Class A-2 Response Action Outcome Statement and Phase V Completion Statement

Walpole Park South Walpole, Massachusetts RTN 4-3021915

Submitted to: Massachusetts Department of Environmental Protection Southeast Regional Office

February 4, 2011

complex world

CLEAR SOLUTIONS™

February 4, 2011

Massachusetts Department of Environmental Protection Southeast Regional Office Bureau of Waste Site Cleanup 20 Riverside Drive Lakeville, MA 02347

Re: Class A-2 Response Action Outcome Statement and Phase V Completion Statement Walpole Park South Walpole, Massachusetts RTN 4-3021915

Dear Sir/Madam:

In accordance with the requirements of 310 CMR 40.000, and on behalf of Walpole Park South Trust, Tetra Tech, Inc. d/b/a Tetra Tech Rizzo is submitting this Class A-2 Response Action Outcome (RAO) Statement and Phase V Completion Statement for the Disposal Site identified by Release Tracking Number (RTN) 4-3021915, Walpole Park South (the Site). A Method 2 Human Health and Environmental Risk Characterization was conducted to evaluate the risk posed by the contaminants of concern at the Site. The results of the risk characterization concluded that a condition of No Significant Risk has been achieved for the Disposal Site, and an Activity and Use Limitation (AUL) is not required.

This report has been prepared in accordance with the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000 and is subject to the Limitations and Conditions presented in Appendix A. The original DEP transmittal forms for this report (BWSC-104 and BWSC-108) were submitted electronically via eDEP.

Please contact us if you have any questions or comments.

Very truly yours,

mond C I-1

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:/Pre-FY2008/12700000/12700058/12700058-003/RAO Statement/RAO Statement_February 4 2011.doc

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

Table of Contents

1.0	Introdu	ction		1
2.0	Dispos	al Site Ir	of formation	1
	2.1	Dispos	al Site Description	1
	2.2	Release	e Description and Regulatory History	2
		2.2.1	Background and Site History	2
		2.2.2	Phase II – Comprehensive Site Assessment	4
		2.2.3	Phase III – Remedial Action Plan	5
		2.2.4	Phase IV – Remedy Implementation Plan	5
		2.2.5	Phase IV Completion Statement	6
		2.2.6	Phase V – Remedy Operation Status	б
3.0	Nature	and Ext	ent of Contamination	б
	3.1	Extent	of Groundwater Contamination	7
		3.1.1	Phase II Groundwater Analysis Results	7
		3.1.2	Phase IV and Phase V Groundwater Analysis Results	7
		3.1.3	Summary	8
4.0	Repres	entativer	ness Evaluation and Data Usability Assessment	9
	4.1	Repres	entativeness Evaluation	9
		4.1.1	Conceptual Site Model	9
		4.1.2	Use of Field/Screening Data	0
		4.1.3	Sampling Locations and Depths	0
		4.1.4	Sampling Density, Spatial Distribution, Collection Methods and Handling	0
		4.1.5	Temporal Distribution of Samples	1
		4.1.6	Completeness	1
		4.1.7	Inconsistency and Uncertainty	1
		4.1.8	Representativeness of the Data Set	1
	4.2	Data U	sability Assessment	1
		4.2.1	Analytical Data Usability Assessment	2
		4.2.2	Field Data Usability Assessment	3

	4.3	Conclusions	13
5.0	Method	2 Human Health and Environmental Risk Characterization	14
	5.1	Method Selection	14
	5.2	Soil and Groundwater Characterization	14
	5.3	Exposure Point Concentrations	15
6.0	Risk Cl	naracterization	15
		6.1.1 Risk of Harm to Health, Public Welfare and the Environment	16
		6.1.2 Risk of Harm to Public Safety	16
	6.2	Risk Characterization Conclusions	16
7.0	Feasibi	lity of Achieving Background	16
8.0	Relation	nship of RAO to Other Disposal Site RAO(s)	17
9.0	Phase V	/ Completion Statement	17
10.0	Public 1	Notifications	18
11.0	L.S.P. 0	Dpinion and Response Action Outcome Statement	18

List of Tables

- **Table 1**Groundwater Elevation Data April 2010
- Table 2Soil Analytical Data
- **Table 3**Groundwater Analytical Data

List of Figures

- Figure 1 Site Locus Plan
- Figure 2 Site Plan
- Figure 3 MassGIS Map

List of Appendices

- Appendix A LSP Statement of Limitations and Conditions
- Appendix B Data Usability Assessment Documentation
- Appendix C Public Notification Documentation
- Appendix D Soil Boring Logs and Monitoring Well Construction Diagrams
- Appendix E Laboratory Certificates of Analysis
- Appendix F Copy of DEP Transmittal Forms (BWSC-104 and BWSC-108)

1.0 Introduction

Tetra Tech, Inc. d/b/a Tetra Tech Rizzo (TTR) has prepared this Class A-2 Response Action Outcome (RAO) Statement and Phase V Completion Statement on behalf of Walpole Park South Trust for the Disposal Site identified by the Massachusetts Department of Environmental Protection under Release Tracking Number (RTN) 4-3021915 (the Site). The Site is known as Walpole Park South and is generally located at the northwest quadrant of the intersection of Providence Highway (Route 1) and Pine Street in Walpole, Massachusetts.

Multiple phases of subsurface investigations have been implemented at the Site, as described in the Phase II – Comprehensive Site Assessment (July 2006), Phase III – Remedial Action Plan (July 2006), Phase IV – Remedy Implementation Plan (July 2007), Phase IV Completion Report and Remedy Operation Status Submittal (July 2009) and Phase V – Remedy Operation Status Reports #1 and #2 submitted in February and August 2010, respectively. The Phase II report concluded that a condition of No Significant Risk did not exist in 2006 because of the presence of bromodichloromethane and chloroform in MW-2 and RIZ-3, chloroform in MW-3 and lead in MW-9. The installation of additional groundwater monitoring wells, and collection of six (6) rounds of groundwater samples since submission of the Phase II report generated additional groundwater data, indicative of current and recent conditions at the Site, which was used for preparation of a Method 2 risk characterization. Based on the results of the testing done since submission of the Phase II report and the conclusions of the risk characterization presented herein, a condition of No Significant Risk has been achieved at the Site and an Activity and Use Limitation (AUL) is not required to restrict or limit human exposures.

This report presents a description of the releases, a summary of historic and recent assessment of soil and groundwater conditions at the Site, a representativeness evaluation and data usability assessment, and a summary of the risk characterization.

This Class A-2 RAO Statement/Phase V Completion Statement applies to the entire Walpole Park South property and has been prepared in accordance with the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. This report is subject to the LSP Statement of Limitations and Conditions included in Appendix A. Copies of the DEP transmittal forms (BWSC-104 and BWSC-108) are included in Appendix F.

2.0 Disposal Site Information

In accordance with the MCP (310 CMR 40.1056) the following sections provide the general Disposal Site information relevant to this Class A-2 RAO and Phase V Completion Statement.

2.1 Disposal Site Description

The Site encompasses approximately 54 acres of land, located at the intersection of US Route 1 and Pine Street in Walpole, Massachusetts, as shown on Figure 1. The Site is divided into eight lots, seven of which contain buildings occupied by office and warehouse space that are leased to

commercial and/or light industrial businesses. The current configuration of the Site and the configuration of the individual building lots are depicted on Figure 2. This figure also depicts the approximate location of the property boundary and the limits of the area subject to this RAO Statement. An access road, Walpole Park South Drive, crosses the Site from Route 1 along the northeast boundary of Walpole Park South, to Pine Street on the southern boundary of the property. The buildings, driveways and parking areas cover the majority of the Site. The remainder of the property consists of landscaped areas adjacent to the buildings, wooded land and unpaved open areas. Prior to construction of the existing buildings the Site was vacant land, portions of which were reportedly used as a gravel pit. Development of the Site and building construction commenced in 1986.

The property is abutted to the north by vacant wooded land, to the west by single-family residences, to the south by Pine Street, across which are commercial properties including a truck repair and painting facility, and to the east by Route 1, across which are commercial and industrial properties. A Site Locus map is included as Figure 1, the Disposal Site boundaries and Site features are depicted on Figure 2 and the MassGIS Map is included as Figure 3.

The nearest surface water features to the Site are the Goldwater Farm Pond and School Meadow Brook. Goldwater Farm Pond is located approximately 650 feet south of the Site, and School Meadow Brook flows in a north and northwesterly direction downstream from the pond. The Site and surrounding area receive water from the Town of Walpole municipal water system, and are also serviced by public sanitary sewer service. No private drinking water wells are known or anticipated to exist within 500 ft of the Site. There is no known Protected Open Space within 500 ft of the Site. There are no known institutions (facilities with overnight housing such as a hospital, health care facility, orphanage, nursing home, convalescent home, educational facility, or correctional institution) located within 500 ft of the Site. Human receptors within 500 feet of the Disposal Site include workers at the Site and abutting properties, and residents of single family residences located west of the Site.

2.2 Release Description and Regulatory History

2.2.1 Background and Site History

Prior to construction of the existing buildings the Site was vacant land, portions of which were used as a gravel pit. Development of the Site and building construction commenced in 1986. Buildings have been constructed on the Site lots on an intermittent basis since 1986, and currently one lot remains undeveloped.

In compliance with requirements issued by the Walpole Board of Health (BOH), seven groundwater monitoring wells were installed at the Site in December 1986 by Carr Research Laboratory (Carr), and annual groundwater monitoring was performed on a limited number of the installed wells. In the late 1990's it was discovered that the reported results from the annual BOH sampling were occasionally exceeding the then current Massachusetts DEP reportable concentrations for GW-1 areas (RCGW-1 standards). Two RTNs were issued based on reported concentrations of compounds identified in groundwater at the Site.

RTN 3-19859 was issued in 2000 based on sampling performed in April 1999 and April 2000 when elevated concentrations of chloroform and bromodichloromethane were reported in groundwater samples collected from monitoring wells along the western boundary of the Site. A Class A-2 RAO Statement was submitted by Carr Research Laboratory on July 25, 2001, indicating that a Permanent Solution had been achieved for this RTN. The RAO indicated that the source of the bromodichloromethane was treatment chemicals (brominating tablets) used in a residential swimming pool located on an upgradient property. The source of the chloroform was identified as a reaction between chlorine used for swimming pool disinfection at the same residence, and septage from the septic tank and leach field at the residence.

RTN 3-21915 was issued in April 2002 when it was noted that the lead concentrations reported by the laboratory for groundwater samples collected from monitoring wells MW-3 and MW-6 were 59 micrograms per liter (μ g/l) and 23 μ g/l, respectively; concentrations which exceeded the then applicable MCP reportable concentration for groundwater category RCGW-1 (20 μ g/l). To further evaluate this condition confirmatory groundwater sampling was performed in May 2002. The results of this sampling indicated lead concentrations in samples collected from MW-3 and MW-6 of 46 μ g/l and 18 μ g/l, respectively. Based on these sampling results it was concluded that the detected lead concentrations represented a 120-day notification condition under the MCP. Therefore, a RNF was submitted to the DEP on July 2, 2002. In response to the notification, DEP issued a Notice of Responsibility (NOR) on August 15, 2002 and assigned RTN 3-21915 to the reported release. Between September 2000 and February 2006 additional groundwater monitoring wells were installed on several occasions to replace damaged wells and/or to provide sufficient coverage to assess groundwater conditions at the Site.

Based on historic monitoring results and the investigations implemented after submission of the RNF for RTN 3-21915, a Phase I – Initial Site Investigation (Phase I) report and Tier Classification was prepared by GHC and submitted to DEP in June 2004. The Phase I report concluded that the nature and extent of contamination does not exhibit a regular pattern, relative to both the locations of wells in which levels exceed MCP Method 1 GW-1 standards and the detection of compounds over time. Based on the Numerical Ranking Scoresheet (NRS) prepared by GHC, the Site was classified as a Tier IB Disposal Site. An evaluation performed as part of the Phase I investigation concluded that the identified Site conditions did not represent an Imminent Hazard, indicating that implementation of an Immediate Response Action was not necessary. In an internal memorandum dated July 9, 2004, the DEP Drinking Water Program (DWP) found that "the groundwater contamination levels at the site are all low, compared to most waste sites," and "heavy metals have fairly low mobility in groundwater." DEP concluded "the site does not appear to pose a threat to the Walpole municipal wells, because of the low groundwater contamination levels and the site to the wells."

2.2.2 Phase II – Comprehensive Site Assessment

Following the Phase I investigation Rizzo Associates, Inc. (now Tetra Tech Rizzo) was retained to perform the Phase II – Comprehensive Site Assessment. The purpose of the Phase II investigation was to obtain data to characterize the nature and extent of releases of oil and/or hazardous materials (OHM) at the Site, quantify the risks posed by such releases, and assess the need to conduct further remedial actions at the Site.

The Phase II Investigation included the installation of 7 soil borings and completion of 3 of the soil borings as groundwater monitoring wells; sampling and analysis of soil and groundwater from select soil borings and monitoring wells; surveying to determine the locations and relative elevations of each newly installed monitoring well casing; gauging of groundwater elevations to evaluate the groundwater flow direction and prepare a potentiometric surface map; and hydraulic conductivity testing of three groundwater monitoring wells.

Laboratory analysis of seven (7) soil samples collected during the Phase II investigation did not detect VOCs or total metals at concentrations exceeding the applicable MCP Method 1 standards. Laboratory analysis of 45 groundwater samples collected over four Phase II sampling rounds identified the presence of volatile organic compounds (VOCs) and/or dissolved metals at concentrations greater than one or more of the applicable MCP Method 1 standards in four (4) wells (MW-2, MW-3, MW-9 and RIZ-3), all located near the perimeter of the Site and downgradient from potential off-site sources of groundwater contamination. The compounds exceeding the MCP Method 1 standards included bromodichloromethane, chloroform and lead; however, no on-site source was been identified for these compounds and the dissolved metals concentration greater than the method detection limit in well MW-9 in only one of the four groundwater sampling events. Because the locations and concentrations of the identified compounds were not consistent throughout the four groundwater sampling events there is not a clearly definable plume for the identified dissolved metals compounds.

The presence of bromodichloromethane and/or chloroform along the eastern boundary of the Site, specifically in monitoring wells MW-2, MW-3 and RIZ-3, suggested impacts from releases of chlorinated or brominated water. Historically identified concentrations of bromodichloromethane and chloroform along the western boundary of the Site, associated with RTN 3-19859, were attributed to a release of swimming pool water from the property upgradient from well MW-6. The chlorinated and/or brominated water was expected to have been reacting with the naturally occurring organic material in the sandy soils of the Site to form bromodichloromethane and chloroform. A similar reaction was also likely taking place along the eastern boundary of the Site. Potential sources for the chlorinated or brominated water are leaks in municipal water pipes, fire hydrant flushing, or infiltrating rainwater mixed with roadway deicing chemicals such as calcium chloride or sodium chloride. Based on the decreasing concentrations of bromodichloromethane and chloroform moving downgradient across the Site from well MW-2 to well RIZ-3 to well MW-3, the source of chlorinated or brominated water was likely upgradient from well MW-2, in or on the southeastern side of Route 1.

Since the concentrations of several compounds in groundwater exceeded the MCP Method 1 GW-1 and GW-3 standards, and the Site is located within a Zone II for a public water supply, the risk characterization performed during the Phase II concluded that a condition of No Significant Risk to human health and the environment had not been achieved at the Site for groundwater at that time.

2.2.3 Phase III – Remedial Action Plan

The Phase III evaluation included a review of alternative methods for treatment of groundwater to evaluate whether there were one or more financially and technically feasible remedial alternatives that could be implemented to reduce risk at the Site to a level where a Permanent Solution could be achieved, and the selection of an alternative for implementation. For the evaluation of remedial alternatives feasible technologies were considered based on their ability to address the conditions identified on the Site.

An initial screening evaluated nine remedial alternatives based on their ability to target these contaminant characteristics and the subsurface conditions at the Site. Alternatives evaluated during the initial screening included groundwater pump-and-treat, in-situ chemical oxidation, permeable reactive barriers, bioremediation/bio-barrier, electrical resistance heating, surfactant flushing, air sparging and vapor extraction, soil excavation and disposal/treatment, and MNA. Of these alternatives, groundwater pump-and-treat and MNA were selected for detailed evaluation.

