW-714S. The lab had sufficient volume to perform the analysis and data quality is not impacted.	Thermal preservation is not a requirement for this method. √
Holding Time	√	√
Blanks (Trip or Equipment)	\checkmark	None submitted
Method Blanks	√	V
MS/MSD	Sample MW-709S was submitted as the source for the MS/MSD. The MS and/or MSD %Rs were below the acceptance criteria for cis-1,3-dichloropropene (69% MS), 2-butanone (67% MS), 2-hexanone (60%/67%), 1,2-dibromo-3-chloropropane (67% MS), naphthalene (64% MS), ethyl ether (69% MS), tertiary-amyl methyl ether (67%MS) and 1,4-dioxane (60% MS). Wood UJ qualified associated results in MW-709S and its field duplicate DUP-1 due to the potential low bias.	Sample MW-706S was submitted as the source for the MS/MSD. √
LCS/LCSD	√	√

	Analysis	
Data Reviewed	VOCs – 8260C	Dissolved Arsenic- 6020B
Field Duplicates	Sample DUP-2 was submitted as a field duplicate of sample MW-709S. √	Sample DUP-1 was submitted as a field duplicate of sample MW-706S. √
Surrogate Recoveries	√	NA
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-709S, MB-MW-374, MW-714S, and DUP-2 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.0021), as well as the average response factor for 1,4-dioxane (0.00219). The continuing calibration standard did not meet the minimum RRF for 1,4-dioxane (0.00199). Wood UJ qualified 1,4-dioxane in associated samples due to the potential low bias. The continuing calibration, associated with samples MW-709S, MB-MW-374, MW-714S, and DUP-2 did not meet the required percent drift (%D) for chloromethane (-24%), chloroethane (-22.1%), ethyl ether (22.8%), methyl tert-butyl ether (23.1%), tetrahydrofuran (23.3%), tert-amyl methyl ether (27.4%), dibromomethane (21.9%), bromodichloromethane (20.6%), cis-1,3-dichloropropene (24.6%), 4-methyl-2-pentanone (23.2%), trans-1,3-dichloropropene (24.6%), 1,2,3-trichloropropane (21%), 1,2-dibromo-3-chloropropane (29.2%), and naphthalene (27.2%). Results associated with the continuing calibration %Ds were all non-detect, no qualification was required.	None
Other Issues	None	None

Notes: Qualifiers: NA = Not Applicable J = Estimated

ND = Non-Detect R = Data is rejected and not suitable for use

%R = Percent Recovery U = Non-detect

RPD = Relative Percent Difference UJ = Reporting limit is considered estimated

Data Reviewer: <u>Lauren McHugh</u>

Reviewer: <u>Denise King</u> Date: <u>11/12/2021</u>

^{√ =} Data Reviewed is to be considered acceptable within method/lab criteria and without qualification

Reviewed by: Lauren McHugh Date: 11/12/2021

Wood

ANALYTICAL REPORT

Lab Number: L2150919

Client: Wood Env & Infrastructure Solutions, Inc

> 271 Mill Road 3rd Floor

Chelmsford, MA 01824

ATTN: Craig Keating Phone: (978) 392-5337 Project Name: **BIRD MACHINE**

Project Number: 3651180087.0005

Report Date: 10/05/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number: L2150919 **Report Date:** 10/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2150919-01	MW-706S	WATER	WALPOLE, MA	09/21/21 10:30	09/21/21
L2150919-02	DUP-1	WATER	WALPOLE, MA	09/21/21 00:00	09/21/21
L2150919-03	MW-709S	WATER	WALPOLE, MA	09/21/21 10:35	09/21/21
L2150919-04	MW-714S	WATER	WALPOLE, MA	09/21/21 12:10	09/21/21
L2150919-05	MB-MW-374	WATER	WALPOLE, MA	09/21/21 12:30	09/21/21
L2150919-06	DUP-2	WATER	WALPOLE, MA	09/21/21 00:00	09/21/21
L2150919-07	TRIP BLANK	WATER	WALPOLE, MA	09/14/21 00:00	09/21/21

Project Name:BIRD MACHINELab Number:L2150919Project Number:3651180087.0005Report Date:10/05/21

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:BIRD MACHINELab Number:L2150919Project Number:3651180087.0005Report Date:10/05/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

Case Narrative (continued)

MCP Related Narratives

Sample Receipt

L2150919-04B: The container for MCP 8260C - Volatile Organics was received broken; however, there was adequate sample remaining to perform the requested analysis.

Volatile Organics

L2150919-03 through -07: Initial calibration utilized a quadratic fit for: acetone

In reference to question H:

The WG1553287-6 MS recoveries, performed on L2150919-03, are outside the acceptance criteria for cis-1,3-dichloropropene (69%), 2-butanone (67%), 2-hexanone (60%), 1,2-dibromo-3-chloropropane (67%), naphthalene (64%), ethyl ether (69%), tertiary-amyl methyl ether (67%) and 1,4-dioxane (60%); however, the associated LCS/LCSD recoveries are within overall method allowances. No further action was required. The WG1553287-7 MSD recovery, performed on L2150919-03, is outside the acceptance criteria for 2-hexanone (67%); however, the associated LCS/LCSD recoveries are within overall method allowances. No further action was required.

L2150919-03 through -07: Initial Calibration did not meet:

Lowest Calibration Standard Minimum Response Factor: 1,4-dioxane (0.0021)

Average Response Factor: 1,4-dioxane

L2150919-03 through -07: The associated continuing calibration standard is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/05/21

QC OUTLIER SUMMARY REPORT

Project Name: BIRD MACHINE

Lab Number:

L2150919

Project Number: 3651180087.0005

Report Date:

10/05/21

					Recovery/RP	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volati	le Organics - Westborough Lab							
8260C	Batch QC (L2150919-03)	WG1553287-6	cis-1,3-Dichloropropene	MS	69	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	Methyl ethyl ketone	MS	67	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	2-Hexanone	MS	60	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	1,2-Dibromo-3-chloropropane	MS	67	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	Naphthalene	MS	64	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	Diethyl ether	MS	69	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	Tertiary-Amyl Methyl Ether	MS	67	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-6	1,4-Dioxane	MS	60	70-130	03-07	potential low bias
8260C	Batch QC (L2150919-03)	WG1553287-7	2-Hexanone	MSD	67	70-130	03-07	potential low bias

ORGANICS

VOLATILES

L2150919

Project Name: BIRD MACHINE

Lab Number:

Project Number: Report Date: 3651180087.0005 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-03 Date Collected: 09/21/21 10:35

Client ID: Date Received: 09/21/21 MW-709S Sample Location: Field Prep: WALPOLE, MA None

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 10/01/21 07:14

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	46		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	4.5		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	1.7		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-03 Date Collected: 09/21/21 10:35

Client ID: MW-709S Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	22		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	8.1		ug/l	1.0		1
1,2-Dichloroethene, Total	8.1		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-03 Date Collected: 09/21/21 10:35

Client ID: MW-709S Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	99	70-130	

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

Lab Number: L2150919

Report Date: 10/05/21

Lab ID: L2150919-04 Date Collected: 09/21/21 12:10

Client ID: Date Received: 09/21/21 MW-714S Sample Location: Field Prep: WALPOLE, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 10/01/21 10:16

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	1.5		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-04 Date Collected: 09/21/21 12:10

Client ID: MW-714S Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab					
Trichloroethene	ND	ug/l	1.0		1	
1,2-Dichlorobenzene	ND	ug/l	1.0		1	
1,3-Dichlorobenzene	ND	ug/l	1.0		1	
1,4-Dichlorobenzene	ND	ug/l	1.0		1	
Methyl tert butyl ether	ND	ug/l	2.0		1	
p/m-Xylene	ND	ug/l	2.0		1	
o-Xylene	ND	ug/l	1.0		1	
Xylenes, Total	ND	ug/l	1.0		1	
cis-1,2-Dichloroethene	5.6	ug/l	1.0		1	
1,2-Dichloroethene, Total	5.6	ug/l	1.0		1	
Dibromomethane	ND	ug/l	2.0		1	
1,2,3-Trichloropropane	ND	ug/l	2.0		1	
Styrene	ND	ug/l	1.0		1	
Dichlorodifluoromethane	ND	ug/l	2.0		1	
Acetone	ND	ug/l	5.0		1	
Carbon disulfide	ND	ug/l	2.0		1	
Methyl ethyl ketone	ND	ug/l	5.0		1	
Methyl isobutyl ketone	ND	ug/l	5.0		1	
2-Hexanone	ND	ug/l	5.0		1	
Bromochloromethane	ND	ug/l	2.0		1	
Tetrahydrofuran	ND	ug/l	2.0		1	
2,2-Dichloropropane	ND	ug/l	2.0		1	
1,2-Dibromoethane	ND	ug/l	2.0		1	
1,3-Dichloropropane	ND	ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1	
Bromobenzene	ND	ug/l	2.0		1	
n-Butylbenzene	ND	ug/l	2.0		1	
sec-Butylbenzene	ND	ug/l	2.0		1	
tert-Butylbenzene	ND	ug/l	2.0		1	
o-Chlorotoluene	ND	ug/l	2.0		1	
p-Chlorotoluene	ND	ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1	
Hexachlorobutadiene	ND	ug/l	0.60		1	
Isopropylbenzene	ND	ug/l	2.0		1	
p-Isopropyltoluene	ND	ug/l	2.0		1	
Naphthalene	ND	ug/l	2.0		1	
n-Propylbenzene	ND	ug/l	2.0		1	

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-04 Date Collected: 09/21/21 12:10

Client ID: MW-714S Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	100	70-130	

L2150919

09/21/21 12:30

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

Report Date: 10/05/21

Lab Number:

Date Collected:

Lab ID: L2150919-05

Client ID: MB-MW-374 Sample Location: WALPOLE, MA Date Received: 09/21/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 10/01/21 09:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	17		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-05 Date Collected: 09/21/21 12:30

Client ID: MB-MW-374 Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	4.0		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	2.4		ug/l	1.0		1
1,2-Dichloroethene, Total	2.4		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-05 Date Collected: 09/21/21 12:30

Client ID: MB-MW-374 Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	99	70-130	

L2150919

09/21/21 00:00

Not Specified

09/21/21

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

10/00/21

Report Date: 10/05/21

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2150919-06

Client ID: DUP-2

Sample Location: WALPOLE, MA

Sample Depth:

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 10/01/21 09:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough I	_ab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	48		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	4.6		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	1.6		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-06 Date Collected: 09/21/21 00:00

Client ID: DUP-2 Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough L	.ab					
Trichloroethene	23		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	8.1		ug/l	1.0		1
1,2-Dichloroethene, Total	8.1		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-06 Date Collected: 09/21/21 00:00

Client ID: DUP-2 Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	99	70-130	

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-07 Date Collected: 09/14/21 00:00

Client ID: TRIP BLANK Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 10/01/21 08:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-07 Date Collected: 09/14/21 00:00

Client ID: TRIP BLANK Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-07 Date Collected: 09/14/21 00:00