The detailed evaluation compared the two remedial alternatives noted above in greater detail, based on the following criteria: effectiveness, reliability, difficulty, costs, risks, benefits and time for implementation. Based on the detailed evaluation, MNA was selected as the remedy for the Site.

At the time the Phase III was submitted it was anticipated that while the Phase IV was not due until July 26, 2007, MNA monitoring would commence in September or October 2006. However, because of unwillingness on the part of the Town of Walpole to cooperate with the responsible party relative to the installation of additional monitoring wells needed to implement the MNA, installation of the additional monitoring wells and commencement of the MNA sampling program was delayed until December 2007.

2.2.4 Phase IV – Remedy Implementation Plan

Based on the results of the Phase III, the Phase IV report indicated that MNA would be implemented at the Site to further evaluate groundwater conditions over time. The Phase IV report also noted that although MNA was identified as the appropriate remedial action for the Site, it may be determined that implementation of one or more other technologies should be considered as additional data on groundwater conditions was developed. In that case, feasible remedial alternatives would be evaluated and a determination made of whether the approach should be modified or changed. If changes to the remedial program were determined to be applicable, supplemental Phase III and Phase IV reports would be prepared to discuss the selection (Phase III) and design (Phase IV) of the remedy or remedies. The selection of MNA was appropriate given the sporadic and intermittent detection of metals or VOCs at concentrations exceeding applicable MCP standards, the absence of an identifiable source(s) of the detected compounds, and the likely off-site origin of those compounds. The proposed design for MNA included the installation of additional monitoring wells upgradient from the Site, and the collection of groundwater samples from the new wells and selected existing on-site monitoring wells.

2.2.5 Phase IV Completion Statement

Installation of the three additional monitoring wells, near the upgradient (southern) property line for Walpole Park South, was completed in December 2007. Wells were installed at two locations on Walpole Park South property, adjacent to Pine Street, and at one location on MHD property within the "jug handle" intersection of Route 1 southbound and Pine Street. The drilling locations were accessed using an all-terrain vehicle mounted hollow stem auger drilling rig, equipped with the capability to drill into bedrock, since the locations on Walpole Park South property were not accessible to conventional truck-mounted drilling equipment.

Four rounds of groundwater samples were collected during Phase IV. Based on the results of those samplings and previous sampling results for the Site, it was concluded that the requirements for a Class A or Class B RAO had not been and that ongoing monitoring would be performed to further characterize groundwater conditions over time. Specifically, it was indicated in the Phase IV Completion Statement that groundwater samples would be collected at approximately six month intervals for analysis for VOCs and metals. Details of the well installation and groundwater sampling were detailed in the Phase IV Completion Statement dated July 28, 2009.

2.2.6 Phase V – Remedy Operation Status

Phase V groundwater sampling was performed at the Site in December 2009 and June 2010. The results of those sampling events were discussed in Phase V – Remedy Operation Status Reports #1 and #2, submitted in February and August 2010, respectively. The results of four rounds of Phase IV groundwater monitoring and two rounds of Phase V groundwater monitoring did not detect VOCs or metals at concentrations exceeding the applicable MCP RCGW-1 reportable concentrations or the MCP Method 1 GW-1, GW-2 (where applicable) or GW-3 standards. The results of six (6) rounds of groundwater sampling performed over the period from December 2007 through June 2010 are summarized on Table 3.

3.0 Nature and Extent of Contamination

Based on the extensive subsurface testing completed to date, it does not appear that there is a specific on-site source of the identified compounds, historic data does not indicate a clearly definable plume, and recent results have shown the few detected analytes at concentrations well below the lower of the MCP GW-1 or GW-3 standards. Therefore, since contamination is not currently present on the Site, characterization of the nature and extent of contamination is not

possible or required. However, historic groundwater monitoring results, including Phase II data and monitoring since submission of the Phase II report, are discussed in the following section to provide a general context for purposes of this RAO Statement/Phase V Completion Statement.

3.1 Extent of Groundwater Contamination

3.1.1 Phase II Groundwater Analysis Results

For the 45 groundwater samples that were submitted for laboratory analysis over four sampling rounds as a part of the Phase II investigation, VOCs and or dissolved metals concentrations greater than one or more of the applicable MCP Method 1 standards were reported in 4 wells. Compounds exceeding the MCP Method 1 standards included bromodichloromethane, chloroform and lead; however, no on-site source was identified for these compounds. Reported dissolved metals concentrations were inconsistent over the sampling events, and lead was identified at a concentration greater than the method detection limit in well MW-9 in only one of the four groundwater sampling events. Because the locations and concentrations of the identified compounds were not consistent throughout the four groundwater sampling events there is not a clearly definable dissolved metals plume.

The presence of bromodichloromethane and/or chloroform along the eastern boundary of the Site, specifically in monitoring wells MW-2, MW-3 and RIZ-3, suggested impacts from releases of chlorinated or brominated water. Historically identified concentrations of bromodichloromethane and chloroform along the western boundary of the Site, associated with RTN 3-19859, were attributed to a release of swimming pool water from the property upgradient from well MW-6. The chlorinated and/or brominated water was expected to have been reacting with the naturally occurring organic material in the sandy soils of the Site to form bromodichloromethane and chloroform. A similar reaction was also likely taking place along the eastern boundary of the Site. Potential sources for the chlorinated or brominated water are leaks in municipal water pipes, fire hydrant flushing, or infiltrating rainwater mixed with roadway deicing chemicals such as calcium chloride or sodium chloride. Based on the decreasing concentrations of bromodichloromethane and chloroform moving downgradient across the Site from well MW-2 to well RIZ-3 to well MW-3, the source of chlorinated or brominated water was likely upgradient from well MW-2, in or on the southeastern side of Route 1. We note that the Water Quality Reports for 2004 and 2005 issued by the Walpole Sewer & Water Department indicated the presence of bromodichloromethane and chloroform in samples collected from the municipal water system, and indicate that these compounds are a "by-product of drinking water disinfection." The generation of these compounds from chlorination of groundwater is a typical occurrence in this area of Massachusetts. Based on the data from monitoring wells MW-2, MW-3, RIZ-3 and RIZ-9, the Phase II report concluded that a condition of No Significant Risk did not exist in 2006.

3.1.2 Phase IV and Phase V Groundwater Analysis Results

Since submission of the Phase II report six (6) rounds of groundwater samples have been collected from monitoring wells MW-3, MW-9, RIZ-3, RIZ-8, RIZ-9 and RIZ-10. During that

same period four (4) rounds of samples were collected from MW-2; samples could not be collected from that well during the December 2007 and December 2009 sampling events because the well was covered with snow piles and could not be located. Two rounds of groundwater samples were also collected from monitoring well RIZ-8S; samples were not collected at a greater frequency from that well because during the other sampling events the well was dry or there was an insufficient saturated thickness to permit collection of water samples. These wells were selected to further evaluate conditions characterized during the Phase II investigations, to evaluate conditions near the upgradient property boundary, and to provide general coverage of the Site. Laboratory analysis of the samples collected during Phase IV and Phase V activities at the Site indicated low to non-detectable concentrations of the compounds which were the basis for the conclusions of the risk characterization in the Phase II report, and demonstrate that the historic elevated analysis results are likely related to off-site impacts that are intermittent and sporadic.

3.1.3 Summary

Historically, metals including antimony, arsenic, cadmium, chromium, and lead were identified at elevated concentrations at the Site. However, no metals have been reported at concentrations greater than the current Method 1 GW-1 standards since April 2006. In addition, when antimony was detected it was reported in multiple wells during a single groundwater sampling event but not reported at elevated concentrations in subsequent samplings of the same wells. The infrequent detections of antimony over the extensive sampling duration at the Site suggests that sampling and or laboratory error may account for the reported results, they may be naturally occurring impacts that vary in concentration over time, or related to intermittent off-site releases that migrate through the Site.

Lead is the only dissolved metal that has been identified in the groundwater at the Site on a somewhat regular basis; however, even lead concentrations have not been identified consistently enough to create plume maps or suggest an on-site source. Since April 1991, based on a combination of historical data and the groundwater sampling performed as a part of the Phase II investigation and post-Phase II monitoring, lead has been reported at concentrations greater than the current Method 1 GW-1 standard (15 μ g/L) three times in well MW-3 (22 to 59 μ g/L), twice in MW-9 (23 to 35 μ g/L) and once each in MW-2 (18 μ g/L), MW-6 (18 μ g/L) and MW-8 (26 μ g/L). Lead has not been reported above the lower of the MCP Method 1 GW-1 or GW-3 standard in the six sampling events performed since December 2007. Of these wells only well MW-3 is located on the downgradient side of the Site, indicating that an upgradient source or sources may be a significant contributor to the elevated lead concentrations on the Site.

None of the reported groundwater concentrations were detected at levels exceeding their respective Upper Concentration Limits (UCLs). Groundwater analytical data supporting this Class B-2 RAO is presented in Table 3. Laboratory certificates of analysis for groundwater samples collected as part of the MCP investigations since submission of the Phase II report are presented in Appendix E.

4.0 Representativeness Evaluation and Data Usability Assessment

A Representativeness Evaluation and Data Usability Assessment (REDUA) was conducted in support of this RAO Statement in accordance with 310 CMR 40.1056(2)(k) and DEP Policy #WSC-07-350, "*MCP Representativeness Evaluations and Data Usability Assessments*" dated September 19, 2007. The Representativeness Evaluation documents the adequacy of the spatial and temporal data sets used to support the RAO. The Data Usability Assessment documents that the data relied upon are scientifically valid and defensible, and of sufficient accuracy, precision and completeness to support the RAO.

4.1 Representativeness Evaluation

The Representativeness Evaluation demonstrates the adequacy of the cumulative data set to sufficiently characterize conditions at the Disposal Site and supports the Conceptual Site Model. The evaluation includes a description of the Conceptual Site Model, use of field screening data; sampling rationale; number, spatial distribution and sampling procedures; temporal distribution of samples; data gaps; inconsistency and uncertainty and representativeness information. The components of the Representativeness Evaluation in support of this RAO are discussed in the sections below.

4.1.1 Conceptual Site Model

The Disposal Site is currently occupied by an industrial park with multiple buildings occupied by office, warehouse and distribution operations, paved parking lots, roadways and open space/landscaped areas. Laboratory analysis results of historic groundwater samples identified low concentrations of metals and VOCs. The monitoring has not identified a source or definable plume. The locations at which positive analytical results have been reported, and the intermittent and sporadic nature of the results, demonstrate that the historic elevated analysis results are likely related to off-site sources.

The topography of the Site slopes from southwest to northeast, from upland areas on the south and southwest side of Pine Street to wetlands and School Meadow Brook located north and northeast of the Site. The depth to bedrock ranges from 12 feet to greater than 50 feet below the ground surface, and the unconsolidated deposits overlying bedrock consist primarily of fine to coarse sand with gravel and boulders, with interbedded finer layers observed in some borings. Groundwater is present in overburden throughout most of the Site, although in some areas along the south and southwest property boundary, where shallow bedrock was observed, the overburden saturated thickness is limited and some monitoring wells are observed to periodically be dry. Groundwater at the site originates from migration from off-site upgradient locations, and from infiltration of precipitation at the Site, and flows from southwest to northeast consistent with topography and the groundwater discharge areas to the north and northeast (School Meadow Brook and associated wetlands).

4.1.2 Use of Field/Screening Data

The selection of laboratory analytical methods for the samples collected during and since the Phase II field investigations, which commenced in 2005, was based on the results of earlier sampling which indicated that VOCs and metals were the compounds of concern at the Site. Field screening techniques, including PID headspace screening and field observations of soil characteristics and odors, were used in conjunction with existing analytical data to assist with the selection of soil samples for laboratory analysis.

4.1.3 Sampling Locations and Depths

Because of the absence of an identified release or source area, and the sporadic and intermittent presence of target compounds, sampling was conducted at locations throughout the Site to provide a representative characterization of subsurface conditions.

Our review indicates that the sampling locations and depths are sufficient to delineate Disposal Site boundaries, identify background COC concentrations, calculate EPCs, identify Hot Spots, identify exposure pathways and receptors, and assess human health and environmental risk at the Site.

4.1.4 Sampling Density, Spatial Distribution, Collection Methods and Handling

Soil and groundwater samples used to support this RAO were collected based on the layout and use of the Site and to provide general site-wide coverage. Soil samples included in the data set that supports this Class A-2 RAO Statement/Phase V Completion Statement were collected as discrete samples of subsurface materials. Groundwater samples were collected from monitoring wells screened across and below the water table using modified US Environmental Protection Agency (EPA) low flow sampling protocol which provides a representative sample of the static groundwater. Soil and groundwater samples collected to support this RAO were placed on ice and were transported to a Massachusetts certified laboratory under chains-of-custody.

The spatial distribution of the samples used for the calculation of EPCs used in the Risk Characterization is shown on Figure 2. A total of 30 soil samples, collected from 19 soil boring locations throughout the Site, were used to calculate the soil EPCs. Soil sample depths were selected based upon Field/Screening data, visual and olfactory observations and to provide general coverage of the fill materials encountered. A total of 48 groundwater samples collected from 9 monitoring wells during the period between December 2007 and June 2009 were used to calculate groundwater EPCs.

It is our opinion that the sampling density and spatial distribution of samples collected is consistent with the Conceptual Site Model and are representative of current Disposal Site conditions. We conclude that the sample collection and handling methods, sampling density and spatial distribution of soil and groundwater samples site-wide are sufficient to support the Class A-2 RAO Statement/Phase V Completion Statement.

4.1.5 Temporal Distribution of Samples

Soil and groundwater samples collected to support this RAO were collected at various times during the period from May 2003 to December 2007 for soil and December 2007 to June 2009 for groundwater. Therefore, we conclude that the temporal distribution of soil and groundwater sample collection is sufficient to demonstrate that no ongoing or uncontrolled source of contamination remains, that concentrations are stable and below the lower of the MCP GW-1 or GW-3 standards, and that EPCs accurately reflect Disposal Site concentrations.

4.1.6 Completeness

An extensive data set of 48 groundwater and 30 soil analytical data points has been used in support of this RAO. No data gaps were identified. Our review has concluded that the data set is sufficiently complete to support the RAO due to the extensive data set, sample density and distribution, and consistency with the Conceptual Site Model.

4.1.7 Inconsistency and Uncertainty

Based on the number of samples, historic site use, absence of on-site sources, and the consistency of the data set over multiple sampling events, no inconsistencies or uncertainty were identified in the data set.

4.1.8 Representativeness of the Data Set

Laboratory certificates of analysis for the groundwater samples collected since submission of the Phase II report are included in Appendix E and summarized on Table 3.

4.2 Data Usability Assessment

The Data Usability Assessment consists of an analytical and field component. The field component evaluates the sampling collection procedure to ensure a sample is representative of the sampling point upon delivery to the laboratory. The analytical component evaluates whether analytical data points are scientifically valid and defensible, and that a sufficient level of precision, accuracy, and sensitivity has been achieved. According to DEP Policy, the rigorousness of the Data Usability Assessment should be "proportional to the complexity of the project and the ramifications of risk-related decisions associated with the interpretation of the data."

As part of an effort to enhance the quality and consistency of analytical data supporting MCP submittals, the DEP has published the Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data (WSC-CAM-VII A). The original version of this document was released on May 21, 2004 and a revised version became effective on July 1, 2010. The purpose of the document is to provide quality assurance/quality control (QA/QC) guidance regarding the acquisition and reporting of analytical data, including regulatory performance

standards and agency expectations for MCP data submittal. To facilitate the application of the performance standards, the DEP has published a Compendium of Analytical Methods (CAM) which provides a series of recommended protocols for the acquisition, analyses, and reporting of analytical data in support of MCP decisions. Use of these procedures provides an LSP with "Presumptive Certainty" of data acceptance by the DEP.

Validation of the laboratory data included a review of field and laboratory quality control samples as applicable, including:

- CAM Compliance status and Presumptive Certainty of data;
- field sample custody, preservation, and analytical holding times;
- trip blanks to assess whether there may be false positive contamination during sample acquisition and/or storage;
- evaluation of surrogate recoveries to assess laboratory matrix effects and data accuracy;
- laboratory method blanks, surrogate spike recoveries (organics only), laboratory control sample (LCS) recoveries, MS/MSD recoveries, and laboratory sample duplicates and relative percent difference (RPD);
- laboratory quantitation (detection) limits; and
- miscellaneous observations.