Client ID: TRIP BLANK Date Received: 09/21/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	99	70-130	

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/01/21 06:13

arameter	Result	Qualifier	Units	RI	_ MDL
ICP Volatile Organics	- Westborough Lab for	sample(s):	03-07	Batch:	WG1553287-5
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.0)
Carbon tetrachloride	ND		ug/l	1.0)
1,2-Dichloropropane	ND		ug/l	1.0)
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.0)
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.0)
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.4	0
cis-1,3-Dichloropropene	ND		ug/l	0.4	0
1,3-Dichloropropene, Total	ND		ug/l	0.4	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.0)
Ethylbenzene	ND		ug/l	1.0)
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.0)
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.0)
trans-1,2-Dichloroethene	ND		ug/l	1.0)
Trichloroethene	ND		ug/l	1.0)

Project Name: BIRD MACHINE Lab Number: L2150919

Project Number: 3651180087.0005 **Report Date:** 10/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/01/21 06:13

arameter	Result	Qualifier	Units	RI	MDL
ICP Volatile Organics	- Westborough Lab for	sample(s):	03-07	Batch:	WG1553287-5
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0)
Xylenes, Total	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene, Total	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0	
Methyl ethyl ketone	ND		ug/l	5.0	
Methyl isobutyl ketone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	2.0	
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/01/21 06:13

arameter	Result	Qualifier	Units	RI	MDL	
MCP Volatile Organics - Westbo	rough Lab for	sample(s):	03-07	Batch:	WG1553287-5	
p-Chlorotoluene	ND		ug/l	2.0)	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0)	
Hexachlorobutadiene	ND		ug/l	0.6	0	
Isopropylbenzene	ND		ug/l	2.0)	
p-Isopropyltoluene	ND		ug/l	2.0)	
Naphthalene	ND		ug/l	2.0)	
n-Propylbenzene	ND		ug/l	2.0)	
1,2,3-Trichlorobenzene	ND		ug/l	2.0)	
1,2,4-Trichlorobenzene	ND		ug/l	2.0)	
1,3,5-Trimethylbenzene	ND		ug/l	2.0)	
1,2,4-Trimethylbenzene	ND		ug/l	2.0)	
Diethyl ether	ND		ug/l	2.0)	
Diisopropyl Ether	ND		ug/l	2.0)	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0)	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0)	
1,4-Dioxane	ND		ug/l	25	0	

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	88		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	97		70-130	

Project Name: BIRD MACHINE Project Number:

3651180087.0005

Lab Number: L2150919

Report Date: 10/05/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated sample	e(s): 03-07	Batch: WG15	53287-3 W	G1553287-4			
Methylene chloride	88		86		70-130	2	20	
1,1-Dichloroethane	94		94		70-130	0	20	
Chloroform	84		84		70-130	0	20	
Carbon tetrachloride	91		90		70-130	1	20	
1,2-Dichloropropane	90		89		70-130	1	20	
Dibromochloromethane	86		85		70-130	1	20	
1,1,2-Trichloroethane	83		83		70-130	0	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	96		94		70-130	2	20	
Trichlorofluoromethane	92		93		70-130	1	20	
1,2-Dichloroethane	80		79		70-130	1	20	
1,1,1-Trichloroethane	87		88		70-130	1	20	
Bromodichloromethane	79		78		70-130	1	20	
trans-1,3-Dichloropropene	75		75		70-130	0	20	
cis-1,3-Dichloropropene	75		74		70-130	1	20	
1,1-Dichloropropene	87		86		70-130	1	20	
Bromoform	86		84		70-130	2	20	
1,1,2,2-Tetrachloroethane	80		76		70-130	5	20	
Benzene	90		89		70-130	1	20	
Toluene	95		94		70-130	1	20	
Ethylbenzene	95		93		70-130	2	20	
Chloromethane	120		120		70-130	0	20	
Bromomethane	110		110		70-130	0	20	

Project Name: BIRD MACHINE

Lab Number:

L2150919

Project Number: 3651180087.0005

Report Date: 10/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD nits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 03-07	Batch: WG155	3287-3	WG1553287-4		
Vinyl chloride	99		98		70-130	1	20
Chloroethane	120		120		70-130	0	20
1,1-Dichloroethene	92		93		70-130	1	20
trans-1,2-Dichloroethene	95		92		70-130	3	20
Trichloroethene	90		87		70-130	3	20
1,2-Dichlorobenzene	95		93		70-130	2	20
1,3-Dichlorobenzene	98		95		70-130	3	20
1,4-Dichlorobenzene	97		94		70-130	3	20
Methyl tert butyl ether	77		72		70-130	7	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	95		95		70-130	0	20
cis-1,2-Dichloroethene	92		91		70-130	1	20
Dibromomethane	78		78		70-130	0	20
1,2,3-Trichloropropane	79		77		70-130	3	20
Styrene	95		90		70-130	5	20
Dichlorodifluoromethane	82		82		70-130	0	20
Acetone	90		99		70-130	10	20
Carbon disulfide	92		91		70-130	1	20
Methyl ethyl ketone	84		86		70-130	2	20
Methyl isobutyl ketone	77		77		70-130	0	20
2-Hexanone	80		81		70-130	1	20
Bromochloromethane	86		84		70-130	2	20
Tetrahydrofuran	77		76		70-130	1	20

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

Lab Number: L2150919

Report Date: 10/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 03-07	Batch: WG15	53287-3	WG1553287-4			
2,2-Dichloropropane	86		85		70-130	1	20	
1,2-Dibromoethane	87		84		70-130	4	20	
1,3-Dichloropropane	83		82		70-130	1	20	
1,1,1,2-Tetrachloroethane	92		91		70-130	1	20	
Bromobenzene	100		95		70-130	5	20	
n-Butylbenzene	96		93		70-130	3	20	
sec-Butylbenzene	99		97		70-130	2	20	
tert-Butylbenzene	99		96		70-130	3	20	
o-Chlorotoluene	93		90		70-130	3	20	
p-Chlorotoluene	92		90		70-130	2	20	
1,2-Dibromo-3-chloropropane	71		70		70-130	1	20	
Hexachlorobutadiene	100		100		70-130	0	20	
Isopropylbenzene	97		94		70-130	3	20	
p-Isopropyltoluene	100		97		70-130	3	20	
Naphthalene	73		70		70-130	4	20	
n-Propylbenzene	98		96		70-130	2	20	
1,2,3-Trichlorobenzene	84		83		70-130	1	20	
1,2,4-Trichlorobenzene	86		84		70-130	2	20	
1,3,5-Trimethylbenzene	91		87		70-130	4	20	
1,2,4-Trimethylbenzene	89		86		70-130	3	20	
Diethyl ether	77		76		70-130	1	20	
Diisopropyl Ether	100		100		70-130	0	20	
Ethyl-Tert-Butyl-Ether	85		84		70-130	1	20	

Project Name: BIRD MACHINE Project Number:

Lab Number:

L2150919

3651180087.0005

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough La	b Associated sample	le(s): 03-07	Batch: WG15	53287-3 V	/G1553287-4				
Tertiary-Amyl Methyl Ether	72		70		70-130	3		20	
1,4-Dioxane	90		74		70-130	20		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	84	86	70-130
Toluene-d8	98	97	70-130
4-Bromofluorobenzene	93	93	70-130
Dibromofluoromethane	94	98	70-130

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2150919

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - \	Westborough Lab	Associated	d sample(s): 03	-07 QC Batcl	n ID: WG1553287-6	WG1553287-	7 QC Sample: L21	50919-	03 Client ID: MW-
Methylene chloride	ND	10	8.3	83	9.0	90	70-130	8	20
1,1-Dichloroethane	ND	10	9.5	95	10	100	70-130	5	20
Chloroform	ND	10	8.2	82	8.8	88	70-130	7	20
Carbon tetrachloride	ND	10	9.4	94	10	100	70-130	6	20
1,2-Dichloropropane	ND	10	8.4	84	9.3	93	70-130	10	20
Dibromochloromethane	ND	10	8.2	82	9.0	90	70-130	9	20
1,1,2-Trichloroethane	ND	10	7.9	79	8.7	87	70-130	10	20
Tetrachloroethene	46	10	55	90	58	120	70-130	5	20
Chlorobenzene	ND	10	8.9	89	9.6	96	70-130	8	20
Trichlorofluoromethane	ND	10	9.5	95	10	100	70-130	5	20
1,2-Dichloroethane	ND	10	7.8	78	8.5	85	70-130	9	20
1,1,1-Trichloroethane	ND	10	8.8	88	9.4	94	70-130	7	20
Bromodichloromethane	ND	10	7.8	78	8.3	83	70-130	6	20
trans-1,3-Dichloropropene	ND	10	7.0	70	7.7	77	70-130	10	20
cis-1,3-Dichloropropene	ND	10	6.9	69	Q 7.6	76	70-130	10	20
1,1-Dichloropropene	ND	10	8.5	85	9.1	91	70-130	7	20
Bromoform	ND	10	8.0	80	8.8	88	70-130	10	20
1,1,2,2-Tetrachloroethane	ND	10	7.1	71	7.8	78	70-130	9	20
Benzene	ND	10	8.6	86	9.3	93	70-130	8	20
Toluene	ND	10	8.8	88	9.5	95	70-130	8	20
Ethylbenzene	ND	10	8.8	88	9.5	95	70-130	8	20
Chloromethane	ND	10	12	120	13	130	70-130	8	20
Bromomethane	ND	10	10	100	12	120	70-130	18	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2150919

Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics 709S	- Westborough Lab	Associated	sample(s): 03-07	7 QC Batch	n ID: WG1553287-6	WG1553287-	7 QC Sample: L21	50919-0	03 Client ID: MW-
Vinyl chloride	4.5	10	14	95	15	105	70-130	7	20
Chloroethane	ND	10	11	110	12	120	70-130	9	20
,1-Dichloroethene	1.7	10	11	93	12	103	70-130	9	20
rans-1,2-Dichloroethene	ND	10	11	110	12	120	70-130	9	20
Trichloroethene	22	10	32	100	33	110	70-130	3	20
1,2-Dichlorobenzene	ND	10	8.7	87	9.5	95	70-130	9	20
,3-Dichlorobenzene	ND	10	9.0	90	9.8	98	70-130	9	20
,4-Dichlorobenzene	ND	10	8.9	89	9.7	97	70-130	9	20
Methyl tert butyl ether	ND	10	7.2	72	8.0	80	70-130	11	20
o/m-Xylene	ND	20	18	90	20	100	70-130	11	20
o-Xylene	ND	20	18	90	19	95	70-130	5	20
cis-1,2-Dichloroethene	8.1	10	17	89	18	99	70-130	6	20
Dibromomethane	ND	10	7.5	75	8.1	81	70-130	8	20
,2,3-Trichloropropane	ND	10	7.1	71	7.9	79	70-130	11	20
Styrene	ND	20	17	85	19	95	70-130	11	20
Dichlorodifluoromethane	ND	10	8.4	84	9.0	90	70-130	7	20
Acetone	ND	10	7.2	72	8.4	84	70-130	15	20
Carbon disulfide	ND	10	8.8	88	9.6	96	70-130	9	20
Methyl ethyl ketone	ND	10	6.7	67	Q 7.2	72	70-130	7	20
Methyl isobutyl ketone	ND	10	7.0	70	7.7	77	70-130	10	20
2-Hexanone	ND	10	6.0	60	Q 6.7	67	Q 70-130	11	20
Bromochloromethane	ND	10	8.1	81	9.0	90	70-130	11	20
etrahydrofuran	ND	10	8.3	83	8.8	88	70-130	6	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2150919

Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - \ 709S	Westborough Lab	Associated	sample(s): 03-0	7 QC Batch	n ID: WG1553287	6 WG1553287	-7 QC Sample: L21	50919-0	O3 Client ID: MW-
2,2-Dichloropropane	ND	10	8.0	80	8.6	86	70-130	7	20
1,2-Dibromoethane	ND	10	8.0	80	8.7	87	70-130	8	20
1,3-Dichloropropane	ND	10	7.6	76	8.4	84	70-130	10	20
1,1,1,2-Tetrachloroethane	ND	10	8.7	87	9.4	94	70-130	8	20
Bromobenzene	ND	10	9.0	90	9.7	97	70-130	7	20
n-Butylbenzene	ND	10	8.8	88	9.6	96	70-130	9	20
sec-Butylbenzene	ND	10	9.3	93	9.9	99	70-130	6	20
ert-Butylbenzene	ND	10	9.2	92	10	100	70-130	8	20
o-Chlorotoluene	ND	10	8.6	86	9.2	92	70-130	7	20
o-Chlorotoluene	ND	10	8.3	83	9.1	91	70-130	9	20
1,2-Dibromo-3-chloropropane	ND	10	6.7	67	Q 7.6	76	70-130	13	20
Hexachlorobutadiene	ND	10	9.5	95	11	110	70-130	15	20
sopropylbenzene	ND	10	9.0	90	9.6	96	70-130	6	20
p-Isopropyltoluene	ND	10	9.2	92	10	100	70-130	8	20
Naphthalene	ND	10	6.4	64	Q 7.2	72	70-130	12	20
n-Propylbenzene	ND	10	9.0	90	9.7	97	70-130	7	20
1,2,3-Trichlorobenzene	ND	10	7.7	77	8.4	84	70-130	9	20
1,2,4-Trichlorobenzene	ND	10	7.7	77	8.6	86	70-130	11	20
1,3,5-Trimethylbenzene	ND	10	8.2	82	8.9	89	70-130	8	20
1,2,4-Trimethylbenzene	ND	10	8.0	80	8.7	87	70-130	8	20
Diethyl ether	ND	10	6.9	69	Q 7.7	77	70-130	11	20
Diisopropyl Ether	ND	10	9.5	95	10	100	70-130	5	20
Ethyl-Tert-Butyl-Ether	ND	10	8.1	81	8.7	87	70-130	7	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2150919

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	red (RPD Qual Limits
MCP Volatile Organics - We 709S	stborough Lab	Associated	sample(s): 03	-07 QC Batch	n ID: WG	1553287-6	WG1553287-	7 QC Sample: L2	150919-0	O3 Client ID: MW-
Tertiary-Amyl Methyl Ether	ND	10	6.7	67	Q	7.3	73	70-130	9	20
1,4-Dioxane	ND	500	300	60	Q	350	70	70-130	15	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	91	91	70-130
4-Bromofluorobenzene	91	92	70-130
Dibromofluoromethane	103	101	70-130
Toluene-d8	95	97	70-130

METALS

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

SAMPLE RESULTS

 Lab ID:
 L2150919-01
 Date Collected:
 09/21/21 10:30

 Client ID:
 MW-706S
 Date Received:
 09/21/21

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Man	sfield Lab									
Arsenic, Dissolved	0.0172		mg/l	0.0005		1	09/27/21 18:1	18 09/29/21 21:45	EPA 3005A	97,6020B	WP

09/21/21 00:00

Date Collected:

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

SAMPLE RESULTS

Lab ID: L2150919-02

Client ID: DuP-1 Date Received: 09/21/21

Sample Location: WALPOLE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Man	sfield Lab									
Arsenic, Dissolved	0.0182		mg/l	0.0005		1	09/27/21 18:1	8 09/29/21 21:50	EPA 3005A	97,6020B	WP

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RL**Factor Prepared** Analyzed **Units** MDL MCP Dissolved Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1550520-1 Arsenic, Dissolved ND mg/l 0.0005 1 97,6020B WP

Prep Information

Digestion Method: EPA 3005A

Project Name: BIRD MACHINE

Lab Number:

L2150919 10/05/21

Project Number: 3651180087.0005

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Mansfield Lab Asso	ciated sample(s): 01	-02 Batcl	h: WG1550520-2	WG15505	520-3				
Arsenic, Dissolved	103		101		80-120	2		20	

Project Name: BIRD MACHINE **Project Number:** 3651180087.0005

Lab Number:

L2150919

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
MCP Dissolved Metals - Mansfie MW-706S	eld Lab Asso	ociated samp	le(s): 01-02	QC Batch II	D: WG1550	0520-4 \	WG1550520-5	QC Sample: L21	50919-01	Client ID:
Arsenic, Dissolved	0.0172	0.12	0.1404	103		0.1386	101	75-125	1	20

Project Name: **BIRD MACHINE Lab Number:** L2150919 **Project Number:** 3651180087.0005

Report Date: 10/05/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2150919-01A	Plastic 120ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2150919-01A1	Plastic 120ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2150919-01A2	Plastic 120ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2150919-02A	Plastic 120ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2150919-03A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03A1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03A2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03B1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03B2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03C1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-03C2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-04A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-04B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-04C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-05A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-05B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-05C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-06A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-06B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-06C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)
L2150919-07A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-10(14)

Lab Number: L2150919

Report Date: 10/05/21

Container Information Initial Final Temp Frozen pН Date/Time Cooler pH deg C Pres Seal Container ID Container Type Analysis(*) Vial HCI preserved MCP-8260-10(14) L2150919-07B NA 4.4 Absent

Project Name:

BIRD MACHINE

Project Number: 3651180087.0005

Project Name: Lab Number: BIRD MACHINE L2150919 **Project Number:** 3651180087.0005 **Report Date:** 10/05/21

GLOSSARY

Acronyms

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

values; although the RPD value will be provided in the report.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

 Project Name:
 BIRD MACHINE
 Lab Number:
 L2150919

 Project Number:
 3651180087.0005
 Report Date:
 10/05/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:BIRD MACHINELab Number:L2150919Project Number:3651180087.0005Report Date:10/05/21

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10052111:08

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

-	_ Welanal kel-		2 20 3	202	_			_					1			01141_110	.10002		
Дена	CHAIN C	F CU	STO	DY P	AGE_	OF 1	Dat	e Rec	d in La	b;	9	/211	21	A	LPH	A Job#:	12	215091	9
A STORY CO.	and the second	Project	Informat	ion		-	Re	port l	nform	ation -	Data	Delive	rable		200	Informa			
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project N	lame: BIE	P MA	CHINE		र्व	ADEX		e E	MAIL			D	Same	as Client	nfo PC	O#:	
Client Informatio	n	Project L	ocation: L	NALPO	LE, M	A								_		on Requi			
Client: WOOD	EGIS	Project #	365	1 8 0	087.	0005	M	es 🗆	No MA	MCP A	nalytica Rem	I Meth	ds this SI	G2 /B	☐ Ye	s Mo (Inomani	Analytical Methodics)	ds
Address: 271 M	ILL ROAD	Project M	lanager: (RAIG	KEAT	ING	0)	es 🗆 i	No GW	1 Stand	lards (PH with Ta		(3)	
CHELMSFO	RD, MA D1824	ALPHA	Quote #:						No NPI tate /Fe							Criteria			
Phone: (978)	727 - 4005		round Tir	ne					1	_	-	1.1	./	7	17	11	11	/ p>	
Additional P	roject Information:	Stand Date 0		I RUSH innive	confirmed # pin-a	iprovedi)	ANA	Sisi	AH.	DMCP 14 DRCP	D P. DPP	S D Ranges On	DFINE		8//	///		SAMPLE INFO	T 0 T A
GL COT PN: 3 PLEASE PO	# : 3651 DE: 573006 651180087,000 IT THIS INFORMA	5. * *	~ 12				/	C: [7] 42	METALS: OMCP 12	EPH: CRCRAS DEC	VPH, DR3	D PCB D PEST	DISC. Downt Only DE	SH OBATO	//	///	1/1	Filtration Field Lab to do Preservation Lab to do	# B D T T
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler Initials	Moc	SVOC	META	EPH.	The state of	D PO	PIS	1/	/		Sar	mple Comments	E
50919 31	MW - 7065		9/21/21	1030	GW	SPM					П		X	TE			RUN	MS/MSD	3
702	DUP-1		1	-	GW	SPM							X						1
703	MW - 7095			1635	GW	JEP	X										RUN	MS/MSD	9
704	MW - 7145			1210	GW	JEP	X			T									3
705	MB-MW-37	4	1,	1230	GW	SPM							-	1					3
706	DUP-2		9/21/21	_	GW	JEP	\Diamond		-	+		+		-	+				3
707	TRIP BLANK		9/14/21	-	GW	PC	\Diamond		+	+					+				2
			MI II		9	10	/					T							-
										T									Т
										1									
Container Type	Preservative				Conta	iner Type	٧						P		H				
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₂				- 12-	eservative	В						c						
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinqu	ished By:		Date	e/Time	1	7	Rece	ived By		1	-	Date/Ti	me				1
O= Other E= Encore O= BOD Bottle	G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₂ Cl	MAC !	effet.	12 0	9/21/2	1 14:35	E	M	Tich!	C. Ku	20	×	9/2	1/21	14135	Alpha's		mitted are subje nd Conditions. e.	ct to
Page 48 of 51	K= Zn Acetate O= Other	Joseph C.	Burist	4	9/21/2	1758	CM	ien	ron G	mi	2 lus	, 0	1211	211	758	1,5-360,600,640		v. 12-Mar-2012)	

Method Blank Summary Form 4 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2150919

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Lab Sample ID : WG1553287-5 Lab File ID : VQ211001A05

Instrument ID : QUIMBY

Matrix : WATER Analysis Date : 10/01/21 06:13

Client Sample No.	Lab Sample ID	Analysis Date
WG1553287-3LCS	WG1553287-3	10/01/21 04:12
WG1553287-4LCSD	WG1553287-4	10/01/21 04:42
MW-709S	L2150919-03	10/01/21 07:14
TRIP BLANK	L2150919-07	10/01/21 08:45
DUP-2	L2150919-06	10/01/21 09:15
MB-MW-374	L2150919-05	10/01/21 09:45
MW-714S	L2150919-04	10/01/21 10:16
MW-709SMS	WG1553287-6	10/01/21 14:48
MW-709SMSD	WG1553287-7	10/01/21 15:19