A table summarizing the evaluation of analytical data points as part of the Data Usability Assessment is provided in Appendix B. The table lists the sample name, sample parameters, date sampled, sample matrix, CAM Compliance status and notes any qualifications or exceptions affecting data quality. The Data Usability Assessment provides justification as to why such analytical data are considered acceptable to support the RAO.

4.2.1 Analytical Data Usability Assessment

Soil data used in support of this RAO Statement were collected from May 2003 through December 2007, and groundwater data was collected from December 2007 to June 2009. The majority of the data is considered CAM Compliant, meaning that analytical results were (1) determined using an MCP Analytical Method detailed in CAM; (2) comply with method-specific QC requirements specified in CAM; (3) are reported with narration of method-specific performance standard deficiencies; and (4) are reported with required deliverables specified in CAM. The only data that is "non-CAM" is the June 2010 groundwater samples analyzed for VOCs by EPA Method 524. Specifically, the CAM method for VOCs is EPA 8260; however, Method 524 was used for groundwater VOC analysis to be consistent with the analytical method specified in the requirements for the annual groundwater monitoring performed at the Site in accordance with an agreement between the property owner and the Walpole Board of Health, and because Method 524 offers lower detection limits than Method 8260. CAM Compliant data have "Presumptive Certainty" and are of known accuracy, precision and sensitivity. Data that does not have "Presumptive Certainty" status may still be relied upon for purposes of the conclusions of the RAO Statement provided further evaluation of the data concludes that it is of suitable quality to meet the requirements of the MCP.

A discussion of analytical data issues as identified by the Laboratory Case Narrative is included in Appendix B. In general, CAM Compliant data were found to have adequate sensitivity in detection levels compared to project-specific objectives. In some instances, surrogate recoveries, relative percent differences, matrix spike or method blank samples suggested that results may be biased low or detected outside of quality control limits. Most of these situations involved COCs that were consistently non-detect in samples collected throughout the Site or COCs that were materially contributing to the level of risk at the Site. The "non-CAM" data discussed above was also found to have adequate sensitivity in detection levels compared to project specific objectives, and this data is of suitable quality for use in the Risk Characterization and as a basis for this RAO Statement/Phase V Completion Statement.

In conclusion, limitations, uncertainties and qualifications associated with analytical deficiencies do not affect the overall accuracy, precision or sensitivity of the analytical data to the extent that the validity of the data would be jeopardized. No data were rejected based on gross failure criteria.

4.2.2 Field Data Usability Assessment

Appropriate sampling and handling methods were employed in the field during the collection of sample media. Suitable sampling containers were used, samples were properly preserved, stored within acceptable temperature ranges, and hold times were met for all samples. Analytical data were found to be consistent with field observations and screening data.

The field component of the data usability assessment indicates that sample collection, handling and analytical procedures were followed in a manner that is consistent with QC protocols required by the MCP. Based on our overall evaluation of the data, field sampling and handling methods are not anticipated to impact the field accuracy and precision of the data to the extent that the validity of the data would be jeopardized.

4.3 Conclusions

A Representativeness Evaluation and Data Usability Assessment was conducted in accordance with 310 CMR 40.1056(2) (k). It is our opinion that the data set relied upon to support this RAO is representative with regard to the spatial and temporal distribution of sampling points; is scientifically valid and defensible; and is of sufficient accuracy, precision and completeness to support the RAO Statement.

5.0 Method 2 Human Health and Environmental Risk Characterization

The following section presents a Method 2 Risk Characterization to evaluate the potential risks posed to human health, public welfare, public safety and the environment by concentrations of compounds of concern (COCs) that have been detected in Site soils and groundwater. This Risk Characterization was conducted in conformance with the requirements of the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. The DEP guidance document for risk characterization, *Guidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan* (July 1995), has been followed in this analysis.

5.1 Method Selection

The MCP defines three methods for risk characterization: Methods 1, 2, and 3. We selected Method 2 as the appropriate method for characterization of risk because Method 1 standards have not been published by the DEP for isoproplybenzene and p-isopropyltoluene in soil. Method 2 allows for a relatively comprehensive, rapid evaluation of risk by comparison of Exposure Point Concentrations (EPCs) to standards published by DEP, and development of supplemental standards for compounds that do not have them or modification of standards with Site-specific information. Method 1 and 2 standards incorporate conservative assumptions for both contaminant transport and exposure, resulting in an overall conservative analysis. For the Site COCs that do not have Method 1 standards, we generated Method 2 standards for following the risk characterization guidance.

5.2 Soil and Groundwater Characterization

According to the criteria outlined in 310 CMR 40.0361, Site soils are classified as S-1 if the site is located within 500 feet of residentially zoned land, a school, playground, recreational area or park. Portions of the Site are located within 500 feet of residential property and, therefore, those areas are classified as category S-1.

The Massachusetts Geographic Information System (MassGIS) map of the Site area shows that the Site is located within a DEP Approved Zone II area and an EPA Sole Source Aquifer. According to the DEP, this means the Site is located within the "area of an aquifer which contributes water to a well under the most severe pumping and recharge conditions that can be realistically anticipated, as approved by the Department's Division of Water supply pursuant to 310 CMR 22.00." Thus, groundwater at the Site is classified as GW-1. Groundwater at the Site is also classified as GW-2 since there are occupied buildings on the Site and the depth to the water table is less than 15 feet. Additionally, groundwater at the Site is classified as GW-3, since, by definition, all groundwater in the Commonwealth of Massachusetts is considered GW-3. Therefore, we compare groundwater analytical results to GW-1, GW-2 and GW-3 standards.

5.3 Exposure Point Concentrations

EPCs represent the estimated concentrations of compounds of concern (COCs) to which a receptor may be exposed at the point of exposure. In keeping with DEP guidance, this characterization assumes that contaminant concentrations on the Site remain unchanged. Thus, we do not consider any mitigating factors resulting over the course of time (such as biodegradation). The risk characterization also assumes that for compounds detected at least once above detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit (MDL) for that sample.

Data used in this risk characterization include analytical results for soil samples collected from the Site from May 2003 to December 2007. We also used groundwater data collected at the Site in December 2007, April, May, November and December 2008, June and December 2009, and June 2010. Tables 2 and 3 present the soil and groundwater data used in the risk characterization, respectively. As shown in Table 3, thallium was detected above the laboratory method detection limit for the sample collected in November 2008 from monitoring well RIZ-10, located on MassDOT property upgradient from the Site, at a concentration of 11.6 µg/l. Since thallium had not been recently detected at the Site, it was believed that the positive result for thallium could be related to sampling or analytical error. Therefore, the well was re-sampled in December 2008 to evaluate whether the original thallium result was representative of conditions in the area of RIZ-10. Analysis of the second sample did not detect thallium, confirming that the original result was not representative of groundwater conditions in the area of RIZ-10. Based on this we consider the positive thallium result for the sample collected from RIZ-10 in November 2008 to be anomalous and therefore, thallium is not considered a COC at the Site and is not carried through the risk characterization. In this risk characterization, we evaluate risk from all other compounds that were detected in the Site soil and groundwater.

For groundwater exposures, data from each monitoring well were evaluated as separate exposure points as required by the guidance for a Method 2 risk characterization under the MCP. This approach provides a conservative, health-protective assessment of risk. For soil exposures, we estimated four separate sets of soil EPCs (EPC-1 through EPC-4) for the Site based on the depth at which the soil samples were collected. EPC-1 is estimated as the average concentrations of COCs detected in soil samples collected 0 to 3 feet below the ground surface (bgs). EPC-2 is estimated as the average concentrations of COCs in soil samples collected from 8 to 15bgs. EPC-4 is estimated as the average concentrations of COCs in soil samples collected from 15 to 50 feet bgs.

The soil and groundwater EPCs estimated for the Site are presented in Tables 2 and 3, respectively.

6.0 Risk Characterization

Under the MCP Method 2 risk characterization a condition of "No Significant Risk" (NSR) of harm to human health, public welfare and the environment shall exist if each of the EPCs are

equal to or less than their applicable Method 2 standards, and there are no risks to public safety. This section presents a comparison of risk conditions with reference standards.

We note that Tables 2 and 3 indicate Method 2 standards for many compounds. However, as noted previously, only two compounds detected in soil do not have MCP Method 1 standards and a Method 2 risk characterization was performed to develop comparison standards for those compounds. In accordance with DEP Risk Assessment Guidance all comparison standards presented in the Tables must be identified as Method 2 standards, but for all but two compounds the listed comparison standards are the MCP Method 1 standards.

6.1.1 Risk of Harm to Health, Public Welfare and the Environment

As noted above, two soil COCs do not have Method 1 standards (isopropylbenzene, pisopropyltoluene). These COCs are identified as tentatively identified compounds (TICs). The mass of these compounds is included in the mass of the aliphatic and aromatic hydrocarbons analyzed as extractable petroleum hydrocarbons (EPH). Therefore, the estimated Site soil EPCs of these compounds are compared to EPH (C₉-C₁₈ aliphatics) standards.

In Table 2, soil EPCs are compared with Method 2 S-1/GW-1, S-1/GW-2 and S-1/GW-3 standards. As shown in the table, the estimated soil EPCs are below the established Method 2 standards. In Table 3, groundwater EPCs are compared to Method 2 GW-1, GW-2 and GW-3 standards. The groundwater EPCs are below the applicable Method 2 standards. Therefore, we conclude that a condition of NSR to human health, the environment and public welfare exists at the Site for the conditions evaluated.

6.1.2 Risk of Harm to Public Safety

Threats to public safety include physical conditions and chemical agents that may cause bodily harm or injury (e.g. burns or fractures) as opposed to illness. There are no open pits, lagoons, drums, dangerous structures, or other apparent threats to public safety and no danger of fire or explosion from the conditions evaluated in this report. Thus, we find a condition of NSR of harm to public safety exists for the conditions observed at the Site.

6.2 Risk Characterization Conclusions

Based on the results of this Method 2 Risk Characterization, a condition of NSR of harm to human health, the environment, public welfare and public safety exists at the Site for the conditions evaluated. Since a condition of NSR exists without restriction of Site uses or activities the Site qualifies for a Class A-2 Response Action Outcome Statement.

7.0 Feasibility of Achieving Background

As part of this Response Action Outcome Statement the feasibility of reducing concentrations of OHM to achieve or approach background was evaluated in accordance with 310 CMR 40.0860

and the DEP Guidance Document "*Conducting Feasibility Evaluations Under the MCP*" (Policy #WSC-04-160) dated July 16, 2004. The evaluation criteria applicable to background feasibility include whether the benefits justify the costs or risks associated with the actions taken to achieve background; whether the technology needed to achieve or approach background exists; whether there are individuals with the necessary expertise to conduct the necessary remedial actions; or, if the selected alternative is off-site disposal, whether permitted facilities exist to accept the contaminated media. In accordance with DEP guidance, a finding of infeasibility based on any one of the criteria above is sufficient to conclude that achieving or approaching background is infeasible.

Extensive monitoring at the Site has not identified an on-site source of the compounds detected in groundwater or a definable contaminant plume. Further, the intermittent and sporadic nature of positive analytical results observed over many years indicates that COCs detected in soil and groundwater are either naturally occurring or related to off-site impacts that are migrating through the Site. Naturally-occurring compounds are by definition background that do not require further evaluation, and compounds related to off-site impacts migrating through the Site are beyond the control of the property owner. Therefore, achieving background is not feasible for the conditions identified at the Site.

8.0 Relationship of RAO to Other Disposal Site RAO(s)

310 CMR 40.1056(1) (d) requires a discussion of the relationship between this RAO and any other RAOs that have been filed for the Disposal Site. As discussed previously in this report, RTN 3-19859 was issued in 2000 based on sampling performed in April 1999 and April 2000 which detected elevated concentrations of chloroform and bromodichloromethane in groundwater samples collected near the western property boundary. A Class A-2 RAO Statement was submitted by Carr Research Laboratory on July 25, 2001, indicating that a Permanent Solution had been achieved for this RTN. The RAO indicated that the source of the bromodichloromethane was treatment chemicals (brominating tablets) used in a residential swimming pool located on an upgradient property. The source of the chloroform was identified as a reaction between chlorine used for swimming pool disinfection at the same residence and septage from the septic tank and leach field at the residence.

9.0 Phase V Completion Statement

As discussed herein, and documented in Phase V - ROS Status Reports submitted in February and August 2010, groundwater monitoring performed since submission of the Phase II report has demonstrated that groundwater conditions are at or approaching background, a condition of No Significant Risk has been achieved, an AUL is not needed to limit exposures or Site uses, and further monitoring is not required. Therefore, ROS is being terminated and conditions consistent with completion of the Phase V status of the Site have been achieved. The DEP Transmittal Form for Termination of ROS and Phase V Completion is in Appendix F.

10.0 Public Notifications

As stipulated by 310 CMR 40.1403(3) (f), and 40.1403(7), the following public involvement activities have been completed for the Site:

- Written notification to the parties identified on the Public Involvement Plan (PIP) mailing list was made at least 14 days in advance of the January 13, 2011 PIP meeting and advertisements were published in the December 23 and December 30, 2011 editions of *The Walpole Times* to notify the general public of the PIP meeting. Documentation of the mailing of notification letters to the PIP mailing list, and copies of the newspaper advertisements, are included in Appendix C.
- A copy of the draft RAO Statement/Phase V Completion Statement was put in the Walpole Park South public information repository in the Walpole Public Library, and an electronic copy of the report was put on the Town of Walpole web page (<u>www.walpole-ma.gov</u>).
- Written notification of the availability of this final report has been sent to the parties identified on the PIP mailing list. A copy of the notification letter is in Appendix C.
- A copy of this report will be put in the Walpole Park South public information repository in the Walpole Public Library, and an electronic copy of the report will be submitted for posting on the Town of Walpole web page (<u>www.walpole-ma.gov</u>).
- Letters have been sent notifying the Chief Municipal Officer and the Board of Health of the availability of this RAO Statement/Phase V Completion Statement. Copies of the letters are included in Appendix C.

No comments or questions regarding the draft report were received at the PIP Meeting or during the 20-day comment period ending on February 2, 2011. Therefore, no comments or responses to comments are included herein.

11.0 L.S.P. Opinion and Response Action Outcome Statement

Six rounds of groundwater sampling have been performed at the Site during the period from December 2007 to June 2009 to further evaluate groundwater conditions at monitoring wells where the Phase II report concluded a condition of Significant Risk existed n the July 26, 2006 Phase II report. Remedial actions at the Site were limited to Monitored Natural Attenuation as discussed in the Phase IV report. The results of the risk characterization concluded that a condition of "No Significant Risk" of harm to human health, the environment, public safety or public welfare exists for the current and anticipated future Site conditions and uses evaluated, and that an Activity and Use Limitation is not required to limit uses or exposures at the Site.

In accordance with the MCP, the category of an RAO achieved for a Disposal Site is established based upon the following factors: whether the site poses "No Significant Risk"; whether all

Substantial Hazards posed by the Disposal Site have been eliminated; whether remedial actions were undertaken to achieve a level of "No Significant Risk"; whether one or more AULs are required to maintain a level of "No Significant Risk"; whether concentrations of oil or hazardous materials (OHM) at the site exceed the Upper Concentration Limits (UCLs) in soil and/or groundwater; and whether remedial actions have achieved background in accordance with the MCP. A comparison of these criteria to the conditions evaluated for the Disposal Site indicates that the requirements for a Class A-2 RAO have been met since a Permanent Solution has been achieved, OHM concentrations have not been reduced to background, an AUL is not required, and OHM do not exceed applicable UCLs [310 CMR 40.1036(3)]. The L.S.P. Statement of Limitations and Conditions, and copies of the DEP Transmittal Forms for this Class A-2 RAO Statement/Phase V Completion Statement, are included in Appendix A and Appendix F, respectively.