Calibration Verification Summary Form 7 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2150919

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Instrument ID : QUIMBY Calibration Date : 10/01/21 04:12

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	114	0
Dichlorodifluoromethane	0.572	0.472	-	17.5	20	98	0
Chloromethane	10	12.4	-	-24*	20	187	0
Vinyl chloride	0.636	0.633	-	0.5	20	120	0
Bromomethane	0.25	0.282	-	-12.8	20	154	0
Chloroethane	0.289	0.353	-	-22.1*	20	152	0
Trichlorofluoromethane	0.804	0.736	-	8.5	20	108	0
Ethyl ether	0.219	0.169	•	22.8*	20	97	0
1,1-Dichloroethene	0.436	0.403	-	7.6	20	115	0
Carbon disulfide	1.319	1.208	-	8.4	20	112	0
Methylene chloride	0.47	0.412	-	12.3	20	110	0
Acetone	10	8.951	-	10.5	20	93	0
trans-1,2-Dichloroethene	0.481	0.455	-	5.4	20	116	0
Methyl tert-butyl ether	1.094	0.841	•	23.1*	20	95	0
Diisopropyl ether	1.875	1.907	-	-1.7	20	118	0
1,1-Dichloroethane	1.092	1.031	-	5.6	20	110	0
Ethyl tert-butyl ether	1.537	1.306	-	15	20	100	0
cis-1,2-Dichloroethene	0.561	0.516	-	8	20	112	0
2,2-Dichloropropane	1.006	0.861	-	14.4	20	103	0
Bromochloromethane	0.221	0.19	-	14	20	106	0
Chloroform	1.047	0.879	-	16	20	102	0
Carbon tetrachloride	0.851	0.777	-	8.7	20	107	0
Tetrahydrofuran	10	7.669	-	23.3*	20	91	0
Dibromofluoromethane	0.245	0.229	-	6.5	20	106	0
1,1,1-Trichloroethane	0.98	0.857	-	12.6	20	104	0
2-Butanone	10	8.36	-	16.4	20	95	0
1,1-Dichloropropene	0.82	0.716	-	12.7	20	102	0
Benzene	2.316	2.086	-	9.9	20	107	0
tert-Amyl methyl ether	1.272	0.923	•	27.4*	20	86	0
1,2-Dichloroethane-d4	0.293	0.247	-	15.7	20	98	0
1,2-Dichloroethane	0.669	0.537	-	19.7	20	96	0
Trichloroethene	0.594	0.534	-	10.1	20	111	0
Dibromomethane	0.242	0.189	•	21.9*	20	96	0
1,2-Dichloropropane	0.577	0.522	-	9.5	20	107	0
Bromodichloromethane	0.768	0.61	•	20.6*	20	95	0
1,4-Dioxane	0.00219	0.00199*	-	9.1	20	104	0
cis-1,3-Dichloropropene	0.908	0.685	-	24.6*	20	92	0
Chlorobenzene-d5	1	1	-	0	20	106	0
Toluene-d8	1.33	1.307	-	1.7	20	106	0
Toluene	1.743	1.653	-	5.2	20	107	0
4-Methyl-2-pentanone	0.138	0.106	-	23.2*	20	88	0
Tetrachloroethene	0.662	0.689	-	-4.1	20	115	0
trans-1,3-Dichloropropene	0.946	0.713	•	24.6*	20	90	0
							_

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2150919

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Instrument ID : QUIMBY Calibration Date : 10/01/21 04:12

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,1,2-Trichloroethane	0.364	0.302	-	17	20	94	0
Chlorodibromomethane	0.541	0.467	-	13.7	20	98	0
1,3-Dichloropropane	0.809	0.671	-	17.1	20	92	0
1,2-Dibromoethane	0.401	0.349	-	13	20	96	0
2-Hexanone	0.287	0.23	-	19.9	20	86	0
Chlorobenzene	1.753	1.679	-	4.2	20	105	0
Ethylbenzene	3.442	3.273	-	4.9	20	104	0
1,1,1,2-Tetrachloroethane	0.652	0.598	-	8.3	20	102	0
p/m Xylene	1.321	1.313	-	0.6	20	108	0
o Xylene	1.248	1.209	-	3.1	20	105	0
Styrene	2.042	1.912	-	6.4	20	101	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	107	0
Bromoform	0.468	0.403	-	13.9	20	97	0
Isopropylbenzene	5.766	5.609	-	2.7	20	102	0
4-Bromofluorobenzene	0.937	0.869	-	7.3	20	97	0
Bromobenzene	1.154	1.153	-	0.1	20	110	0
n-Propylbenzene	6.851	6.738	-	1.6	20	103	0
1,1,2,2-Tetrachloroethane	0.796	0.638	-	19.8	20	92	0
2-Chlorotoluene	4.884	4.531	-	7.2	20	100	0
1,3,5-Trimethylbenzene	4.787	4.345	-	9.2	20	101	0
1,2,3-Trichloropropane	0.676	0.534	•	21*	20	88	0
4-Chlorotoluene	4.398	4.035	-	8.3	20	99	0
tert-Butylbenzene	4.29	4.253	-	0.9	20	106	0
1,2,4-Trimethylbenzene	4.392	3.907	-	11	20	100	0
sec-Butylbenzene	6.136	6.09	-	0.7	20	103	0
p-Isopropyltoluene	5.224	5.211	-	0.2	20	106	0
1,3-Dichlorobenzene	2.557	2.494	-	2.5	20	109	0
1,4-Dichlorobenzene	2.51	2.425	-	3.4	20	108	0
n-Butylbenzene	4.198	4.013	-	4.4	20	104	0
1,2-Dichlorobenzene	2.274	2.159	-	5.1	20	106	0
1,2-Dibromo-3-chloropropan	0.12	0.085	•	29.2*	20	83	0
Hexachlorobutadiene	0.833	0.829	-	0.5	20	112	0
1,2,4-Trichlorobenzene	1.199	1.028	-	14.3	20	103	0
Naphthalene	1.837	1.337	-	27.2*	20	89	0
1,2,3-Trichlorobenzene	1.032	0.872	-	15.5	20	102	0

^{*} Value outside of QC limits.

MCP Presumptive Certainty Data Usability Assessment

Site Name: Bird Machine

Project Number: <u>3651180087.0005.****</u> Laboratory Name: <u>Alpha Analytical</u>

SDG Number: <u>L2166365</u>

Wood Sample IDs: MW-704S, MW-706S, MW-714S, DUP-1, MB-MW-374, MW-709S, DUP-2, MB-MW-362, MW-713D, MW-710M, LR-MW-122, and TRIP

BLANK

Data Business I	Analysis						
Data Reviewed	VOCs – 8260C	Dissolved Arsenic- 6020B					
Chain of Custody	V	V					
Sample Receipt (Preservation & Temperature)	\checkmark	Thermal preservation is not a requirement for this method. \checkmark					
Holding Time	\checkmark	√					
Blanks (Trip or Equipment)	\checkmark	None submitted					
Method Blanks	\checkmark	V					
MS/MSD	Sample MW-709S was submitted as the source for the MS/MSD. $\ensuremath{\checkmark}$	Sample MW-706S was submitted as the source for the MS/MSD. √					
LCS/LCSD	The LCS/LCS RPDs, associated with samples MW-704S, MW-714S, MB-MW-374, MW-709S, DUP-2, MB-MW-362, MW-713D, MW-710M, and TRIP BLANK, for methyl ethyl ketone (21%), 2-hexanone (22%), and 1,4-dioxane (27%) exceeded the RPD limit of 20%. These analytes were non-detect and not impacted by the non-directional bias. No qualifications necessary.	V					

	Analysis							
Data Reviewed	VOCs – 8260C	Dissolved Arsenic- 6020B						
Field Duplicates	Sample DUP-2 was submitted as a field duplicate of sample MW-709S. √	Sample DUP-1 was submitted as a field duplicate of sample MW-706S. √						
Surrogate Recoveries	√	NA						
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-704S, MW-714S, MB-MW-374, MW-709S, DUP-2, MB-MW-362, MW-713D, and MW-710M did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00209), as well as the average response factor for 1,4-dioxane (0.00207). Wood UJ qualified 1,4-dioxane in associated samples due to the potential low bias.	None						
Other Issues	None	None						

Notes: Qualifiers: NA = Not Applicable J = Estimated

ND = Non-Detect R = Data is rejected and not suitable for use

%R = Percent Recovery U = Non-detect

RPD = Relative Percent Difference UJ = Reporting limit is considered estimated

 $\sqrt{\ }$ = Data Reviewed is to be considered acceptable within method/lab criteria and without qualification.

Data Reviewer: <u>Lauren McHugh</u>

Reviewer: <u>Denise King</u> Date: <u>12/20/2021</u>

Reviewed by: Lauren McHugh

Date: 12/20/2021

Wood

ANALYTICAL REPORT

Lab Number: L2166365

Client: Wood Env & Infrastructure Solutions, Inc

271 Mill Road 3rd Floor

Chelmsford, MA 01824

ATTN: Craig Keating
Phone: (978) 392-5337
Project Name: BIRD MACHINE

Project Number: 3651180087.0005

Report Date: 12/16/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

 Lab Number:
 L2166365

 Report Date:
 12/16/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2166365-01	MW-704S	WATER	WALPOLE, MA	12/01/21 15:10	12/02/21
L2166365-02	MW-706S	WATER	WALPOLE, MA	12/01/21 16:05	12/02/21
L2166365-03	MW-714S	WATER	WALPOLE, MA	12/02/21 10:30	12/02/21
L2166365-04	DUP-1	WATER	WALPOLE, MA	12/01/21 00:00	12/02/21
L2166365-05	MB-MW-374	WATER	WALPOLE, MA	12/02/21 10:55	12/02/21
L2166365-06	MW-709S	WATER	WALPOLE, MA	12/02/21 11:55	12/02/21
L2166365-07	DUP-2	WATER	WALPOLE, MA	12/02/21 00:00	12/02/21
L2166365-08	MB-MW-362	WATER	WALPOLE, MA	12/02/21 11:55	12/02/21
L2166365-09	MW-713D	WATER	WALPOLE, MA	12/02/21 13:10	12/02/21
L2166365-10	MW-710M	WATER	WALPOLE, MA	12/02/21 13:25	12/02/21
L2166365-11	LR-MW-122	WATER	WALPOLE, MA	12/02/21 14:44	12/02/21
L2166365-12	TRIP BLANK	WATER	WALPOLE, MA	11/24/21 00:00	12/02/21

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.					

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

L2166365-01, -03, -05, -06, -07, -08, -09, -10, and -12: A copy of the continuing calibration standard is included as an addendum to this report.

In reference to question H:

L2166365-01, -03, -05, -06, -07, -08, -09, -10, and -12: Initial Calibration did not meet:

Lowest Calibration Standard Minimum Response Factor: 1,4-dioxane (0.002)

Average Response Factor: 1,4-dioxane

The WG1582368-3/-4 LCS/LCSD RPDs, associated with L2166365-01, -03, -05, -06, -07, -08, -09, -10,

and -12, are above the acceptance criteria for 2-butanone (21%), 2-hexanone (22%) and 1,4-dioxane (27%).

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/16/21

Melissa Sturgis Melissa Sturgis

QC OUTLIER SUMMARY REPORT

Project Name: BIRD MACHINE

Lab Number:

L2166365

Project Number: 3651180087.0005

Report Date:

12/16/21

					Recovery/RPI	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
MCP Volati	le Organics - Westborough Lab							
8260D	Batch QC	WG1582368-4	Methyl ethyl ketone	LCSD	21	20	01,03,05- 10,12	non-directional bias
8260D	Batch QC	WG1582368-4	2-Hexanone	LCSD	22	20	01,03,05- 10,12	non-directional bias
8260D	Batch QC	WG1582368-4	1,4-Dioxane	LCSD	27	20	01,03,05- 10,12	non-directional bias

ORGANICS

VOLATILES

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

Lab Number: L2166365

Report Date: 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-01 Date Collected: 12/01/21 15:10

Client ID: Date Received: 12/02/21 MW-704S Sample Location: Field Prep: WALPOLE, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 141,8260D

Analytical Date: 12/11/21 06:55

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	gh Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	1.1		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.40		1	
cis-1,3-Dichloropropene	ND		ug/l	0.40		1	
1,3-Dichloropropene, Total	ND		ug/l	0.40		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-01 Date Collected: 12/01/21 15:10

Client ID: MW-704S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-01 Date Collected: 12/01/21 15:10

Client ID: MW-704S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

L2166365

Project Name: BIRD MACHINE

Lab Number:

Project Number: Report Date: 3651180087.0005 12/16/21

SAMPLE RESULTS

Lab ID: Date Collected: 12/02/21 10:30 L2166365-03

Client ID: Date Received: 12/02/21 MW-714S Field Prep: Sample Location: WALPOLE, MA Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 141,8260D Analytical Date: 12/11/21 07:24

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	1.2		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	1.2		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-03 Date Collected: 12/02/21 10:30

Client ID: MW-714S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	8.3		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	9.6		ug/l	1.0		1
1,2-Dichloroethene, Total	9.6		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-03 Date Collected: 12/02/21 10:30

Client ID: MW-714S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

Lab Number: L2166365

Report Date: 12/16/21

Lab ID: L2166365-05 Date Collected: 12/02/21 10:55

Client ID: Date Received: 12/02/21 MB-MW-374 Sample Location: Field Prep: Not Specified WALPOLE, MA

Sample Depth:

Matrix: Water

Analytical Method: 141,8260D Analytical Date: 12/11/21 07:54

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	19		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-05 Date Collected: 12/02/21 10:55

Client ID: MB-MW-374 Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab				
Trichloroethene	5.1	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	2.1	ug/l	1.0		1
1,2-Dichloroethene, Total	2.1	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
Methyl ethyl ketone	ND	ug/l	5.0		1
Methyl isobutyl ketone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-05 Date Collected: 12/02/21 10:55

Client ID: MB-MW-374 Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	e
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	103	70-130	

12/02/21 11:55

Not Specified

12/02/21

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

Lab Number: L2166365

Report Date: 12/16/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2166365-06

Client ID: MW-709S

Sample Location: WALPOLE, MA

Sample Depth:

Matrix: Water

Analytical Method: 141,8260D Analytical Date: 12/11/21 04:59

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	48		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	4.2		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	1.7		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-06 Date Collected: 12/02/21 11:55

Client ID: MW-709S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	25		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	8.5		ug/l	1.0		1
1,2-Dichloroethene, Total	8.5		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-06 Date Collected: 12/02/21 11:55

Client ID: MW-709S Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	101	70-130	

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-07 Date Collected: 12/02/21 00:00

Client ID: DUP-2 Date Received: 12/02/21

Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 141,8260D
Analytical Date: 12/11/21 08:23

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	48		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	4.2		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	1.7		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: Lab Number: BIRD MACHINE L2166365

Project Number: Report Date: 3651180087.0005 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-07 Date Collected: 12/02/21 00:00

Client ID: DUP-2 Date Received: 12/02/21

Sample Location: Field Prep: Not Specified WALPOLE, MA

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westbor	ough Lab				
Trichloroethene	25	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	8.2	ug/l	1.0		1
1,2-Dichloroethene, Total	8.2	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
Methyl ethyl ketone	ND	ug/l	5.0		1
Methyl isobutyl ketone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-07 Date Collected: 12/02/21 00:00

Client ID: DUP-2 Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

Project Name: Lab Number: **BIRD MACHINE** L2166365

Project Number: Report Date: 3651180087.0005 12/16/21

SAMPLE RESULTS

12/11/21 08:52

Lab ID: L2166365-08 Date Collected: 12/02/21 11:55

Client ID: Date Received: 12/02/21 MB-MW-362 Sample Location: Field Prep: Not Specified WALPOLE, MA

Sample Depth:

Analytical Date:

Matrix: Water Analytical Method: 141,8260D

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-08 Date Collected: 12/02/21 11:55

Client ID: MB-MW-362 Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	1.3		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	1.4		ug/l	1.0		1
1,2-Dichloroethene, Total	1.4		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-08 Date Collected: 12/02/21 11:55

Client ID: MB-MW-362 Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	104	70-130	

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-09 Date Collected: 12/02/21 13:10

Client ID: MW-713D Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 141,8260D
Analytical Date: 12/11/21 09:21

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	gh Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	16		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.40		1	
cis-1,3-Dichloropropene	ND		ug/l	0.40		1	
1,3-Dichloropropene, Total	ND		ug/l	0.40		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-09 Date Collected: 12/02/21 13:10

Client ID: MW-713D Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough L	.ab					
Trichloroethene	5.7		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	2.6		ug/l	1.0		1
1,2-Dichloroethene, Total	2.6		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-09 Date Collected: 12/02/21 13:10

Client ID: MW-713D Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Accepta Qualifier Crite	
1,2-Dichloroethane-d4	94	70-	130
Toluene-d8	98	70-	130
4-Bromofluorobenzene	97	70-	130
Dibromofluoromethane	104	70-	130

12/02/21 13:25

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

L2166365

Report Date: 12/16/21

Lab Number:

Date Collected:

Lab ID: L2166365-10

Client ID: MW-710M Sample Location:

Field Prep: WALPOLE, MA

Date Received: 12/02/21 Not Specified

Sample Depth:

Matrix: Water Analytical Method: 141,8260D Analytical Date: 12/11/21 09:50

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	2.3		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-10 Date Collected: 12/02/21 13:25

Client ID: MW-710M Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ough Lab				
Trichloroethene	1.2	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
1,2-Dichloroethene, Total	ND	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
Methyl ethyl ketone	ND	ug/l	5.0		1
Methyl isobutyl ketone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1

Project Name:BIRD MACHINELab Number:L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-10 Date Collected: 12/02/21 13:25

Client ID: MW-710M Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	103	70-130	

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

SAMPLE RESULTS

L2166365

Lab Number:

Report Date: 12/16/21

Lab ID: Date Collected: 11/24/21 00:00 L2166365-12

Client ID: Date Received: 12/02/21 TRIP BLANK Field Prep: Sample Location: Not Specified WALPOLE, MA

Sample Depth:

Matrix: Water

Analytical Method: 141,8260D Analytical Date: 12/11/21 06:26

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-12 Date Collected: 11/24/21 00:00

Client ID: TRIP BLANK Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		 1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene, Total	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
Methyl ethyl ketone	ND		ug/l	5.0		1
Methyl isobutyl ketone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-12 Date Collected: 11/24/21 00:00

Client ID: TRIP BLANK Date Received: 12/02/21 Sample Location: WALPOLE, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Diethyl ether	ND		ug/l	2.0		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	102	70-130	

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 12/11/21 04:30

Analyst: MM

arameter	Result	Qualifier	Units	RL	MDL	
ICP Volatile Organics -	Westborough Lab for	sample(s):	01,03,05	-10,12 Ba	tch: WG1582368-5	
Methylene chloride	ND		ug/l	2.0		
1,1-Dichloroethane	ND		ug/l	1.0		
Chloroform	ND		ug/l	1.0		
Carbon tetrachloride	ND		ug/l	1.0		
1,2-Dichloropropane	ND		ug/l	1.0		
Dibromochloromethane	ND		ug/l	1.0		
1,1,2-Trichloroethane	ND		ug/l	1.0		
Tetrachloroethene	ND		ug/l	1.0		
Chlorobenzene	ND		ug/l	1.0		
Trichlorofluoromethane	ND		ug/l	2.0		
1,2-Dichloroethane	ND		ug/l	1.0		
1,1,1-Trichloroethane	ND		ug/l	1.0		
Bromodichloromethane	ND		ug/l	1.0		
trans-1,3-Dichloropropene	ND		ug/l	0.40		
cis-1,3-Dichloropropene	ND		ug/l	0.40		
1,3-Dichloropropene, Total	ND		ug/l	0.40		
1,1-Dichloropropene	ND		ug/l	2.0		
Bromoform	ND		ug/l	2.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		
Benzene	ND		ug/l	0.50		
Toluene	ND		ug/l	1.0		
Ethylbenzene	ND		ug/l	1.0		
Chloromethane	ND		ug/l	2.0		
Bromomethane	ND		ug/l	2.0		
Vinyl chloride	ND		ug/l	1.0		
Chloroethane	ND		ug/l	2.0		
1,1-Dichloroethene	ND		ug/l	1.0		
trans-1,2-Dichloroethene	ND		ug/l	1.0		
Trichloroethene	ND		ug/l	1.0		

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 12/11/21 04:30

Analyst: MM

Parameter	Result	Qualifier	Units	RL		MDL	
MCP Volatile Organics	- Westborough Lab for	sample(s):	01,03,05	-10,12	Batch:	WG1582368-5	
1,2-Dichlorobenzene	ND		ug/l	1.0			
1,3-Dichlorobenzene	ND		ug/l	1.0			
1,4-Dichlorobenzene	ND		ug/l	1.0			
Methyl tert butyl ether	ND		ug/l	2.0			
p/m-Xylene	ND		ug/l	2.0			
o-Xylene	ND		ug/l	1.0			
Xylenes, Total	ND		ug/l	1.0			
cis-1,2-Dichloroethene	ND		ug/l	1.0			
1,2-Dichloroethene, Total	ND		ug/l	1.0			
Dibromomethane	ND		ug/l	2.0			
1,2,3-Trichloropropane	ND		ug/l	2.0			
Styrene	ND		ug/l	1.0			
Dichlorodifluoromethane	ND		ug/l	2.0			
Acetone	ND		ug/l	5.0			
Carbon disulfide	ND		ug/l	2.0			
Methyl ethyl ketone	ND		ug/l	5.0			
Methyl isobutyl ketone	ND		ug/l	5.0			
2-Hexanone	ND		ug/l	5.0			
Bromochloromethane	ND		ug/l	2.0			
Tetrahydrofuran	ND		ug/l	2.0			
2,2-Dichloropropane	ND		ug/l	2.0			
1,2-Dibromoethane	ND		ug/l	2.0			
1,3-Dichloropropane	ND		ug/l	2.0			
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0			
Bromobenzene	ND		ug/l	2.0			
n-Butylbenzene	ND		ug/l	2.0			
sec-Butylbenzene	ND		ug/l	2.0			
tert-Butylbenzene	ND		ug/l	2.0			
o-Chlorotoluene	ND		ug/l	2.0			