Table 1. Groundwater Elevation Data - April 2010

Monitoring Well I.D.	Relative Well Casing Elevation (ft)	Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
MW-1	259.36	13.25	246.11
MW-2	240.90	4.49	236.41
MW-3	236.67	31.49	205.18
MW-4	229.74	32.35	197.39
MW-5S	238.03	13.90	224.13
MW-5D	236.36	11.87	224.49
MW-8	258.61	11.80	246.81
MW-9	256.08	22.72	233.36
GHC-1	241.95	4.73	237.22
GHC-2	258.51	12.37	246.14
GHC-3	252.40	13.51	238.89
GHC-5	236.94	32.26	204.68
GHC-6	236.01	1.35	234.66
RIZ-1	239.60	NM ⁶	NM ⁶
RIZ-2	234.94	4.85	230.09
RIZ-3	241.52	9.10	232.42
RIZ-8	265.52	20.17	245.35
RIZ-8S	265.38	19.61	245.77
RIZ-9	246.69	5.85	240.84
RIZ-10	No survey data	30.70	No survey data

Notes:

1. Rim elevations for MW and GHC series wells from the "Groundwater Sampling Report, Winter-Spring 2004" Report, August 10, 2004

2. Rim elevations for RIZ-1 through RIZ-3 from April 10, 2006 Rizzo Associates survey

3. Rim elevations for RIZ-8 and RIZ-8S surveyed relative to MW-1, MW-8 and GHC-2 on April 25, 2008.

4. Rim elevations for RIZ-9 surveyed relative to RIZ-1 on April 25, 2008

5. Depth to water measured during groundwater screening on April 6, 2010

6. RIZ-1 not gauged due to well being under water and water upwelling proximate to well.

Table 2	Positive Soil A	nalytical Data (n	ng/kg) - Walpole	Park South, Walp	ole, Massachuse	etts														
Location:	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.
Sample Name:	MW-3 (5ft)	MW-3 (50ft)	MW-1-S1-5	MW-1-S2-10	MW-1-S3-15	MW-1-S4-20	GHC-1 SS-1	GHC-1 SS-3	GHC-2 SS-1	GHC-2 SS-4	GHC-3 SS-1	GHC-3 SS-3	GHC-4 SS-1	GHC-4 SS-3	GHC-5 SS-1	GHC-5 SS-4	GHC-6 SS-1	GHC-6 SS-2	GHC-7 SS-1	GHC-7 SS-4
Sample Depth:	5'	50'	3'-5'	8'-10'	13'-15'	18'-20'	0-2'	10'-12'	0-2'	15'-17'	0-2'	10'-12'	0-2'	10'-12'	0-2'	15'-17'	0-2'	5'-7'	0-2'	15'-17'
Laboratory:			Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum
Laboratory I.D.:			AD93588	AD93589	AD93590	AD93591	SA07466-01	SA07466-03	SA07466-04	SA07466-06	SA07466-08	SA07466-10	SA07466-12	SA07466-14	SA07466-15	SA07466-18	SA07466-24	SA07466-25	SA07466-27	SA07466-30
Sample Date:	21-May-03	21-May-03	16-Jun-03	16-Jun-03	16-Jun-03	16-Jun-03	19-Jan-04													
Consultant:	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC
Acatona							-0.772	.0 792	-0.479	-0.610	-0.669	-0.409	-0.425	-0.600	-0 5 4 2	-0 702	-0.800	-0 509	-0.007	-0.910
Ethylbonzono							<0.773	<0.763	<0.476	<0.010	<0.000	<0.406	<0.435	<0.090	<0.543	<0.703	<0.600	<0.506	<0.007	<0.019
Isopropylbenzene							<0.0386	<0.0392	<0.0239	<0.0305	<0.0334	<0.0204	<0.0218	<0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
Isopropyltoluene, p-							< 0.0386	<0.0392	<0.0239	<0.0305	<0.0334	<0.0204	<0.0218	< 0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
Methylene chloride																				
(dichloromethane)							<0.386	< 0.392	<0.239	< 0.305	< 0.334	<0.204	<0.218	<0.345	<0.272	<0.352	<0.400	<0.254	<0.443	<0.409
Toluene							<0.0386	<0.0392	<0.0239	<0.0305	<0.0334	<0.0204	<0.0218	<0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
Arsenic, Total							3.9	4.1	<2.97	<2.89	<3.08	<2.91	<3.03	<3.47	<3.25	<2.94	<3.41	<3.47	<3.22	<3.37
Barium, Total							17.5	32.7	18.3	36.9	9.7	11.1	15.8	42.7	14.1	11.3	17.2	34.9	19.8	24.6
Beryllium, Total														. –						
Chromium, I otal	5.0	E 4	145	11.0	00.4	22.7	7.8	3.9	11.7	30.7	6.5	8.1	10.9	4.7	9.7	11.0	10.0	5.6	9.4	12.7
Nickel Total	5.2	5.4	14.5	11.0	90.1	22.1	0.0	4.4	<1.90	10.0	3.1	<1.45	<1.01	<4.02	<2.06	<1.47	4.2	5.0	0.7	<1.90
Vanadium																				
Zinc. Total																				
Mercury, Total							<0.208	<0.169	<0.166	<0.192	<0.191	<0.173	<0.186	<0.204	<0.174	<0.175	<0.176	<0.184	<0.186	<0.206
C ₉ -C ₁₂ Aliphatics							<1.93	<0.196	0.206	<0.153	0.321	<0.102	<0.109	<0.172	<0.136	<0.176	<0.2	<0.127	<0.222	<0.205
C ₉ -C ₁₀ Aromatics							<1.93	<0.196	0.747	<0.153	0.786	<0.102	<0.109	<0.172	<0.136	<0.176	<0.2	<0.127	<0.222	<0.205

Notes: For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

Bold print indicates chemicals with no Method 1 standards which are identified as Extractable Petroleum Hydrocarbons (EPH) components. Therefore, EPH (C9-C18 aliphatics) standards are applied.

*MADEP, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, *Technical Update*, May 2002. The maximum concentrations of all metals detected in Site soils with the exception of beryllium and chromium are less than "natural" soil background. The maximum concentrations of beryllium and chromium are detected in isolated soils (located >15 feet below the ground surface). NA = Not Available

Table 2	Positive Soil Ar	nalytical Data (m	g/kg) - Walpole	Park South, Wal	pole, Massachus	etts																	
Location:	Walpole Pk S.	Walpole Pk S.	Walpole Pk S	. Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.													
Sample Name:	RIZ-1	RIZ-2	RIZ-3	RIZ-4	RIZ-5	RIZ-6	RIZ-7	RIZ-8	RIZ-9	RIZ-10													
Sample Depth:	10'-12'	15'-17'	30'-32'	10'-12'	1'-3'	5'-7'	5'-7'	9'-11'	9'-11'	44'-46'													
Laboratory:	Con-test	Con-test	Con-test	Con-test	Con-test	Con-test	Con-test	Alpha	Alpha	Alpha	Number	Number	Minimum	Maximum	Average		Soil EPC	s (mg/kg)		Method 2	Method 2	Method 2	Concentration
Laboratory I.D.:	06B06407	06B06408	06B06409	06B06410	06B06411	06B06412	06B06413	L018223-01	L018223-02	L018223-03	of Times	of Times	Concentration	Concentration	Concentration	Soil	Soil	Soil	Soil	Standard	Standard	Standard	In Natural
Sample Date:	15-Feb-06	15-Feb-06	16-Feb-06	15-Feb-06	16-Feb-06	16-Feb-06	16-Feb-06	5-Dec-07	6-Dec-07	6-Dec-07	Detected	Sought	Detected	Detected	Detected	EPC-1	EPC-2	EPC-3	EPC-4	S-1/GW-1	S-1/GW-2	S-1/GW-3	Soil*
Consultant:	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR		-				0-3'	3'-7'	8'-15'	>15'				(mg/kg)
Acetone	< 0.059	< 0.054	< 0.055	<0.047	0.059	0.11	<0.075	0.0073	< 0.0065	<0.0055	3	24	0.01	0.11	0.20	0.29	0.13	0.14	0.19	6	50	400	NA
Ethylbenzene	< 0.001	< 0.002	< 0.002	< 0.001	0.001	< 0.002	< 0.002	< 0.00063	< 0.00065	<0.00055	1	24	0.001	0.001	0.010	0.01	0.00	0.01	0.01	40	500	500	NA
Isopropylbenzene	<0.001	< 0.002	< 0.002	<0.001	<0.001	0.002	<0.002	<0.00063	<0.00065	<0.00055	1	24	0.002	0.002	0.010	0.01	0.01	0.01	0.01	1,000	1,000	1,000	NA
Isopropyltoluene, p-	<0.001	<0.002	<0.002	<0.001	<0.001	0.015	<0.002	<0.00063	<0.00065	<0.00055	1	24	0.02	0.02	0.010	0.01	0.01	0.01	0.01	1,000	1,000	1,000	NA
Methylene chloride																							
(dichloromethane)	0.042	<0.011	0.030	< 0.009	<0.010	<0.011	<0.015	< 0.00063	< 0.0065	< 0.0055	2	24	0.03	0.04	0.10	0.14	0.05	0.07	0.10	0.1	20	200	NA
Toluene	<0.001	<0.002	<0.002	<0.001	<0.001	0.002	<0.002	<0.00094	<0.00097	<0.00082	1	24	0.002	0.002	0.010	0.01	0.01	0.01	0.01	30	500	500	NA
Arsenic. Total	<6.04	<5.67	<5.60	<5.35	<5.4	<6.55	<5.74	1.8	4.0	3.2	5	24	1.8	4.1	2.34	2.0	2.6	2.7	2.2	20	20	20	20
Barium, Total	29.0	42.1	16.9	18.5	16.4	23.9	21.8	18.0	32.0	37.0	24	24	9.7	42.7	23.4	16.1	26.9	26.3	28.1	1.000	1.000	1.000	50
Bervllium, Total	0.45	0.87	0.42	<0.27	< 0.27	0.37	0.36	0.40	0.83	0.88	8	10	0.36	0.88	0.49	0.14	0.37	0.45	0.72	100	100	100	0.4
Chromium, Total	14.4	6.4	8.2	6.7	6.5	10.7	5.6	8.3	6.2	6.1	24	24	3.9	30.7	9.2	9.1	7.28	7.5	12.5	30	30	30	30
Lead, Total	6.8	6.3	4.8	6.8	10.6	14.5	12.1	3.8	19.0	18.0	23	30	3.1	90.1	10.4	4.7	10.3	16.2	9.7	300	300	300	100
Nickel, Total	7.2	3.8	6.7	5.64	4.7	6.4	4.7	6.3	5.0	3.7	10	10	3.7	7.2	5.4	4.7	5.5	6.0	4.7	20	20	20	20
Vanadium	13.0	7.7	12.2	9.8	12.5	22.2	10.6	16.0	12.0	7.7	10	10	7.7	22.2	12.4	12.5	16.4	12.7	9.2	600	600	600	30
Zinc, Total	32.3	41.4	27.4	23.2	20.3	24.5	24.9	34.0	45.0	70.0	10	10	20.3	70.0	34.3	20.3	24.7	33.6	46.3	2,500	2,500	2,500	100
Mercury, Total	<0.011	<0.006	<0.005	<0.011	0.016	0.031	0.029	<0.08	<0.08	<0.09	3	24	0.02	0.03	0.06	0.08	0.05	0.05	0.06	20	20	20	0.3
C9-C12 Aliphatics											2	14	0.21	0.32	0.17	0.26	0.06	0.08	0.09	1,000	1,000	1,000	NA
C9-C10 Aromatics											2	14	0.75	0.79	0.24	0.40	0.06	0.08	0.09	100	100	100	NA

Notes: For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory

are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

Bold print indicates chemicals with no Method 1 standards which are identified as Extractable Petroleum Hydrocarbons (EPH) components. Therefore, EPH (C9-C18 aliphatics) standards are applied.

*MADEP, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, *Technical Update*, May 2002. The maximum concentrations of all metals detected in Site soils with the exception of beryllium and chromium are less than "natural" soil background. The maximum concentrations of beryllium and chromium are detected in isolated soils (located >15 feet below the ground surface). NA = Not Available

Table 3	23 Positive Groundwater Analytical Data (tgdL) - Walpole Park South, Walpole, Massachusetts																					
Location:				Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	
Sample Name:				MW-2-042808	MW-2-GW	MW-2	MW-2	MW-2	MW-3	MW-3-042808	MW-3-GW	MW-3	MW-3	MW-3	MW-3	MW-9	MW-9-051408	MW-9-GW	MW-9	MW-9	MW-9	MW-9
Laboratory:	Method 2	Method 2	Method 2	Alpha	Spectrum	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average
Laboratory I.D.:	Standard	Standard	Standard	L0806023-07	SA87371-05	L0907670-07	L1008812-03		L0718979-07	L0806023-03	SA87371-07	L0908197-01	L0918777-07	L1008812-01		L0718979-05	L0806993-02	SA87371-04	L0907670-04	L0918777-01	L1008812-08	
Sample Date:	GW-1	GW-2	GW-3	28-Apr-08	11-Nov-08	10-Jun-09	11-Jun-10		20-Dec-07	28-Apr-08	11-Nov-08	8-Jun-09	28-Dec-09	11-Jun-10		20-Dec-07	14-May-08	11-Nov-08	10-Jun-09	21-Dec-09	11-Jun-10	
Consultant:				TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR	
Chloroform Methyl tert-butyl ether Toluene	70 70 1,000	50 50,000 6,000	20,000 50,000 50,000	2.2 <0.50 <0.50	<1.0 <1.0 <1.0	1.0 <0.50 <0.50	1.2 <0.5 <0.5	1.2 0.3 0.3	<0.75 1.7 <0.75	<0.50 <0.50 <0.50	<1.0 <1.0 <1.0	<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.3 0.5 0.3	<0.75 5.1 <0.75	0.71 7.9 <0.50	2.2 2.7 <1.0	0.75 <0.50 <0.50	<0.5 0.77 <0.5	<0.5 <0.5 <0.5	0.8 2.8 0.3
Barium, Dissolved Lead, Dissolved Nickel, Dissolved Thallium, Dissolved Zinc, Dissolved	2,000 15 100 2 5,000	NA NA NA NA	50,000 10 200 400 900	31.0 <10.0 <25.0 <2.0 <50.0	129 <7.5 <5.0 <5.0 28.0	70 <10 <25 <2.0 <50	70 <10 <25 <2 <50	75.0 4.7 10.0 ND 25.8	15.2 <2.0 <2.0 <2.0 <20.0	10.0 <10.0 <25.0 <2.0 <50.0	11.4 8.8 <5.0 <5.0 34.5	21 <10 <25 <2.0 <50	<10 <10 <25 <2 <50	36 <10 <25 <2 <50	16.4 5.0 8.9 ND 24.1	7.0 <2.0 <2.0 <2.0 25.9	13.0 <10.0	18.6 <7.5 <5.0 <5.0 34.7	29 <10 <25 <2.0 <50	56 <10 <25 <2 52	64 <10 <25 <2 51	31.3 4.1 8.2 ND 37.7

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample. Concentrations entered as < indicate that they were below the detection limit. NA = Not Applicable; ND = Not Detected

Table 3				Positive Groun	dwater Analytical	l Data (µg/L) - Wa	Ipole Park South	, Walpole, Massa	chusetts																		
Location:				Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	
Sample Name:				RIZ-3	RIZ-3-051408	RIZ-3-GW	RIZ-3	RIZ-3	RIZ-3	RIZ-3	RIZ-8	RIZ-8-042808	RIZ-8-GW	RIZ-8	RIZ-8	RIZ-8	RIZ-8	RIZ-8S-042808	RIZ-8S	RIZ-8S	RIZ-9	RIZ-9-042808	RIZ-9-GW	RIZ-9	RIZ-9	RIZ-9	RIZ-9
Laboratory:	Method 2	Method 2	Method 2	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	ALPHA	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average
Laboratory I.D.:	Standard	Standard	Standard	L0718979-06	L0806993-01	SA87371-03	L0907670-06	L0918777-04	L1008812-02		L0718979-01	L0806023-04	SA87371-02	L0907670-02	L0918777-02	L1008812-07		L0806023-05	L0907670-03		L0718979-03	L0806023-02	SA87371-06	L0907670-08	L0918777-05	L1008812-05	1
Sample Date:	GW-1	GW-2	GW-3	20-Dec-07	14-May-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	21-Dec-09	11-Jun-10		28-Apr-08	10-Jun-09		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10	1
Consultant:				TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR	1
Chloroform Methyl tert-butyl ether Toluene	70 70 1,000	50 50,000 6,000	20,000 50,000 50,000	<0.75 <1.0 <0.75	<0.50 <0.50 <0.50	<1.0 <1.0 <1.0	<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.3 0.3 0.3	<0.75 <1.0 <0.75	<0.50 <0.50 <0.50	<1.0 <1.0 <1.0	<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <5	0.3 0.3 0.7	<0.50 <0.50 <0.50	<0.50 <0.50 0.71	0.3 0.3 0.5	<0.75 <1.0 <0.75	<0.50 <0.50 <0.50	<1.0 <1.0 <1.0	<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.3 0.3 0.3
Barium, Dissolved Lead, Dissolved Nickel, Dissolved Thallium, Dissolved Zinc, Dissolved	2,000 15 100 2 5,000	NA NA NA NA	50,000 10 200 400 900	25.6 <2.0 <2.0 <2.0 <20.0	44.0 <10.0	86.2 <7.5 <5.0 <5.0 21.0	13 <10 <25 <2.0 <50	177 <10 <25 <2 <50	161 <10 <25 <2 <50	84.5 4.1 8.2 ND 21.2	50.8 <2.0 4.8 <2.0 <20.0	25.0 <10.0 <25.0 <2.0 <50.0	27.6 <7.5 <5.0 <5.0 26.4	26 <10 <25 <2.0 <50	31 <10 <25 <2 <50	<10 <10 <25 <2 <50	27.6 4.1 9.6 ND 22.7	54.0 <10.0 <25.0 <2.0 <50.0	51 <10 <25 <2.0 <50	52.5 5.0 12.5 ND 25.0	15.3 <2.0 <2.0 <2.0 <20.0	21.0 <10.0 <25.0 <2.0 <50.0	14.8 <7.5 <5.0 <5.0 20.0	15 <10 <25 <2.0 <50	<10 <10 <25 <2 <50	<10 <10 <25 <2 <50	12.7 4.1 8.9 ND 21.7

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample. Concentrations entered as < indicate that they were below the detection limit. NA = Not Applicable; ND = Not Detected

Table 3				Positive Ground	water Analytical D	ata (µg/L) - Walpo	ole Park South, Wa	alpole, Massachu	setts										Groundwate	er Summary	Statistics (µg/L)	
Location:				Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S					
Sample Name:				RIZ-10	RIZ-10-042808	RIZ-10-GW	RIZ-10	RIZ-10	RIZ-10	RIZ-10	RIZ-10	GHC-6	GHC-6-042808	GHC-6-GW	GHC-6	GHC-6	GHC-6	GHC-6				
Laboratory:	Method 2	Method 2	Method 2	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Number	Number	Minimum	Maximum
Laboratory I.D.:	Standard	Standard	Standard	L0718979-02	L0806023-01	SA87371-01	L0818397-01	L0907670-01	L0918777-06	L1008812-06		L0718979-04	L0806023-06	SA87371-08	L0907670-05	L0918777-03	L1008812-04		of Times	of Times	Concentration	Concentration
Sample Date:	GW-1	GW-2	GW-3	19-Dec-07	28-Apr-08	11-Nov-08	11-Dec-08	10-Jun-09	28-Dec-09	11-Jun-10		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10		Detected	Sought	Detected	Detected
Consultant:				TTR	TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR					
Chloroform Methyl tert-butyl ether Toluene	70 70 1,000	50 50,000 6,000	20,000 50,000 50,000	<0.75 1.2 <0.75	<0.50 <0.50 0.73	<1.0 <1.0 <1.0		<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.3 0.5 0.4	<0.75 <1.0 <0.75	<0.50 <0.50 <0.50	<1.0 <1.0 <1.0	<0.50 <0.50 <0.50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	0.3 0.3 0.3	6 6 2	48 48 48	0.7 0.8 0.7	2.2 7.9 0.7
Barium, Dissolved Lead, Dissolved Nickel, Dissolved Thallium, Dissolved Zinc, Dissolved	2,000 15 100 2 5,000	NA NA NA NA NA	50,000 10 200 400 900	95.8 <2.0 7.9 <2.0 21.6	62.0 <10.0 <25.0 <2.0 <50.0	88.4 <7.5 <5.0 11.6 36.3	<2.0	148 <10 <25 <2 <50	99 <10 <25 <2 <50	107.0 <10 <25 <2 <50	100.0 4.1 10.1 ND* 26.3	45.9 <2.0 <2.0 <2.0 <20.0	59.0 <10.0 <25.0 <2.0 <50.0	36.8 <7.5 <5.0 <5.0 21.6	66 <10 <25 <2.0 <50	39 <10 <25 <2 <50	63 <10 <25 <2 <50	51.6 4.1 8.9 ND 21.9	44 1 2 1 12	48 48 46 47 46	7.0 8.8 4.8 11.6 20.0	177.0 8.8 7.9 11.6 52.0

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample. Concentrations entered as < indicate that they were below the detection limit. NA = Not Applicable; ND = Not Detected; * Thallium detected in RIZ-10 during the November 2008 round of sampling is considered anomalous and therefore, it is not considered to be a COC at the Site. See text for details.

P:\Pre-FY2008\12700000\12700058\Risk Assessment\RA_RAO_Jan 2011\12700058-Walpole Soil & GW data_2010.xlsGW_DATA-2010 RA

2/4/2011 2:58:51 PM - P:\INTRACOMPANY PROJECTS\12700058\CAD\SHEETFILES\12700058G-ESP01.DWG - LUNDQUIST, JOHN

Tect Walpole Park Project No.: 12700058.003 Fetra Route 1 and Pine Street Walpole, Massachusetts **TETRA TECH** 2/3/2011 Date: Designed By: R. Johnson Copyright: www.tetratech.com Site Plan with Figure One Grant Street **Monitoring Well Locations** 2 Framingham, MA 01701 PHONE: 508-903-2000 FAX: 508-903-2001

Appendix A

LSP Statement of Limitations and Conditions

Appendix A: Limitations

- 1. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the CLIENT. The work described in this report was carried out in accordance with the Terms and Conditions in our contract.
- 2. In preparing this report, ENGINEER has relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to ENGINEER at the time of the site assessment. Although there may have been some degree of overlap in the information provided by these various sources, ENGINEER did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. Observations were made of the Site and of structures on the Site as indicated within the report. Where access to portions of the Site or to structures on the Site was unavailable or limited, ENGINEER renders no opinion as to the presence of hazardous materials or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the Site or structure. In addition, ENGINEER renders no opinion as to the presence of hazardous material or oil, or the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a Site was obstructed by objects or coverings on or over these surfaces.
- 4. ENGINEER did not perform testing or analyses to determine the presence or concentration of asbestos at the Site or in the environment at the Site.
- 5. It is ENGINEER's understanding that the purpose of this report is to assess the physical characteristics of the subject Site with respect to the presence on the Site of hazardous material or oil. This stated purpose has been a significant factor in determining the scope and level of services provided for in the Agreement. Should the purpose for which the Report is to be used or the proposed use of the site(s) change, this Report is no longer valid and use of this Report by CLIENT or others without ENGINEER's review and written authorization shall be at the user's sole risk. Should ENGINEER be required to review the Report after its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as agreed between ENGINEER and the CLIENT.
- 6. The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 7. Any water level readings made in test pits, borings, and/or observation wells were made at the times and under the conditions stated on the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

- 8. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the site assessment. Where such analyses have been conducted by an outside laboratory, ENGINEER has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 9. The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. As indicated within the report, some of these data may be preliminary screening level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.
- 10. Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the Site.
- 11. This Report was prepared for the exclusive use of the CLIENT. No other party is entitled to rely on the conclusions, observations, specifications, or data contained therein without the express written consent of ENGINEER.
- 12. The observations and conclusions described in this Report are based solely on the Scope of Services provided pursuant to the Agreement. ENGINEER has not performed any additional observations, investigations, studies, or testing not specifically stated therein. ENGINEER shall not be liable for the existence of any condition, the discovery of which required the performance of services not authorized under the Agreement.
- 13. The passage of time may result in significant changes in technology, economic conditions, or site variations that would render the Report inaccurate. Accordingly, neither the CLIENT, nor any other party, shall rely on the information or conclusions contained in this Report after six months from its date of submission without the express written consent of ENGINEER. Reliance on the Report after such period of time shall be at the user's sole risk. Should ENGINEER be required to review the Report after six months from its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as may be agreed upon between ENGINEER and the CLIENT.
- 14. ENGINEER has endeavored to perform its services based upon engineering practices accepted at the time they were performed. ENGINEER makes no other representations, express or implied, regarding the information, data, analysis, calculations, and conclusions contained herein.
- 15. The services provided by ENGINEER do not include legal advice. Legal counsel should be consulted regarding interpretation of applicable and relevant federal, state, and local statutes and regulations and other legal matters.

Statement of Limitations and Conditions

Attachment to Opinion of Massachusetts Licensed Site Professional

Tetra Tech Rizzo

Name of Licensed Site Professional:	Raymond C. Johnson
LSP Registration Number:	6118
Date of Opinion:	February 3, 2011
Client to Whom Opinion was Rendered:	Walpole Park South Trust
Response Tracking No./Site No.:	4-3021915

This Statement of Limitations and Conditions is an integral part of, and is incorporated by reference into, the Opinion of Massachusetts Licensed Site Professional referenced above.

Limitations

1. Purpose of Opinion

- A. This Opinion is being provided in compliance with the requirements set forth in the Massachusetts Contingency Plan ("MCP"), 310 CMR 40.0000 et seq. Specifically, the LSP has prepared this Opinion at the request of the Client identified above as part of a Class A-2 Response Action Outcome Statement/Phase V Completion Statement. This stated purpose has been a significant factor in determining the scope and level of services required to render this Opinion.
- B. Should the purpose for which this Opinion is to be used change, this Opinion shall no longer be valid.

2. General

A. This Opinion was prepared for the sole and exclusive use of the Client, subject to the provisions of the MCP. No other party is entitled to rely in any way on the conclusions, observations, specifications, or data contained herein without the express written consent of Tetra Tech Rizzo and the LSP who rendered this opinion. Any use of this Opinion by anyone other than Client, or any use of this Opinion by Client or others for any purpose other than the stated purpose set forth above, without the LSP's review and the written authorization of Tetra Tech Rizzo and the LSP, shall be at the user's sole risk, and neither Tetra Tech Rizzo nor the LSP shall have any liability or responsibility therefor.

B. This Opinion was prepared pursuant to an Agreement between Tetra Tech Rizzo and the Client referenced above which defines the scope of work and sets out agreements regarding waivers of consequential damages, limitations on liability, and other important conditions and restrictions pursuant to which the Opinion is rendered. All uses of the Opinion are subject to and deemed acceptance of the conditions and restrictions contained in such Agreement. A copy of the Agreement or relevant excerpts from the Agreement will be made available upon requests to any authorized person seeking to use the Opinion.

3. Scope of Services

The observations and conclusions described in this Opinion are based solely on the Services provided pursuant to the Agreement with the Client and any approved additional services authorized by Client. Without limitation of any other applicable limitations or conditions, neither Tetra Tech Rizzo nor the LSP shall be liable for the existence of any condition, the discovery of which would have required the performance of services not authorized under the Agreement. To the best of the knowledge and belief of Tetra Tech Rizzo and the LSP who signed this Opinion, no inquiry of an attorney-at-law having being made, no laws, regulations, orders, permits or approvals are applicable to the response actions to which this opinion relates except, if and to the extent applicable, M.G.L. c. 21A, Sections 19-19J, 309 CMR, M.G.L. c. 21 E and 310 CMR 40.0000. Accordingly, this opinion is not intended to and does not address compliance with any other laws, regulation, orders, permits or approvals.

4. Changed Circumstances

The passage of time may result in changes in technology, economic conditions or regulatory standards, manifestations of latent conditions, or the occurrence of future events which would render this Opinion inaccurate or otherwise inapplicable. Neither Tetra Tech Rizzo nor the LSP shall be liable or responsible for the consequences of any such changed circumstances or conditions on the accuracy of this Opinion. In addition, under no circumstances shall the Client nor any other person or entity rely on the information or conclusions contained in this Opinion after six months from its date of submission without the express written consent of Tetra Tech Rizzo and the LSP. Reliance on the Opinion after such period of time shall be at the user's sole risk.

- **5.** Should Tetra Tech Rizzo or the LSP be required or requested to review or authorize others to use this Opinion after its date of submission, Tetra Tech Rizzo shall be entitled to additional compensation at then existing rates or such other terms as may be agreed upon between Tetra Tech Rizzo and the Client. Nothing herein contained shall be deemed to require Tetra Tech Rizzo or the LSP to undertake any such review or authorize others to use this Opinion.
- **6.** The conclusions stated in this Opinion are based upon:

- Visual inspection of existing physical conditions;
- Review and interpretation of site history and site usage information which was made available or obtained within the scope of work authorized by the Client;
- Information provided by the Client;
- Information and/or analyses for designated substances or parameters provided by an independent testing service or laboratory on a limited number of samples; and
- A limited number of subsurface explorations made on dates indicated in documentation supporting this Opinion;

The information upon which the LSP has relied and presumed accurate, and upon which the LSP is entitled to reasonably rely. The LSP was not authorized and did not attempt to independently verify the accuracy or completeness of information or materials received from the Client and/or from laboratories and other third parties during the performance of its services. Neither Tetra Tech Rizzo nor the LSP shall be liable for any condition, information, or conclusion, the discovery of which required information not available to the LSP or for independent investigation of information provided to the LSP by the Client and/or independent third parties.

7. This Opinion is rendered for the limited purpose stated above, and is not and should not be deemed to be an opinion concerning the compliance of any past or present owner or operator of the site with any federal, state or local law or regulation. No warranty or guarantee, whether express or implied, is made by this opinion, and any implied warranties of merchantability or fitness for a particular purpose are expressly disclaimed. Without limiting the generality of the foregoing, no warranty or guarantee is made that all contamination at a site or sources or contamination has been detected or identified, that any action or recommended action will achieve all of its objectives, or that this Opinion or any action as to which this Opinion relates will be upheld by any audit conducted by the DEP or any other party.

P:\26209\127-26209-09001\Docs\Reports\RAO\LSP_Appendix_A_August 2010.doc

Appendix B

Data Usability Assessment Documentation

Appendix B - Data Usability Ass	sessment Summary Table	-															
Sample ID or Series	Parameters	Date Sampled	Soil	Groudwater	Sediment Site Cho	Guaracterization	EPCs Hard	CAM Compution	Sample Room	Method C.	Followed? (YN) QAVOC	Achieved? (Y/N)	Contraction (YAN)	Field Duplicate OK	Relative Percent Disc	<mark>(RPD) ^{Ulfer}ence</mark> Appropriate <u>p</u>	Data Qualifications
RIZ-8	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		×	x	x		Y	Y	Y	Y	NA	A	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are 'difficult analytes'. None of these compounds are COCs at the Site. Metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-10	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		x	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCS at the Site. Netals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-9	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		x	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Netals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
GHC-6	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		x	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Netals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-9	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		x	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Netals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-3	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07		×	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-3	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	:	×	x	x		Y	Y	Y	Y	NA	Ą	NA		Y	LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptance critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCS at the Site. Netals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-10	VOCs by 524.2, MCP 14 Metals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-9	VOCs by 524.2, MCP 14 Metals	28-Apr-08		x	Х	х		Y	Y	Y	Y	Y	,	NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-3	VOCs by 524.2, MCP 14 Metals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-8	VOCs by 524.2, MCP 14 Metals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP
RIZ-8S	VOCs by 524.2, MCP 14 Motals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP
GHC-6	VOCs by 524.2, MCP 14 Motals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP
MW-2	VOCs by 524.2, MCP 14 Motals	28-Apr-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP
RIZ-10	VOCs by 624, MCP 14 Motals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	
RIZ-8	VOCs by 624, MCP 14 Motals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	
RIZ-3	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	
MW-9	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	
MW-2	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	
RIZ-9	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y		NA		Y	
MW-3	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	
GHC-6	VOCs by 624, MCP 14 Metals	11-Nov-08		x	х	х		Y	Y	Y	Y	Y	,	NA		Y	
RIZ-10	Thallium	11-Dec-08		x	x	х		Y	Y	Y	Y	NA	Ą	NA		Y	Sample received by laboratory beyoned recommended holding time for laboratory filtration. Not considered to be significant based on absence of trubidity or observed sediment in sample. Sample was diluted because of non-target analytes, but applicable MCP reporting limits were achieved.
RIZ-10	VOCs by 524.2, MCP 14 Metals	10-Jun-09		×	х	х		Y	Y	Y	Y	NA	Ą	NA		Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target analytes. The applicable MCP reporting limits were achieved.