Project Name: BIRD MACHINE Lab Number: L2166365

Project Number: 3651180087.0005 **Report Date:** 12/16/21

Method Blank Analysis Batch Quality Control

Analytical Method: 141,8260D Analytical Date: 12/11/21 04:30

Analyst: MM

Parameter	Result	Qualifier	Units	RL		MDL	
MCP Volatile Organics - Westbo	rough Lab for s	sample(s):	01,03,05	-10,12	Batch:	WG1582368-5	
p-Chlorotoluene	ND		ug/l	2.0			
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0			
Hexachlorobutadiene	ND		ug/l	0.60			
Isopropylbenzene	ND		ug/l	2.0			
p-Isopropyltoluene	ND		ug/l	2.0			
Naphthalene	ND		ug/l	2.0			
n-Propylbenzene	ND		ug/l	2.0			
1,2,3-Trichlorobenzene	ND		ug/l	2.0			
1,2,4-Trichlorobenzene	ND		ug/l	2.0			
1,3,5-Trimethylbenzene	ND		ug/l	2.0			
1,2,4-Trimethylbenzene	ND		ug/l	2.0			
Diethyl ether	ND		ug/l	2.0			
Diisopropyl Ether	ND		ug/l	2.0			
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0			
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0			
1,4-Dioxane	ND		ug/l	250			

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	94		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	103		70-130		

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

Lab Number: L2166365

Report Date: 12/16/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01,0	3,05-10,12 Batch	n: WG1582368-3 WG15823	68-4	
Methylene chloride	110		98	70-130	12	20
1,1-Dichloroethane	110		100	70-130	10	20
Chloroform	110		100	70-130	10	20
Carbon tetrachloride	110		110	70-130	0	20
1,2-Dichloropropane	100		98	70-130	2	20
Dibromochloromethane	100		93	70-130	7	20
1,1,2-Trichloroethane	100		94	70-130	6	20
Tetrachloroethene	110		110	70-130	0	20
Chlorobenzene	110		100	70-130	10	20
Trichlorofluoromethane	110		110	70-130	0	20
1,2-Dichloroethane	100		94	70-130	6	20
1,1,1-Trichloroethane	110		110	70-130	0	20
Bromodichloromethane	100		97	70-130	3	20
trans-1,3-Dichloropropene	92		85	70-130	8	20
cis-1,3-Dichloropropene	99		92	70-130	7	20
1,1-Dichloropropene	110		100	70-130	10	20
Bromoform	100		93	70-130	7	20
1,1,2,2-Tetrachloroethane	100		91	70-130	9	20
Benzene	110		100	70-130	10	20
Toluene	110		110	70-130	0	20
Ethylbenzene	110		110	70-130	0	20
Chloromethane	100		110	70-130	10	20
Bromomethane	110		110	70-130	0	20

Project Name: BIRD MACHINE

Project Number:

3651180087.0005

Lab Number: L2166365

Report Date: 12/16/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01,03,0	05-10,12 Batch	: WG1582368-3 WG158236	68-4		
Vinyl chloride	110		110	70-130	0	20	
Chloroethane	110		110	70-130	0	20	
1,1-Dichloroethene	110		110	70-130	0	20	
trans-1,2-Dichloroethene	110		100	70-130	10	20	
Trichloroethene	110		100	70-130	10	20	
1,2-Dichlorobenzene	110		100	70-130	10	20	
1,3-Dichlorobenzene	110		100	70-130	10	20	
1,4-Dichlorobenzene	110		100	70-130	10	20	
Methyl tert butyl ether	95		81	70-130	16	20	
p/m-Xylene	115		110	70-130	4	20	
o-Xylene	110		110	70-130	0	20	
cis-1,2-Dichloroethene	110		100	70-130	10	20	
Dibromomethane	100		92	70-130	8	20	
1,2,3-Trichloropropane	100		91	70-130	9	20	
Styrene	110		105	70-130	5	20	
Dichlorodifluoromethane	110		110	70-130	0	20	
Acetone	100		89	70-130	12	20	
Carbon disulfide	110		110	70-130	0	20	
Methyl ethyl ketone	90		73	70-130	21	Q 20	
Methyl isobutyl ketone	87		76	70-130	13	20	
2-Hexanone	91		73	70-130	22	Q 20	
Bromochloromethane	100		96	70-130	4	20	
Tetrahydrofuran	86		71	70-130	19	20	

Project Name: BIRD MACHINE

Project Number: 3651180087.0005

Lab Number: L2166365

Report Date: 12/16/21

arameter	LCS %Recovery Qu	LCS ual %Reco		%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated sample(s):	01,03,05-10,12	Batch: WG158	32368-3 WG158236	68-4	
2,2-Dichloropropane	110	10	00	70-130	10	20
1,2-Dibromoethane	100	94	4	70-130	6	20
1,3-Dichloropropane	100	93	3	70-130	7	20
1,1,1,2-Tetrachloroethane	100	99	9	70-130	1	20
Bromobenzene	110	10	00	70-130	10	20
n-Butylbenzene	120	12	20	70-130	0	20
sec-Butylbenzene	120	11	0	70-130	9	20
tert-Butylbenzene	110	11	0	70-130	0	20
o-Chlorotoluene	110	11	0	70-130	0	20
p-Chlorotoluene	110	11	0	70-130	0	20
1,2-Dibromo-3-chloropropane	93	82	2	70-130	13	20
Hexachlorobutadiene	100	10	00	70-130	0	20
Isopropylbenzene	110	11	0	70-130	0	20
p-Isopropyltoluene	110	11	0	70-130	0	20
Naphthalene	97	86	6	70-130	12	20
n-Propylbenzene	120	11	0	70-130	9	20
1,2,3-Trichlorobenzene	100	94	4	70-130	6	20
1,2,4-Trichlorobenzene	100	94	4	70-130	6	20
1,3,5-Trimethylbenzene	110	11	0	70-130	0	20
1,2,4-Trimethylbenzene	110	11	0	70-130	0	20
Diethyl ether	97	91	1	70-130	6	20
Diisopropyl Ether	100	94	4	70-130	6	20
Ethyl-Tert-Butyl-Ether	100	87	7	70-130	14	20

Project Name: BIRD MACHINE

Lab Number:

L2166365

Project Number: 3651180087.0005

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab Associated sample(s): 01,03,05-10,12 Batch: WG1582368-3 WG1582368-4									
Tertiary-Amyl Methyl Ether	95		83		70-130	13		20	
1,4-Dioxane	100		76		70-130	27	Q	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	93	70-130
Toluene-d8	99	100	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	102	99	70-130

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2166365

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - MW-709S	Westborough Lab	Associated	I sample(s): 0°	1,03,05-10,12	QC Batch ID: WG18	582368-6 WG	1582368-7 QC Sar	nple: L	.2166365-06 Client ID:
Methylene chloride	ND	10	11	110	10	100	70-130	10	20
1,1-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
Chloroform	ND	10	11	110	10	100	70-130	10	20
Carbon tetrachloride	ND	10	12	120	11	110	70-130	9	20
1,2-Dichloropropane	ND	10	11	110	10	100	70-130	10	20
Dibromochloromethane	ND	10	10	100	9.7	97	70-130	3	20
1,1,2-Trichloroethane	ND	10	10	100	9.9	99	70-130	1	20
Tetrachloroethene	48	10	61	130	59	110	70-130	3	20
Chlorobenzene	ND	10	11	110	10	100	70-130	10	20
Trichlorofluoromethane	ND	10	12	120	12	120	70-130	0	20
1,2-Dichloroethane	ND	10	10	100	10	100	70-130	0	20
1,1,1-Trichloroethane	ND	10	12	120	11	110	70-130	9	20
Bromodichloromethane	ND	10	10	100	10	100	70-130	0	20
trans-1,3-Dichloropropene	ND	10	9.0	90	8.7	87	70-130	3	20
cis-1,3-Dichloropropene	ND	10	9.2	92	9.1	91	70-130	1	20
1,1-Dichloropropene	ND	10	11	110	11	110	70-130	0	20
Bromoform	ND	10	10	100	9.9	99	70-130	1	20
1,1,2,2-Tetrachloroethane	ND	10	10	100	9.9	99	70-130	1	20
Benzene	ND	10	11	110	11	110	70-130	0	20
Toluene	ND	10	11	110	10	100	70-130	10	20
Ethylbenzene	ND	10	11	110	11	110	70-130	0	20
Chloromethane	ND	10	11	110	11	110	70-130	0	20
Bromomethane	ND	10	10	100	11	110	70-130	10	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2166365

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - MW-709S	Westborough Lab	Associated	sample(s): 0	1,03,05-10,12	QC Batch ID: WG15	582368-6 WG	1582368-7 QC Sar	nple: L	2166365-06 Client ID:
Vinyl chloride	4.2	10	16	118	16	118	70-130	0	20
Chloroethane	ND	10	12	120	12	120	70-130	0	20
1,1-Dichloroethene	1.7	10	13	113	13	113	70-130	0	20
trans-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Trichloroethene	25	10	38	130	37	120	70-130	3	20
1,2-Dichlorobenzene	ND	10	10	100	10	100	70-130	0	20
1,3-Dichlorobenzene	ND	10	11	110	10	100	70-130	10	20
1,4-Dichlorobenzene	ND	10	10	100	10	100	70-130	0	20
Methyl tert butyl ether	ND	10	8.9	89	9.0	90	70-130	1	20
o/m-Xylene	ND	20	23	115	22	110	70-130	4	20
o-Xylene	ND	20	22	110	22	110	70-130	0	20
cis-1,2-Dichloroethene	8.5	10	19	105	19	105	70-130	0	20
Dibromomethane	ND	10	10	100	10	100	70-130	0	20
1,2,3-Trichloropropane	ND	10	9.8	98	9.7	97	70-130	1	20
Styrene	ND	20	22	110	21	105	70-130	5	20
Dichlorodifluoromethane	ND	10	12	120	12	120	70-130	0	20
Acetone	ND	10	10	100	9.8	98	70-130	2	20
Carbon disulfide	ND	10	12	120	12	120	70-130	0	20
Methyl ethyl ketone	ND	10	8.8	88	8.8	88	70-130	0	20
Methyl isobutyl ketone	ND	10	8.8	88	8.7	87	70-130	1	20
2-Hexanone	ND	10	8.3	83	8.2	82	70-130	1	20
Bromochloromethane	ND	10	10	100	10	100	70-130	0	20
Tetrahydrofuran	ND	10	8.0	80	8.7	87	70-130	8	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2166365