Appendix B - Data Usability As	ssessment Summary Table																		
Sample ID or Series	Parameters	Date Sampled	Sou	GroudWater	Sediment	Sife Characterization	EPCs	Hazard Elimination	CAM Compliance	Sample Room	Merr.	Followed? (YNN)	QA/QC Required	Trip Blanks OK	Field Duplication	Relative D	Percent Differen	Appropriate Roc	Data Qualifications
RIZ-8	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		< X	:		Y	Y	١	Y	Y	NA	NA			Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
RIZ-8S	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		< X	:		Y	Y	١	Y	Y	NA	NA			Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target analytes. The applicable MCP reporting limits are achieved
MW-9	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		< X	:		Y	Y	١	Y	Y	NA	NA			Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target analytes. The applicable MCP reporting limits are achieved
GHC-6	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		< X	:		Y	Y	١	Y	Y	NA	NA			Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target analytis. The applicable MCP reporting limits are achieved.
RIZ-3	VOCs by 524.2, MCP 14 Motals	10-Jun-09		х		< X	:	,	Y	Y	١	Y	Y	NA	NA			Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target apalytes. The applicable MCP reparting limits upor achieved
MW-2	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		< x	:		Y	Y	١	Y	Y	NA	NA			Y	Analyses. The applicable wich reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target package.
RIZ-9	VOCs by 524.2, MCP 14	10-Jun-09		х		< x	:	,	Y	Y	١	Y	Y	NA	NA			Y	Analytes. The applicable wCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
MW-9	VOCs by 524.2, MCP 14	21-Dec-09		х		< x	:		Y	Y	١	Y	Y	Y	NA			Y	Analytes. The applicable wCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
RIZ-8	VOCs by 524.2, MCP 14	21-Dec-09		х		< x	:		Y	Y	١	Y	Y	Y	NA			Y	Analytes. The applicable wCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
GHC-6	VOCs by 524.2, MCP 14	28-Dec-09		х		< x	:	,	Y	Y	١	Y	Y	Y	NA			Y	analyses. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
RIZ-3	VOCs by 524.2, MCP 14	28-Dec-09		х		< x	:	,	Y	Y	١	Y	Y	Y	NA			Y	Analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
RIZ-9	VOCs by 524.2, MCP 14	28-Dec-09		х		< x	:	,	Y	Y	١	Y	Y	Y	NA			Y	Analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
RIZ-10	VOCs by 524.2, MCP 14	28-Dec-09		х		< x	:	,	Y	Y)	Y	Y	Y	NA			Y	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
MW-3	VOCs by 524.2, MCP 14	28-Dec-09		х		< x	:	,	Y	Y)	Y	Y	Y	NA			Y	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-target
MW-3	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		< x	:		N	Y	١	Y	Y	Y	NA			Y	anarytes. The applicable MLP reporting limits were achieved. CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260 (Data is "non-CAM" on "CAM non-comparing").
RIZ-3	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x	:		N	Y	١	r	Y	Y	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", non-compliant.")
MW-2	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x	:	1	N	Y	١	Y	Y	Y	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", non-compliant.")
GHC-6	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x	1	1	N	Y	١	Y	Y	Y	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-9	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x		1	N	Y	١	Y	Y	Υ	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-10	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x	t i	1	N	Y	١	r	Y	Y	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-8	VOCs by 524.2, MCP 14 Metals	11-Jun-10		x		< x	:	1	N	Y	١	Y	Y	Y	NA			Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
MW-9	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		< x	:	1	N	Y	١	r	Y	Y	NA			Υ	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lim than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
	VOCs by 8260 (High Range	÷	$\left \right $	+	+	_		-				-+					+		
RIZ-9 (9'-11')	and Low Range), MCP 14 Metals	6-Dec-07	х			< X	:		Y	Y	١	Y	Y	NA	NA			Y	within overall method allowances.
RIZ-10 (44'-46')	VOCs by 8260 (High Range and Low Range), MCP 14 Metals	e 6-Dec-07	х			< x	:		Y	Y	١	ŕ	Y	NA	NA			Y	LCS/LCSD % recoveries for Dichlorodifluorometh are below the individual acceptance critera for the compounds, but within overall method allowances.

Appendix C

Public Notification Documentation

TE TETRATECH

December 22, 2010

Mr. Thomas A. Driscoll 16 Old Farm Road Walpole, MA 02081

Re: Notification of Public Involvement Plan Meeting Walpole Park South Walpole, Massachusetts RTN 4-3021915

Dear Mr. Driscoll:

On behalf of Walpole Park South Trust, we are submitting this letter to you, the other petitioners, and others shown on the attached mailing list to inform you that a draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement will be submitted to the public information repository at the Walpole Public Library on or before January 13, 2011. An electronic version of the document will also be submitted to the Town of Walpole and will be available for access on-line at <u>www.walpole.ma.us</u>. Following placement of the draft report in the public information repository a 20-day public comment period will be held to allow the public to review and provide comments regarding the draft report.

We are also providing notification that a Public Involvement Plan (PIP) meeting has been scheduled to present the draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement and receive comments. The PIP meeting will be held on January 13, 2011 in the Main Meeting Room at Walpole Town Hall, 135 School Street, at 7:00 PM. A copy of the advertisement that has been sent to the Walpole Times for publication in the December 23, 2010 edition is attached to this letter.

Please direct any inquiries to the undersigned.

Very truly yours,

Roymonde Abus

P:\Pre-FY2008\1270000\12700058\PublicInvolvementPlan\PIP Meeting Notification Letter December 2010.doc

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

Attachments: Mailing List Advertisement

> One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

NOTICE OF A PUBLIC INVOLVEMENT PLAN MEETING

Walpole Park South Walpole Park South Road Walpole, Massachusetts RTN 3-21915

Walpole Park South received a petition from residents in Walpole requesting this location be designated as a Public Involvement Plan (PIP) site, in accordance with MGL c.21E § 14 (a). A PIP, dated April 6, 2005, was prepared for this Site indicating that meetings would be held to present major site documents to the public.

In accordance with the PIP, a public meeting will be held in the Main Meeting Room, Walpole Town Hall, 135 School Street, on January 13, 2011 to present the draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement and to provide an opportunity for public comment. Copies of the draft report will be available at the meeting, and will also be placed in the public information repository at the Walpole Public Library on or before January 13, 2011.The public comment period for the RAO Statement will run through February 2, 2011.

Any questions regarding this meeting or the Public Involvement Plan should be directed to Raymond C. Johnson, P.G., L.S.P., Senior Vice President, Tetra Tech, Inc., 1 Grant Street, Framingham, MA 01701-9005, at 508-903-2000.

Public Involvement Plan Mailing List Walpole Park South Walpole, Massachusetts RTN 4-3021915

PIP Petitioners:

Thomas A. Driscoll 16 Old Farm Road Walpole, MA 02081

Daniel Driscoll 16 Old Farm Road Walpole, MA 02081

Deborah Driscoll 16 Old Farm Road Walpole, MA 02081

Dainora Kupcinskas 19 Old Farm Road Walpole, MA 02081

Aidas Kupcinskas 19 Old Farm Road Walpole, MA 02081

Brian Backner 21 Briarwood Lane Walpole, MA 02081

Mark O'Malia 20 Old Farm Road Walpole, MA 02081

Shaunda O'Malia 20 Old Farm Road Walpole, MA 02081

Margaret G. Trudell 15 Old Farm Road Walpole, MA 02081

Mark E. Trudell 15 Old Farm Road Walpole, MA 02081 Preston J. O'Toole 12 Old Farm Road Walpole, MA 02081

Lesley Frankel 4 Old Farm Road Walpole, MA 02081

Richard B. McGrath 3 Old Farm Road Walpole, MA 02081

Barbara J. McGrath 3 Old Farm Road Walpole, MA 02081

Robert J. DeSavage 11 Old Farm Road Walpole, MA 02081

Phil Gouthro 8 Old Farm Road Walpole, MA 02081

Other Recipients:

Representative Louis L. Kafka Massachusetts House of Representatives State House, Room 237 Boston, MA 02133

Ms. Ellie Grillo Commonwealth of Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup Southeast Regional Office 20 Riverside Drive Lakeville, MA 02347

Ms. Robin Chapell, Health Director Board of Health Town of Walpole 135 School Street Walpole, MA 02081 Mr. Michael E. Boynton, Town Administrator Town of Walpole 135 School Street Walpole, MA 02081

Ms. Nancy Mackenzie, Chairman Board of Selectman Town of Walpole 135 School Street Walpole, MA 02081

Mr. Kevin Muti, Chairman Board of Sewer and Water Commissioners Town of Walpole 135 School Street Walpole, MA 02081 4

POSTAL SERVICE®			• • • • • • •	<u>Home Help Sig</u>
			Track	& Confirm FAQ
Track & Confir	'n		¢	
Search Results				
Label/Receipt Number Service(s): Certified Status: Delivered	ər: 7008 1300 0002 4578 24 Mail [™]	76	Track & Confirm Enter Label/Recei	pt Number.
Your item was deliver MA 02081.	red at 12:25 pm on January	14, 2011 in WALPOLE,		(Go>
Detailed Results:				
 Delivered, January Notice Left, Decen Arrival at Unit, Dec 	/ 14, 2011, 12:25 pm, WAL nber 24, 2010, 4:02 pm, WA cember 24, 2010, 8:48 am,	POLE, MA 02081 ALPOLE, MA 02081 WALPOLE, MA 02081		
Notification Options				
Track & Confirm by	email			
<u>> Map Customer Service</u> pyright© 2010 USPS. All Rights F	Forms <u>Gov't Services</u> Reserved. No FEAR Act EEO	<u>Careers Privacy Policy</u> Data FOIA 💽 🖏	Terms of Use Busine	ess Customer Gateway hetgesider torretu, httermägi hänger ty
SENDER: COI	MPLETE THIS SECTION	COMPLETE THIS S	ECTION ON DELIVERY	
4			The second s	
 Complete fle Item 4 if Res Print your na so that we c Attach this c or on the from 	ins 1, 2, and 3. Also comple- tricted Delivery is desired. Ime and address on the revel an return the card to you. ard to the back of the mailpl nt if space permits.	te A. Signature rse <u>X.//bull II</u> ece. <u>H.a.(A.S.</u> D. Is delivery addres	inted Name) C. D. Micol Name) C. D. Micol Name) Statistication from Item 17	Agent Addressee Addressee Addressee Addressee Ate of Delivery Addresse Addressee Addr
 Complete fle item 4 if Res Print your na so that we c Attach this c or on the fro Article Addres 	ims 1, 2, and 3. Also comple- tricted Delivery is desired, ane and address on the reve an return the card to you. and to the back of the mailpl int if space permits. sed to:	te A. Signaturs rse B. Received by (Pr ece, Harden A. Signaturs D. Is delivery addre- it YES, enter de	sa different from item 1? Invery address below:	Agent Addressee Addressee Addressee Ate of belivery Addresse Ate of belivery Addressee Addressee Ate of belivery Addressee Addressee Ate of belivery Addressee Addresse
 Complete the tem 4 if Bes Print your na so that we of Attach this corr on the from Article Address Thomass 16 Old H Walpole 	A. Driscoll Farm Road A. 02081	te A. Signature rse B. Received by (Pr Harder D. Is delivery addre if YES, enter de 3. Service Type EL Certified Ma	Interview Mall	Addressee ate or/beilvyfy Yes No No
Complete field from 4 if Res Print your ne so that we c Attach this c or on the from 1. Article Address Thomass 16 Old H Walpole 2. Article Numb	A. Driscoll Farm Road , MA. 02081	A Signatures rse ece, B. Received by (Pr Market A D. Is delivery addres if YES, enter de 3. Service Type S.Cottified Ma Registered Insured Mall 4. Restricted Deliver 08 1300 0002 43	inted Name) C. D. inted Name) C. D. Ss different from Item 1? ivery address below: Express Mall Return Receipt fr C. D. Very? (Extra Fee) 24.76	Agent Addressee ate of Delivery Yes No

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

1/19/2011

Page 1 of 1

			Track 8	Confirm
rack & Confirm				
Search Results				
Label/Receipt Number: 7008 130 Service(s): Certified Mail[™] Status: Delivered	0 0002 4578 2452		Track & Confirm Enter Label/Receip	t Number.
Your item was delivered at 12:25 MA 02081.	pm on January 14, 2011 in	WALPOLE,		(
Detailed Results: • Delivered, January 14, 2011, • Notice Left, December 24, 20 • Arrival at Unit, December 24,	12:25 pm, WALPOLE, MA 10, 4:01 pm, W&LPOLE, M 2010, 8:48 am, WALPOLE	02081 A 02081 , MA 02081	•	
Notification Options				
Track & Confirm by email				
Get current event information or the second se	updates for your item sent to	o you or others by er	nail. (Ga>)	
Customer Service Forms	Gov't Services Careers	Privacy Policy Te	rms of Use Busines	ss Customer Gatew
Customer Service Forms	Gov't Services Careers No FEAR Act EEO Data FO	Privacy Policy Te	rms of Use Busines Reported and Report Route Report	es Customer Gatew. huge zite firmts. i Samilia ji kingr iy
Customer Service Forms	Gov't Services Careers	Privacy Policy Te	ms of Use Busines	<u>ss Customer Gatew</u> httgazika (ismene, i finameding hänge by
<u>Customer Service</u> <u>Forms</u> ht© 2010 USPS. All Rights Reserved.	<u>Gov't Services Careers</u> No FEAR Act EEO Data FO	Privacy Policy Te	rms of Use Busines heparature ang Ser Truck 💭	ss Customer Gatew hu:go:do: tionera, l taa moling harge by
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC	Gov't Services Careers No FEAR Act EEO Data FO CTION	Privacy Policy Te	ms of Use Busines heparatari weighter Now	ss Customer Gatew. husges der Körnere. Hannelligt härge by
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC © Complete items 1, 2, and 8. Also item 4. If Restricted Delivery is c Print your name and address of	Gov't Services Careers No FEAR Act EEO Data FO CTION COMPL oc complete estred, the reverse A Sign	Privacy Policy Te	Image: Second	es Customer Gatew https://www.sonorm. https://www.sonorm. https://www.sonorm. tessee
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC © Complete frems 1, 2, and 3. Als item 4 if Restricted Delivery is conso that we can return the card a Attach this card to the back of	Gov't Services Careers No FEAR Act EEO Data FO CT/ON COMPL o complete lesired. A Stor X n'the reverse o you. K the mallplece, X	Privacy Policy Te	Image Busines https://www.image Busines https://www.image Image N DELIVERY Image Muture Image Mu	essee
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC © Complete items 1, 2, and 3. Als item 4 if Restricted Delivery is conso that we can return the card 1. Print your name and address or so that we can return the card 1. Attach this card to the back of or on the front if space permits 1. Article Addressed to:	Gov't Services Careers No FEAR Act EEO Data FO Or TION COMPL or complete lesired. Ar Stor X the reverse to you. Ar Stor X the mailplece, B. Bool X D. Is de if Y	Privacy Policy Te	Image Business Image Image Image Image <	es Customer Gatew http://www. i han meling herer hy i han meling essee
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC © Complete items 1, 2, and 3. Also item 4 if Restricted Delivery is c Print your name and address or so that we can return the card 1 Attach this card to the back of or on the front if space permits 1. Article Addressed to:	Gov't Services Careers No FEAR Act EEO Data FO Orion COMPL o complete lestred. A - Ster h the reverse o you: K he maliplece; D is de if YE	Privacy Policy Te	Image: of Use Busines Image: series Image: series Image: series Image:	as Customer Gatew http://www. http://www. http://www. sssee
Customer Service Forms htt© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC • Complete items 1, 2, and 3. Also item, 4 if Restricted Delivery is deress of so that we can return the card and address of so that we can return the card and address of or on the front if space permits • Attach this card to the back of or on the front if space permits • Article Addressed to: Deborah Driscoll	Gov't Services Careers No FEAR Act EEO Data FO Original Complete estred. In the reverse of you: the maliplece, COMPL A: Stor X B: Recent D: Is de if YE	Privacy Policy Te	Image Busines Image Image Image	ss Customer Gatew http://www. i haa meiling: harge by tessee
Customer Service Forms the 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC Complete frems 1, 2, and 3. Als frem 4 if Restricted Delivery is c Print your name and address or so that we can return the card a Attach this card to the back of or on the front if space permits 1. Article Addressed to: Deborah Driscoll 16 Old Farm Road Walpole, MA 02081	Gov't Services Careers No FEAR Act EEO Data FO Dr/ION COMPL o complete Stor estred. *** The reverse ** o' you: ** the maliplece, *** D is de if Yes 1 Sen	Privacy Policy Te	Image Business Margin Bart Brock Image Margin Bart Bart Brock Image Margin Bart Bart Bart Bart Bart Bart Bart Bart	ss Customer Gatew herge ader Komens, i Asa melligt hänge by casses hityony
Customer Service Forms ht© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC © Complete items 1, 2, and 3. Als item 4 if Restricted Delivery is conso that we can return the card 10 Atlach this card to the back of or on the front if space permits 1. Article Addressed to: Deborah Driscoll 16 Old Farm Road Walpole, MA. 02081	Gov't Services Careers No FEAR Act EEO Data FO CTION COMPL or complete lesired. A stor X 1 the reverse or you the mailplece, B. Rec D. is de if YE 3. Sen Q. I. Sen	Privacy Policy Te	Image Business height definest Image height definest	ndise
Customer Service Forms the 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS SEC Complete items 1, 2, and 3. Als item 4 if Restricted Delivery is c Print your name and address or so that we can return the card Attach this card to the back of or on the front if space permits Attach dressed to: Deborah Driscoll 16 Old Farm Road Walpole, MA. 02081 Recy TULNSON	Gov't Services Careers No FEAR Act EEO Data FO CTION COMPL or complete resired A Stor A Stor 1 the reverse A Stor 0 you B Rec 1 the reverse D Is do 0 you D Is do 1 the reverse D Is do 1 the reverse <td< td=""><td>Privacy Policy Te</td><td>Image Business Image Business Image Image Image</td></td<> <td>indise</td>	Privacy Policy Te	Image Business Image Business Image Image Image	indise