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - W MW-709S	estborough Lab	Associated	I sample(s): 01	,03,05-10,12	QC Batch ID: WG15	82368-6 WG	1582368-7 QC Sar	mple: L	2166365-06 Client ID:
2,2-Dichloropropane	ND	10	10	100	9.8	98	70-130	2	20
1,2-Dibromoethane	ND	10	9.9	99	9.6	96	70-130	3	20
1,3-Dichloropropane	ND	10	10	100	9.6	96	70-130	4	20
1,1,1,2-Tetrachloroethane	ND	10	10	100	9.9	99	70-130	1	20
Bromobenzene	ND	10	10	100	10	100	70-130	0	20
n-Butylbenzene	ND	10	12	120	11	110	70-130	9	20
sec-Butylbenzene	ND	10	12	120	11	110	70-130	9	20
ert-Butylbenzene	ND	10	11	110	11	110	70-130	0	20
o-Chlorotoluene	ND	10	11	110	11	110	70-130	0	20
o-Chlorotoluene	ND	10	11	110	11	110	70-130	0	20
1,2-Dibromo-3-chloropropane	ND	10	9.0	90	9.0	90	70-130	0	20
Hexachlorobutadiene	ND	10	10	100	10	100	70-130	0	20
sopropylbenzene	ND	10	11	110	11	110	70-130	0	20
p-Isopropyltoluene	ND	10	11	110	11	110	70-130	0	20
Naphthalene	ND	10	9.1	91	9.4	94	70-130	3	20
n-Propylbenzene	ND	10	11	110	11	110	70-130	0	20
1,2,3-Trichlorobenzene	ND	10	9.6	96	9.8	98	70-130	2	20
1,2,4-Trichlorobenzene	ND	10	9.4	94	9.5	95	70-130	1	20
1,3,5-Trimethylbenzene	ND	10	11	110	11	110	70-130	0	20
1,2,4-Trimethylbenzene	ND	10	11	110	10	100	70-130	10	20
Diethyl ether	ND	10	9.4	94	9.9	99	70-130	5	20
Diisopropyl Ether	ND	10	10	100	10	100	70-130	0	20
Ethyl-Tert-Butyl-Ether	ND	10	9.4	94	9.4	94	70-130	0	20

Project Name: BIRD MACHINE
Project Number: 3651180087.0005

Lab Number:

L2166365

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - We MW-709S	estborough Lab	Associated	sample(s): 01	1,03,05-10,12	QC Batch I	ID: WG15	582368-6 WG	1582368-7	7 QC Sar	mple: L2	2166365	-06 Client ID:
Tertiary-Amyl Methyl Ether	ND	10	9.2	92		8.9	89		70-130	3		20
1,4-Dioxane	ND	500	450	90		460	92		70-130	2		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	99	99	70-130
4-Bromofluorobenzene	94	96	70-130
Dibromofluoromethane	103	102	70-130
Toluene-d8	98	97	70-130

METALS

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

SAMPLE RESULTS

Lab ID:L2166365-02Date Collected:12/01/21 16:05Client ID:MW-706SDate Received:12/02/21Sample Location:WALPOLE, MAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Man	sfield Lab									
Arsenic, Dissolved	0.0045		mg/l	0.0005		1	12/14/21 14:2	22 12/15/21 14:03	EPA 3005A	97,6020B	SV

12/01/21 00:00

Date Collected:

Project Name: Lab Number: **BIRD MACHINE** L2166365 **Project Number: Report Date:** 3651180087.0005 12/16/21

SAMPLE RESULTS

Lab ID: L2166365-04

Client ID: DUP-1 Date Received:

12/02/21 Sample Location: WALPOLE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Man	sfield Lab									
Arsenic, Dissolved	0.0047		mg/l	0.0005		1	12/14/21 14:2	2 12/15/21 13:48	B EPA 3005A	97,6020B	SV

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

SAMPLE RESULTS

 Lab ID:
 L2166365-11
 Date Collected:
 12/02/21 14:44

 Client ID:
 LR-MW-122
 Date Received:
 12/02/21

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Man	sfield Lab									
Arsenic, Dissolved	0.0150		mg/l	0.0005		1	12/14/21 14:2	22 12/15/21 14:33	EPA 3005A	97,6020B	SV

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed **Units** MCP Dissolved Metals - Mansfield Lab for sample(s): 02,04,11 Batch: WG1582643-1 Arsenic, Dissolved ND mg/l 0.0005 12/15/21 13:25 97,6020B SV 12/14/21 14:22

Prep Information

Digestion Method: EPA 3005A

L2166365

Lab Control Sample Analysis Batch Quality Control

Project Name: BIRD MACHINE Project Number:

3651180087.0005

Lab Number:

Report Date: 12/16/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Mansfield Lab Associa	ted sample(s): 02,0	04,11	Batch: WG1582643	-2 WG1	582643-3				
Arsenic, Dissolved	102		102		80-120	0		20	

Project Name: BIRD MACHINE **Project Number:** 3651180087.0005

Lab Number:

L2166365

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Qual	RPD Limits
MCP Dissolved Metals - Mans MW-706S	sfield Lab Asso	ciated samp	ole(s): 02,04	,11 QC Batcl	n ID: W	G1582643-4	WG1582643	3-5 Q(C Sample:	L2166365-02	Client ID:
Arsenic, Dissolved	0.0045	0.12	0.1217	98		0.1213	97		75-125	0	20

Project Name: **BIRD MACHINE** Lab Number: L2166365 **Project Number:** 3651180087.0005

Report Date: 12/16/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L2166365-01A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-01B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-01C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2166365-02A1	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2166365-02A2	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2166365-03A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-03B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-03C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-04A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2166365-05A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-05B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-05C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06A1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06A2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06B1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06B2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06C1	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-06C2	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-07A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)

Lab Number: L2166365

Report Date: 12/16/21

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2166365-07B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-07C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-08A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-08B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-08C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-09A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-09B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-09C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-10A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-10B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-10C	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-11A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.4	Υ	Absent		MCP-AS-6020S-10(180)
L2166365-12A	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)
L2166365-12B	Vial HCl preserved	Α	NA		4.4	Υ	Absent		MCP-8260-21(14)

Project Name:

BIRD MACHINE

Project Number: 3651180087.0005

Project Name: Lab Number: BIRD MACHINE L2166365 **Project Number:** 3651180087.0005 **Report Date:** 12/16/21

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:BIRD MACHINELab Number:L2166365Project Number:3651180087.0005Report Date:12/16/21

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

141 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA and IIB, November 2021.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ALPHA	CHAIN OF	CUSTO	DY PA	GE_	OF 3	Date	e Rec'd	in Lab:	12/	42		ALPH	A Job #	:L2166365	
PART TIEST	320 Forbes Blvd	Project Informati	on			Re	port Inf	ormati	on - Da	ta Deliv	erables	Billin	g Inform	ation	
8 Walkup Drive Westboro, MA 015 Tel: 508-898-9220	581 Mansfield, MA 02048	Project Name: BIS	ED MA	CHIN	E	sé.	ADEx		EMAI			□ Sam	e as Clien	Linfo PO#	
Client Information		Project Location:	ALPOL	E, M	A	_		2000		_			_	uirements	
Client WOOD	E & IS	Project #: 3651	18008	7.00	05					tical Meth				CT RCP Analytical Metho P Inorganics)	ds
Address: 271 M	ILL ROAD	Project Manager. C	RAIG	KEAT	ING	DY	es 🗆 No	GW1 S	tandard			r Metals & I			
CHELMS FORT	CHELMS FORD , MA 01824 ALPHA Quote #						es O No ther Stat			0			Criteria_		
Phone: (978) 7		Turn-Around Tin	10				1	1	1 20/	12/2/	1	00	11	/// p5	
Additional Pro	oject Information:	Standard Date Due:	RUSH purpo	ordinad & pre-og	(aloyed)	ANALVO	Dista 2	PAH	RCRAS Den	C Ranges Only	ingeron	AS-620B	//	DISS ONLY	,
ORG # : GL CODE PN: 365	573000	PLEASE PUT THOM	HIS IN F	Ġ		/	ABN	METALS, CINCP 13 C	EPH: DRangus & Tan. DRCRAB DOC.	JRanges & Targets C	DISSON DEINGER	25	//,	Filtration Field Lab to do Preservation Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle Date	ection Time	Sample Matrix	Sampler Initials	VOC.	Shoc	METALS	EPH.	D'PCB	A		11	Sample Comments	1
663650	MW-7045	10/1/01	1510	GW	JEP	X									
602	MW-7065	10/1/21	1605	GW	SPM					H	X			RUN MS/MSD	
103	MW - 7145	10/2/01	1636	6W	JEP	V	H			Ħ					
	DUP-1	12/1/21	100	GW	SPM				11/11	††	X				Ť
ay.	MB-MW-374	12/2/21	1055		SPM	V	+	1	-	++	1				1
100	MW - 7095	12/2/21	1155		JEP	\Diamond	+			Ħ	+			RUN MS/MSD	-
10	DUP-2	12/2/21	_	6W	JEP	\Diamond		Ħ		Ħ					1
iA	MB-MW-362	12/2/21	1155	GW	SPM	X		11						1	
.00	MW-713D	12/2/21	1310	GW	SPM	X								1	1
1/0	MW-710M	12/2/21		GW	JEP	X									Ī
Container Type	Preservative			Conta	ainer Type	V			T] 4		P				
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃			- 1	eservative	В					C				1
G= Glass B= Bacteria cup C= Cube O= Other	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄	Relinquished By:			e/Time		Received By:				Da			mples submitted are subje	ct
Page 61 of 66	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ OI K= Zn Acetate	Munda		12/2	1724	A	M	- 1	NO	V	10/0	1011 /0	Alpha See n	's Terms and Conditions. everse side. NO: 01-01 (rev. 12-Mar-2012)	