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

102595-02-M-1540 □ Agent □ Addressee C. Date of Delivery ۶ الر [₿] 2 COMPLETE THIS SECTION ON DELIVERY D. Is delivery address different from item 1? If YES, enter delivery address below: C Express Mail Return Receip C.O.D. 5++2)4. (Restricted Delivery? (Extra Fee) B. Received by (Printed Name) 4578 3. Seryde Type CCentified Mail C Registered C Insured Mail 2000 DOEL 8007 A. Signature **Domestic Return Receipt** × RGYJOHNSON 127-0005.UT Print your name and address on the reverse so that we can return the card to you.
 Attach this card to the back of the mailpiece, Complete Items 1, 2, and 3. Also complete Item 4 if Restricted Delivery is desired. SENDER: COMPLETE THIS SECTION or on the front if space permits. Walpole, MA. 02081 PS Form 3811, February 2004 Dainora Kupcinskas 19 Old Farm Road (Transfer from service label) 1. Article Addressed to: 2. Article Number

纤糖

rack & Confir	m					
Search Results						
Label/Receipt Numbe	er: 7008 1300 0002	4578 2445		Trock 2	Confirm	
Service(s): Certified Status: Delivered	Mail [™]			Enter La	bel/Receipt	Number.
Your itom was deliver	ad at 11:02 am on	January 28, 2011	in			
FRAMINGHAM, MA)1701.	January 20, 2011				
Detailed Results: • Delivered, January • Notice Left, Janua	/ 28, 2011, 11:02 ai ry 28, 2011, 9:12 a	m, FRAMINGHA m, FRAMINGHA	M, MA 01701 M, MA 01701			
Detailed Results: • Delivered, January • Notice Left, January • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options	7 28, 2011, 11:02 at ry 28, 2011, 9:12 a ry 26, 2011, 10:07 aber 24, 2010, 4:24 cember 24, 2010, 8	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081			
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by	7 28, 2011, 11:02 ai ry 28, 2011, 9:12 a ry 26, 2011, 10:07 aber 24, 2010, 4:24 cember 24, 2010, 8 email	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081			
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by Get current event info	v 28, 2011, 11:02 an ry 28, 2011, 9:12 a ry 26, 2011, 10:07 a hber 24, 2010, 4:24 cember 24, 2010, 8 email ormation or updates	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO for your item set	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081 LE, MA 02081	ers by email.	0>)	
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by Get current event info	v 28, 2011, 11:02 at ry 28, 2011, 9:12 a ry 26, 2011, 10:07 a hber 24, 2010, 4:24 cember 24, 2010, 8 email prmation or updates	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081 LE, MA 02081	ers by email.	<u>•>)</u>	
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by Get current event info	v 28, 2011, 11:02 at ry 28, 2011, 9:12 a ry 26, 2011, 10:07 aber 24, 2010, 4:24 cember 24, 2010, 8 email ormation or updates	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081 ht to you or othe	ers by email.	•••	
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by Get current event info	28, 2011, 11:02 an ry 28, 2011, 9:12 a ry 26, 2011, 10:07 a her 24, 2010, 4:24 cember 24, 2010, 8 email formation or updates	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO for your item set	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081 ht to you or othe Privacy Policy	ers by email.	0>) Busines	s Customer Ga
Detailed Results: • Delivered, January • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decen • Arrival at Unit, Dec Notification Options Track & Confirm by Get current event info	Y 28, 2011, 11:02 at ry 28, 2011, 9:12 a ry 26, 2011, 10:07 a ber 24, 2010, 4:24 cember 24, 2010, 8 email ormation or updates Forms Govt Sen	m, FRAMINGHA m, FRAMINGHA am, WALPOLE, pm, WALPOLE :48 am, WALPO :48 am, WALPO for your item set	M, MA 01701 M, MA 01701 MA , MA 02081 LE, MA 02081 ht to you or othe Privacy Policy	ers by email.	o>) Busines	s Customer Gz

Agent Addressee 102595-02-M-1540 C. Date of Delivery C Express Mail C Return Receipt for Merchandise C C.O.D. چ گ COMPLETE THIS SECTION ON DELIVERY If YES, enter delivery address below: 7008 1.300 0002 4578 2438 KALV NNSNN DT 0006.003 4. Restricted Delivery (Extra Fee) 2. Article Number 2. Article Number B. Received by (Printed Name) 3. Sarvjač Type 10 Centined Mall 11 Registerad 11 Insured Mall A. Signature **Domestic Return Receipt** × so that we can return the card to you. Attach this card to the back of the mailplece, or on the front if space permits. Print your name and address on the reverse Gomplete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. SENDER: COMPLETE THIS SECTION Walpole, MA. 02081 PS Form 3811, February 2004 19 Old Farm Road Aidas Kupcinskas (Transfer from service label) 1. Article Addressed to:

ř.

					I rack &	Contirm	
Irack & Confil	rm						
Search Results				·			
Label/Receipt Numb	er: 7008 1300 0002 4578 24	138		Track &	Confirm		
Service(s): Certified Status: Delivered	d Mail			Enter La	bel/Receipt	Number.	
Your item was delive	ered at 11:02 am on January	28, 2011 in					
FRAMINGHAM, MA	01701.						- (
Detailed Results:		•	· .		· .		
Detailed Results: • Delivered, Januar • Notice Left, Januar	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA	MINGHAM, MA MINGHAM, MA	01701 01701		· .		
Detailed Results: • Delivered, Januar • Notice Left, Januar • Unclaimed, Januar • Notice Left, Decer • Arrival at Unit, De	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am	MINGHAM, MA MINGHAM, MA LPOLE, MA (ALPOLE, MA 0 , WALPOLE, M	01701 01701 02081 A 02081				
Detailed Results: • Delivered, Januar • Notice Left, Januar • Unclaimed, Januar • Notice Left, Decer • Arrival at Unit, De Notification Options	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am,	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA 0 , WALPOLE, M	01701 01701 02081 A 02081				
Detailed Results: • Delivered, Januar • Notice Left, Januar • Unclaimed, Januar • Notice Left, Decer • Arrival at Unit, De Notification Options Track & Confirm by	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am, ; y email	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA 0 , WALPOLE, M	01701 01701 02081 A 02081				
Detailed Results: • Delivered, Januar • Notice Left, Januar • Unclaimed, Januar • Notice Left, Decer • Arrival at Unit, Der Notification Options Track & Confirm by Get current event inf	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W acember 24, 2010, 8:48 am, s y email formation or updates for you	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA , WALPOLE, M wALPOLE, M	01701 01701 02081 A 02081	by email.	• • •		
Detailed Results: • Delivered, Januar • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decer • Arrival at Unit, De Notification Options Track & Confirm by Get current event inf	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am, s y email formation or updates for you	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA , WALPOLE, M Ir item sent to yo	01701 01701 02081 A 02081 ou or others	by email.	a >)		
Detailed Results: • Delivered, Januar • Notice Left, Januar • Unclaimed, Januar • Notice Left, Decer • Arrival at Unit, De Notification Options Track & Confirm by Get current event inf	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am, y email formation or updates for you	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA , WALPOLE, M Ir item sent to yo	01701 01701 02081 A 02081	by email.			
Detailed Results: • Delivered, Januar • Notice Left, Janua • Unclaimed, Janua • Notice Left, Decer • Arrival at Unit, De Notification Options Track & Confirm by Get current event inf	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W ecember 24, 2010, 8:48 am, c y email formation or updates for you <u>Forms Gov't Services</u>	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA , WALPOLE, M r item sent to yo	01701 01701 2081 A 02081 ou or others	by email. (a)	Desines.	s Customer G	Gatew
Detailed Results: • Delivered, Januar • Notice Left, Janua • Notice Left, Decer • Arrival at Unit, De Notification Options Track & Confirm by Get current event inf <u>Customer Service</u> ght© 2010 USPS. All Rights	ry 28, 2011, 11:02 am, FRA ary 28, 2011, 9:12 am, FRA ary 26, 2011, 10:07 am, WA mber 24, 2010, 4:23 pm, W acember 24, 2010, 8:48 am, y email formation or updates for you <u>Forms Gov't Services</u> a Reserved. No FEAR Act EE	MINGHAM, MA MINGHAM, MA LPOLE, MA ALPOLE, MA , WALPOLE, M r item sent to yo <u>Careers</u> <u>Pr</u> O Data FOIA	A 01701 A 01701 D2081 A 02081 Du or others	by email. <u>Terms of Use</u>	Busines	s Customer C	Gatev

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

aduputed of the subsystem of the Agent Addressee C. Date of Delivery ຶ¥ ≗ □□ Sey D COMPLETE THIS SECTION ON DELIVERY D. Is delivery address different from item 1? If YES, enter delivery address below: 4578 2377 CEXPress Ma Return Rec C.O.D.
 1. DITAI WUUL LALLE
 3. Service Type

 Valpole, MA. 02081
 D. Centifico Mail

 Decentifico Mail
 D. Repress

 Mailpole, MA. 02081
 D. Repress

 Decentifico Mail
 D. Repress

 Mailpole, MA. 02081
 D. No. 02081

 Decentifico Mail
 D. Repress

 Mailpole, MA. 02081
 D. No. 02081

 Mailpole, Mail
 D. No. 02061

 Mailpole, Mailpole
 D. No. 02061

 Mailpole, Mailpole
 D. No. 02061

 Mailpole, Mailpole
 D. No. 02061

 Mailpole
 D. No. 0206 B. Received by (Printed Name) 7008 1300 0002 A. Signature × Attach this card to the back of the mailplece, Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired.
 Print your name and address on the reverse so that we can return the card to you. SENDER: COMPLETE THIS SECTION or on the front if space permits. Walpole, MA. 02081 PS Form 3811, February 2004 21 Briarwood Lane (Transfer from service label) Brian Backner 1. Article Addressed to: 2. Article Number

ŕ

						Hack & Commit	<u>17</u>
Tr	ack & Confirm						
	Search Results						
	Label/Receipt Number: 7008 13	00 0002 4578 237	7		Track &	Confirm	
	Status: Delivered				Enter La	bel/Receipt Number	•
	Your item was delivered at 11:0	2 am on January 2	28, 2011 in				(a
	Detailed Results:						
	Delivered, January 28, 2011 Notice Left January 28, 201	, 11:02 am, FRAM 1, 9:12 am, FRAN	INGHAM, M INGHAM, M	A 01701 A 01701			
	* Nouce Left, January 26, 201	1 10.07 am WAL	POLE. MA				
	 Notice Left, Sanuary 26, 201 Unclaimed, January 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, V	POLE, MA LPOLE, MA WALPOLE, I	02081 NA 02081			
	 Notice Left, Sanuary 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, V	POLE, MA LPOLE, MA WALPOLE, I	02081 NA 02081			
	 Notice Left, Sanuary 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options Track & Confirm by email 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, 1	POLE, MA LPOLE, MA WALPOLE, I	02081 NA 02081			
	 Notice Left, Sanuary 26, 201 Unclaimed, January 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options Track & Confirm by email Get current event information o 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, 1 r updates for your	POLE, MA LPOLE, MA WALPOLE, I item sent to y	02081 IA 02081 rou or others	by email. 🕝	•	
	 Notice Left, January 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options Track & Confirm by email Get current event information or 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, V r updates for your	POLE, MA LPOLE, MA WALPOLE, I	02081 NA 02081 You or others	by email. 🥻		
	 Notice Left, January 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options Track & Confirm by email Get current event information o 	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, 1 r updates for your	POLE, MA LPOLE, MA WALPOLE, I	02081 NA 02081 You or others	by email. G	•>	
<u>Лар</u>	Vouce Left, January 26, 201 Unclaimed, January 26, 201 Notice Left, December 24, 2 Arrival at Unit, December 24 Notification Options Track & Confirm by email Get current event information o	1, 10:07 am, WAL 010, 4:26 pm, WA I, 2010, 8:48 am, 1 r updates for your <u>Gov't Services</u>	POLE, MA LPOLE, MA WALPOLE, M item sent to y	02081 IA 02081 You or others	by email. G	b b Business Custome	er Gateway

2/2/2011

Page 1 of 1

	Track & Confirm
rack & Confirm	
Search Results	
Label/Receipt Number: 7008 1300 0002 4578 2353 Service(s): Certified Mail [™] Status: Delivered	Track & Confirm Enter Label/Receipt Number.
Your item was delivered at 3:59 pm on December 24, 2010 in WALPOI MA 02081.	E,
Detailed Results: • Delivered, December 24, 2010, 3:59 pm, WALPOLE, MA 02081 • Arrival at Unit, December 24, 2010, 8:48 am,WALPOLE, MA 0208	1
Notification Options	·
Track & Confirm by email Get current event information or updates for your item sent to you or ot	ners by email. Go>)
Customer Service Forms Gov't Services Careers Privacy Poli	cy <u>Terms of Use</u> <u>Business Customer Gal</u>
<u>Customer Service Forms Gov't Services Careers Privacy Poli</u> t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA	ex <u>Terms of Use</u> <u>Business Customer Gat</u> Directed happendices: Directed ag Nat Hurst For Incussing hard
Customer Service Forms Gov't Services Careers Privacy Poli t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA SENDER: COMPLETE THIS SECTION COMPLETE THIS	Example Englisher Customer Gal Intervaling Mart Hundle Intervaling Mart Hundle SECTION ON DELIVERY V
Customer Service Forms Gov't Services Careers Privacy Poli t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA SENDER: COMPLETE THIS SECTION Image: Complete Items 1, 2, and 3. Also complete Items 4.1f Restricted Delivery is desired. Complete Items 4.2, and 3. Also complete Items 4.1f Restricted Delivery is desired. Print your name and address on the reverse Image: Complete Items 4.1f Restricted Delivery is desired. Image: Complete Items 4.1f Restricted Delivery is desired.	Example of Use Business Customer Gat Iterical be product: Iterical be product: Iterical be product: Iterical be product:
Customer Service Forms Gov't Services Careers Privacy Polition Attach this card to the back of the mailplece, or on the front if space permits. No FEAR Act EEO Data FOIA	Terms of Use Business Customer Gat Preské karponáter: Preské karponáter: Preské karponáter: Preské karponáter: SECTION ON DELIVERY Agent Agent Addressee Printed Name) O. Date of Delivery Printed Name) O. Date of Delivery Printed Name) O. Date of Delivery Printed Name)
Customer Service Forms Gov't Services Careers Privacy Polition Attach this card to the back of the mailpleces, or on the front if space permits. No FEAR Act EEO Data FOIA	Terms of Use Business Customer Gat Preské kerpondere: Imageside Comer Imageside Comer Imageside Comer SECTION ON DELIVERY Imageside Comer March Comer Imageside Comer Printed Name) Imageside Comer Imageside Comer Imageside Comer
Customer Service Forms Gov't Services Careers Privacy Politics tr@ 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA SENDER: COMPLETE THIS SECTION • Complete items 1.2: and 3. Also complete item 4 if Bestricted Delivery is desired. Complete items 1.2: and 3. Also complete item 4 if Bestricted Delivery is desired. • Print your name and address on the reverse so that we can return the card to you. B. Received by (I	Terms of Use Business Customer Gal Market Bargonsker: Incussion Commendation Market Bargonsker: Incussion Commendation SECTION ON DELIVERY Agant Market Bargon C. Date of Delivery Printed Name) C. Date of Delivery ress different from item 12 Yes elivery address below: No