Aleha	CHA	N OF CU	STO	OY PA	AGE 2	OF 2	Dat	e Rec'	d in Li	ab:	2	2	12	1	I	ALP	на.	Job #:	121	6636	5
6 Walkup Drive	320 Forbes Blvd	Project	Informati	ion		200	Re	port l	nform	ation	- Dat	a De	liver	able				forma	100000000000000000000000000000000000000		
Westboro, MA 01: Tel: 508-898-922	581 Mansfield, MA 020	48 Project N	lame: BI	RD M	ACHI	NE	130	ADEX		ø	EMAIL					□ Sar	ne as	Client	info P	D#:	
Client Information		Project L	ocation: V	VALPOI	LE, A	IA				_		_	_		ct In				irement		
Client: WooD	EZIS	Project #	3651	8008	7.00	005	SE Y	es 🗆 N	No MA	MCP trix Sp	Analyti ike Red	cal M guired	ethod on th	is his SI	OG?				CT RCP Inorgan	Analytical Met ics)	hods
Address: 27/ M	TILL ROAD	Project N	Manager: C	RAIG	KEAT	ING	DY	es 🗆 N	la GW	/1 Sta	ndards							with Ta			
CHELMS FOI	RD, MA OI	824 ALPHA	Quote #					es D N									Cri	teria			
Phone: (978) 72	27 - 4005	Turn-A	Around Tin	ne				1	1	1	2 / 2	1/2	1.	1	1	100	1	1	11	/ . P	5
Additional Property 30	oject Informatio	Date I	Due:	RUSH		quoest)	ANAIV	D 624 D 524.	D PAH	DMCP 14 CD	100/	D Ranges On	Ranges Only	JFine	As werpring	80209	/,	//		SAMPLE IN	Ö
GL CODE:		PLEATE 5 ON 1	NVOIC	THIS E.	INFO		/	C. C. Ac.	METALS: DMC.	METALS: CI RCRA	ORanges & Targ	D PCB Targer & Targer	TPH: DO PEST TABLES	Canant Only	CONTROL OF		/	//		Field Lab to do Preservation Lab to do	, 0
ALPHA Lab ID (Lab Use Only)	Samp	ole ID	Date	Time	Sample Matrix	Sampler Initials	Noc	SVOC	MET	MET,	Tan da	10	THAT	10	/	-/	/		Sa	mple Comme	- 6
66365.71	LR-MW	-122	ובוכוכו	1444	GW	SPM								V							1
(J	TRIP BLA	NK	11/24/21	1500	GW	MP	X		-	-											2
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCI			F		ainer Type	V &							9							
V= Viai Q= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bettie	C= HNO ₃ D= H ₂ SO ₄		Relinquished By: Date/Time 12/2 1724		Received By: Da				Date/	All samples submitted a Alpha's Terms and Conc See reverse side. FORM NO: 01-01 (mw. 12-Mar-)			ind Conditions e.								

Method Blank Summary Form 4 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2166365

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Lab Sample ID : WG1582368-5 Lab File ID : VQ211211A04

Instrument ID : QUIMBY

Matrix : WATER Analysis Date : 12/11/21 04:30

Client Sample No.	Lab Sample ID	Analysis Date
WG1582368-3LCS	WG1582368-3	12/11/21 03:03
WG1582368-4LCSD	WG1582368-4	12/11/21 03:32
MW-709S	L2166365-06	12/11/21 04:59
TRIP BLANK	L2166365-12	12/11/21 06:26
MW-704S	L2166365-01	12/11/21 06:55
MW-714S	L2166365-03	12/11/21 07:24
MB-MW-374	L2166365-05	12/11/21 07:54
DUP-2	L2166365-07	12/11/21 08:23
MB-MW-362	L2166365-08	12/11/21 08:52
MW-713D	L2166365-09	12/11/21 09:21
MW-710M	L2166365-10	12/11/21 09:50
MW-709SMS	WG1582368-6	12/11/21 13:43
MW-709SMSD	WG1582368-7	12/11/21 14:12

Calibration Verification Summary Form 7 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2166365

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Instrument ID : QUIMBY Calibration Date : 12/11/21 03:03

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	83	0
Dichlorodifluoromethane	0.678	0.766	-	-13	20	89	0
Chloromethane	0.843	0.883	-	-4.7	20	84	0
Vinyl chloride	0.72	0.788	-	-9.4	20	89	0
Bromomethane	0.304	0.333	-	-9.5	20	94	0
Chloroethane	0.377	0.431	-	-14.3	20	94	0
Trichlorofluoromethane	0.749	0.859	-	-14.7	20	92	0
Ethyl ether	0.203	0.197	-	3	20	86	0
1,1-Dichloroethene	0.434	0.487	-	-12.2	20	92	0
Carbon disulfide	1.288	1.453	-	-12.8	20	92	0
Freon-113	0.428	0.496	-	-15.9	20	92	0
lodomethane	0.589	0.555	-	5.8	20	81	0
Acrolein	0.042	0.039	-	7.1	20	84	0
Methylene chloride	0.499	0.536	-	-7.4	20	90	0
Acetone	0.069	0.07	-	-1.4	20	87	0
trans-1,2-Dichloroethene	0.524	0.575	-	-9.7	20	89	0
Methyl acetate	0.202	0.195	-	3.5	20	86	0
Methyl tert-butyl ether	0.913	0.864	-	5.4	20	84	0
tert-Butyl alcohol	0.018	0.015	-	16.7	20	76	0
Diisopropyl ether	1.842	1.946	-	-5.6	20	86	0
1,1-Dichloroethane	1.068	1.165	-	-9.1	20	88	0
Halothane	0.394	0.44	-	-11.7	20	90	0
Acrylonitrile	0.1	0.092	-	8	20	83	0
Ethyl tert-butyl ether	1.378	1.373	-	0.4	20	84	0
Vinyl acetate	0.943	0.944	-	-0.1	20	86	0
cis-1,2-Dichloroethene	0.569	0.611	-	-7.4	20	88	0
2,2-Dichloropropane	0.853	0.935	-	-9.6	20	88	0
Bromochloromethane	0.224	0.235	-	-4.9	20	87	0
Cyclohexane	1.066	1.186	-	-11.3	20	87	0
Chloroform	0.955	1.021	-	-6.9	20	91	0
Ethyl acetate	0.29	0.271	-	6.6	20	83	0
Carbon tetrachloride	0.722	0.825	-	-14.3	20	91	0
Tetrahydrofuran	0.11	0.095	-	13.6	20	82	0
Dibromofluoromethane	0.235	0.239	-	-1.7	20	83	0
1,1,1-Trichloroethane	0.836	0.934	-	-11.7	20	89	0
2-Butanone	0.116	0.104	-	10.3	20	83	0
1,1-Dichloropropene	0.766	0.817	-	-6.7	20	86	0
Benzene	2.25	2.527	-	-12.3	20	90	0
tert-Amyl methyl ether	1.031	0.98	-	4.9	20	81	0
1,2-Dichloroethane-d4	0.252	0.243	-	3.6	20	83	0
1,2-Dichloroethane	0.58	0.606	-	-4.5	20	88	0
Methyl cyclohexane	0.97	1.082	-	-11.5	20	86	0
Trichloroethene	0.559	0.608	-	-8.8	20	90	0
7.1011010001010		0.000					

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2166365

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Instrument ID : QUIMBY Calibration Date : 12/11/21 03:03

Channel :

Dibromomethane 0.224 0.228 - -1.8 20 1,2-Dichloropropane 0.571 0.6 - -5.1 20 2-Chloroethyl vinyl ether 0.197 0.181 - 8.1 20 Bromodichloromethane 0.661 0.698 - -5.6 20	86 87 80 87 91 86	0 0 0 0
2-Chloroethyl vinyl ether 0.197 0.181 - 8.1 20 Bromodichloromethane 0.661 0.6985.6 20	80 87 91 86	0
Bromodichloromethane 0.661 0.6985.6 20	87 91 86	0
	91 86	
	86	0
1,4-Dioxane 0.00207 0.00209*1 20		
cis-1,3-Dichloropropene 0.817 0.809 - 1 20		0
Chlorobenzene-d5 1 1 1 - 0 20	83	0
Toluene-d8 1.192 1.175 - 1.4 20	82	0
Toluene 1.516 1.658.8 20	89	0
4-Methyl-2-pentanone 0.107 0.093 - 13.1 20	79	0
Tetrachloroethene 0.63 0.6919.7 20	89	0
trans-1,3-Dichloropropene 10 9.194 - 8.1 20	86	0
Ethyl methacrylate 0.461 0.428 - 7.2 20	80	0
1,1,2-Trichloroethane 0.302 0.3061.3 20	87	0
Chlorodibromomethane 0.431 0.4340.7 20	87	0
1,3-Dichloropropane 0.66 0.6650.8 20	87	0
1,2-Dibromoethane 0.335 0.3422.1 20	87	0
2-Hexanone 0.196 0.178 - 9.2 20	82	0
Chlorobenzene 1.562 1.698.2 20	88	0
Ethylbenzene 2.858 3.14810.1 20	89	0
1,1,1,2-Tetrachloroethane 0.558 0.5875.2 20	89	0
p/m Xylene 1.055 1.21214.9 20	90	0
o Xylene 1.01 1.12911.8 20	90	0
Styrene 1.638 1.82811.6 20	89	0
1,4-Dichlorobenzene-d4 1 1 - 0 20	86	0
Bromoform 0.406 0.4183 20	89	0
Isopropylbenzene 4.869 5.46112.2 20	88	0
4-Bromofluorobenzene 0.879 0.851 - 3.2 20	83	0
Bromobenzene 1.082 1.1667.8 20	89	0
n-Propylbenzene 5.779 6.65515.2 20	90	0
1,4-Dichlorobutane 1.265 1.2962.5 20	87	0
1,1,2,2-Tetrachloroethane 0.652 0.6814.4 20	90	0
4-Ethyltoluene 4.798 5.46213.8 20	91	0
2-Chlorotoluene 3.894 4.3812.5 20	90	0
1,3,5-Trimethylbenzene 4.147 4.6913.1 20	90	0
1,2,3-Trichloropropane 0.558 0.5722.5 20	88	0
trans-1,4-Dichloro-2-buten 0.238 0.238 - 0 20	88	0
4-Chlorotoluene 3.437 3.88613.1 20	90	0
tert-Butylbenzene 3.474 3.99214.9 20	90	0
1,2,4-Trimethylbenzene 4.094 4.57111.7 20	91	0
sec-Butylbenzene 5.209 6.11817.5 20	90	0
p-Isopropyltoluene 4.575 5.25114.8 20	90	0
1,3-Dichlorobenzene 2.192 2.4411.3 20	93	0

^{*} Value outside of QC limits.

Calibration Verification Summary Form 7 Volatiles

Client : Wood Env & Infrastructure Solutions Lab Number : L2166365

Project Name : BIRD MACHINE Project Number : 3651180087.0005 Instrument ID : QUIMBY Calibration Date : 12/11/21 03:03

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,4-Dichlorobenzene	2.19	2.376	-	-8.5	20	91	0
p-Diethylbenzene	2.774	3.113	-	-12.2	20	89	0
n-Butylbenzene	4.039	4.79	-	-18.6	20	93	0
1,2-Dichlorobenzene	1.956	2.127	-	-8.7	20	92	0
1,2,4,5-Tetramethylbenzene	3.774	3.89	-	-3.1	20	86	0
1,2-Dibromo-3-chloropropan	0.102	0.095	-	6.9	20	84	0
1,3,5-Trichlorobenzene	1.762	1.848	-	-4.9	20	90	0
Hexachlorobutadiene	0.827	0.867	-	-4.8	20	90	0
1,2,4-Trichlorobenzene	1.457	1.462	-	-0.3	20	88	0
Naphthalene	2.211	2.146	-	2.9	20	85	0
1,2,3-Trichlorobenzene	1.222	1.258	-	-2.9	20	90	0

^{*} Value outside of QC limits.