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

Page 1 of 1

			Home Help
		Track	& Confirm
Track & Confirm	· · · · · · · · · · · · · · · · · · ·		
Search Results			
Label/Receipt Number: 7008 1 Service(s): Certified Mail [™] Status: Delivered	300 0002 4578 2346	Track & Confirm Enter Label/Recei	pt Number.
Your item was delivered at 1:55 MA 02081.	5 pm on December 30, 2010 in WALPC	DLE,	G
Detailed Results: • Delivered, December 30, 20 • Notice Left, December 24, 2 • Arrival at Unit, December 24	10, 1:55 pm, WALPOLE, MA 02081 010, 4:19 pm, WALPOLE, MA 02081 4, 2010, 8:48 am, WALPOLE, MA 020	81	
Notification Options			
Track & Confirm by email			
Get current event information o	r updates for your item sent to you or c	others by email. (Ge>)	5
	0. 10. com	-	oce Customer Gatews
np <u>Customer Service</u> Forms ight© 2010 USPS, All Rights Reserved.	<u>Gov't Services Careers Privacy Privac</u>	olicy <u>Terms of Use Busin</u>	ess Customer Gatewa hugesidie Commis hugesidie Commission hugenidie Linger dy
ap <u>Customer Service</u> Forms ight© 2010 USPS. All Rights Reserved.	<u>Gov't Services Careers Privacy Privac</u>	Dicy <u>Terms of Use Busin</u> the Ad he porcebary has an unique Nan Drave	ess Customer Gatewa huges de Komm, i Samaligi bårgr ky
ng <u>Customer Service</u> Forms right© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS S	Gov't Services Careers Privacy	Dicy <u>Terms of Use Busin</u> 한 탄행 관계 비용 주고 현황 전 탄행 도 여가 해당 문제 비사가 도 문 전 이 이 이 DELIVERY	ess Customer Gatewa https://www. itsamelikaj.bategr-by
ap Customer Service Forms tight© 2010 USPS. All Rights Reserved. Served. SENDER: COMPLETE THIS SUMMER AND ADDRESS OF THE SUMMER ADDRESS OF THE SUMME	Gov't Services Careers Privacy Priv	Dicy Terms of Use Busin Dicy I for the heyercology: Provide heyercology: Provide heyercology: Provide heyercology: SECTION ON DELIVERY Ageo Dick Ageo	ess Customer Gatewa hr:go:ide Komero, i i sa melkaj kerer ky
App Customer Service Forms tight© 2010 USPS, All Rights Reserved. Served. SENDER: COMPLETE THIS S Served. Complete items 1, 2, and 3, 4 Served. Firm 4 if Restricted Delivery is Print your name and address so that we can return the card Attach this card to the back complete the served. Served.	Gov't Services Careers Privacy Priv	Dicy Terms of Use Busin Image: Section on Delivery Image: Section on Delivery Image: Section on Delivery Image: Section of Delivery Image: Section on Delivery Image: Section of Delivery Image: Section on Delivery Image: Section of Delivery Image: Section of Delivery Image: Section of Delivery	ess Customer Gatewa https://www.ition.melling.helergrity thommelling.helergrity ition.melling.helergrity network
App Customer Service Forms tight© 2010 USPS. All Rights Reserved. Served. SENDER: COMPLETE THIS S ■ Complete items 1, 2, and 3, 4 item 4 if Restricted Delivery is ■ Print your name and address so that we can return the card Attach this card to the back c or on the front if space permit 1. Article Addressed to:	Gov't Services Careers Privacy Priv	Dicy Terms of Use Busin Image: Section on Delivery Image: Section on Delivery Section on Delivery Image: Section on Delivery	ess Customer Gatewa https://www.ligi.kiteprity liteanelligi.kiteprity liteanelligi.kiteprity
App Customer Service Forms tight© 2010 USPS. All Rights Reserved. SENDER: COMPLETE THIS S. © Complete items 1, 2, and 3, 4 item 4 if Restricted Delivery is Prim your name and address so that we can return the caro Attach this card to the back cors on the iront if space permited to the	Gov't Services Careers Privacy Priv	Dicy Terms of Use Busin Image: Section on Delivery Image: Section on Delivery SECTION ON DELivery Image: Section on Delivery	ess Customer Gatewa https://doi.org/log thatmeling.herg/log herge/log elivery
p Customer Service Forms tight© 2010 USPS. All Rights Reserved. Served. SENDER: COMPLETE THIS S Complete items 1, 2, and 3, 4 item 4 if Restricted Delivery is Print your name and address so that we can return the card Attach this card to the back c or on the front if space permit 1. Article Addressed to: Margaret G. Trudell 15 Old Farm Road Walpole, MA. 02081	Gov't Services Careers Privacy Pr	Dicy Terms of Use Busin Dicy Hard Reportant Image: Section on Delivery Image: Section on Delivery Image	ess Customer Gatewa https://www.ikgladrigr.ly/

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

Page 1 of 1

M 7

						Trac	ck & Confirm	
Frac k	& Confirm							
Sear	rch Results							
Label Servio Status	/Receipt Number: 7 ce(s): Certified Ma s: Delivered	008 1300 0002 I [™]	4578 2308			Track & Confir Enter Label/Re	m ceipt Number.	
Your i MA 02	item was delivered a 2081.	at 4:14 pm on D	December 24, 20	10 in WALPC	DLE,			C
Detail • Deli • Arri	led Results: ivered, December ival at Unit, Decem	24, 2010, 4:14 ber 24, 2010, 8	pm, WALPOLE 3:48 am, WALP	, MA 02081 OLE, MA 020)81			
Notifi	cation Options							
Track	Confirm by om							
naur	(a commu by em	411				No contraction of the		
Get c	urrent event informa	ation or updates	s for your item s	ent to you or	others by e	mail. 60>)		
Get c	stomer Service For	ntion or updates <u>ms Gov't Ser</u>	s for your item so vices <u>Careers</u> VR Act EEO Data	ent to you or o Privacy P FOIA	others by endotrees by endotrees by endotrees endotre	mail. Go>	usiness Customer G Incussion Con	Satew Prive Prive
Get c	stomer Service For	ntion or updates <u>ms Govt Ser</u> erved. No FEA	s for your item so vices Careers	ent to you or o Privacy P FOIA	others by el olicy ार ि भिष्ठके	mail. Go> mms of Use Bu be provident: when the burne	usiness Customer C Margaradia Cen Darwing Lin	Satew Prive Prive
Get c <u>cus</u> ght© 2010	stomer Service For USPS. All Rights Rese SENDER: COMPLE	ntion or updates <u>ms Gov't Ser</u> erved. No FEA	s for your item so vices <u>Careers</u> AR Act EEO Data	Privacy P FOIA	others by el olicy া ি জিল্ল চিন্নিজ্ঞ E THIS SECT	mail. Go> <u>erms of Use Bu</u> المديسين المديسين المدين الما الما الما الما الما الما الما الم	usiness Customer C heyesiter Son heyeretig hå	Berra, Berra, Cref - Ar
Get c	stomer Service For USPS. All Rights Reso SENDER: COMPLE Complete items 1 item 4 if Restricte	and an updates <u>ms Gov't Ser</u> erved. No FEA ETE THIS SECT 2. and 3. Also d Delivery is de-	s for your item so vices <u>Careers</u> AR Act EEO Data	Privacy P FOIA COMPLETI A Signatur X	e THIS SECT	mail. Go>	Isiness Customer G Increaside Ster Increaside Ster Increaside Ster Increaside Ster Increaside Ster Increaside Ster Agent	Gatewa nersa regi-te
Get c 2 <u>Cus</u> ght© 2010	stomer Service For USPS. All Rights Rese SENDER: COMPLE Complete items 1 item 4 if Restricte Print your name a so that we can re Attach this card to	TE THIS SECT 2, and 3, Also d Delivery is dea nd address on 1 um the card to 5 the back of the	s for your item so vices Careers AR Act EEO Data AR Act EEO Data	FOIA COMPLET A Signatur X J J	ethers by el	mail. Go>	Isiness Customer G Intersibility Market Intersibility Market Intersibility Market Addressee Date of Delivery	Betra
Get c	SENDER: COMPLE USPS. All Rights Rese USPS. All Rights Rese Complete terms 1 fitem 4 if Restricte Print your name a so that we can re Attach this card to or on the front if s 1. Article Addressed to	and an updates ation or updates <u>ms Gov't Ser</u> erved. No FEA erved. No FEA <u>57E THIS SECT</u> 2, and 3. Also d Delivery is des nd address on 3 um the card to b the back of the pace permits.	s for your item so vices Careers AR Act EEO Data AR Act EEO Data	FOIA COMPLETI A Signatur X/-// B. Becelve if YES	e THIS SECT e y address difference enter delivery	mail. Go>	Agent Addressee Date of Delivery Yes No	Gatew PTN PTP-%
Get c	stomer Service For stomer Service For USPS. All Rights Reservice Service SENDER: COMPLE Complete items 1 Item 4 if Restricte Print your name a so that we can re Attach this card to or on the front if s 1. Article Addressed to Service attach to	and an updates ation or updates <u>ms</u> <u>Gov't Ser</u> erved. No FEA erved. No FEA <u>C</u> and 3. Also d Delivery is de- nd address on 1 um the card to b the back of the pace permits.	s for your item so vices Careers AR Act EEO Data	FOIA. COMPLET A Signatur X J B. Receive I D. is delive I Y YES,	ethers by el	mail. Go>	Agent Addressee Date of Delivery	Bettern Bettern Dege fly
Get c	stomer Service Eor USPS. All Rights Rese SENDER: COMPLE Complete items 1 item 4 if Restricte Print your name a so that we can re Attach this card to or on the front if so 1. Article Addressed to Richard B. M 3 Old Farm R Walpole, MA	and and a second	s for your item so vices Careers AR Act EEO Data	FOIA. COMPLET A Signatur X A B. Beceive I Y ES Complete A Signatur A S	Policy Tell Policy Tell Policy Tell Policy Tell Policy Tell Policy Type Field Mail Type Field Mail Tell	mail. Go>	Agent Addressee Date of Delivery	Gatew.

Page 1 of 1

Page 1 of 1

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

Page 1 of 1

A.

Tr	ack & Confirm		Track & Confirr	<u>m F</u>
	Česnoh Desulte			
	Search Kesults Label/Receipt Number: 7008 1300 0002 4578 2391 Service(s): Certified Mail [™] Status: Delivered	Track & C Enter Labe	onfirm	er.
	Your item was delivered at 11:38 am on December 28, 2010 in BOSTON, MA 02133.			G
	Detailed Results: • Delivered, December 28, 2010, 11:38 am, BOSTON, MA 02133 • Arrival at Unit, December 28, 2010, 6:44 am, BOSTON, MA 02133			
	Notification Options			
	Get current event information or updates for your item sent to you or others by Customer Service Forms Gov't Services Careers Privacy Policy	y email. Gos	Business Custom	er Gateway
<u>∧ap</u> ∕right	Get current event information or updates for your item sent to you or others by Customer Service Forms Gov't Services Careers Privacy Policy t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA Image: Service s	y email. Go o <u>Terms of Use</u> he shall be percebary: he croshap flat listed	Business Custom	er Gateway Corperse 1 Mart by
<u>Map</u> ∤right	Get current event information or updates for your item sent to you or others by <u>Customer Service Forms Gov't Services Careers Privacy Policy</u> t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA	y email. Go o <u>Terms of Use</u> he she he product: he crokel he its of	Business Custom	er Gateway दोगान्दरक क्रिकेट्रन कि
<u>Map</u> yright	Get current event information or updates for your item sent to you or others by <u>Customer Service</u> Forms Gov't Services Careers Privacy Policy t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA Image: Complete THIS Section SENDER: COMPLETE THIS SECTION COMPLETE THIS SECTION COMPLETE THIS Section	y email.	Business Custom	er Galeway Cornersa J Labour Sy
<u>Map</u> yright	Get current event information or updates for your item sent to you or others by <u>Customer Service</u> Forms Gov't Services Careers Privacy Policy t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA Image: Service	y email. Goo	Eusiness Custom	er Gateway
<u>Map</u> yright	Get current event information or updates for your item sent to you or others by Customer Service Forms Gov't Services Careers Privacy Policy t© 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA Image: Complete tems 1, 2, and 3. Also complete tem 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Image: Complete tem 1, 2, and 3. Also complete tem 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Image: Reserved to the back of the maliplece, or on the front if space permits. Image: Reserved to the back of the maliplece, or on the front if space permits. 1. Article Addressed to: Image: Reserved to the back of the maliplece, or on the front if space permits. Image: Reserved to the back of the maliplece, or on the front if space permits.	y email. Goo	Business Custom Eusiness Custom Prograder	er Gateway
<u>Map</u> yright	Get current event information or updates for your item sent to you or others by Customer Service Forms Govt Services Careers Privacy Policy t@ 2010 USPS. All Rights Reserved. No FEAR Act EEO Data FOIA FOIA Image: Complete tems 1, 2, and 3, Also complete tem 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the malpiece. or on the front if space permits. Image: Complete tems 1, 2, and 3, Also complete tem 4 if Restricted Delivery is desired. Image: Complete tems 1, 2, and 3, Also complete tem 4 if Restricted Delivery is desired. Image: Complete tems 1, 2, and 3, Also complete tem 4 if Restricted Delivery is desired. Image: Complete tem 5, 2, and 3, Also complete tem 4, if Restricted Delivery is desired. Image: Complete tems 1, 2, and 3, Also complete tem 4, if Restricted Delivery is desired. Image: Complete tem 5, 2, and 3, Also complete tem 4, if Restricted Delivery is desired. Image: Complete tems 1, 2, and 3, Also complete tem 5, and 4, and the car to you. Image: Complete tem 5, and 5, an	y email. Goo	Business Custom	er Gateway

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

Page 1 of 1

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

http://trkcnfrm1.smi.usps.com/PTSInternetWeb/InterLabelInquiry.do

4

rack & Confirm				
Search Results				
Label/Receipt Number: 7008 Service(s): Certified Mail [™] Status: Delivered	3 1300 0002 4578 2261		Track & Con Enter Label/F	firm Receipt Number.
Your item was delivered at 1 WALPOLE, MA 02081.	0:37 am on December 28,	2010 in		
Detailed Results: • Delivered, December 28, • Arrival at Unit, December	2010, 10:37 am, WALPOL r 24, 2010, 8:48 am, WALF	.E, MA 02081 POLE, MA 02081		
Notification Options				
Track & Confirm by email	1			
Get current event information	n or updates for your item s	sent to you or other	rs by email. (Go>)	
Get current event information	n or updates for your item s	ent to you or other	rs by email. (Go>)	
Get current event information	n or updates for your item s	sent to you or other	rs by email. (Go>)	Business Customer Gate
Get current event information	n or updates for your item s <u>Gov't Services</u> <u>Career</u>	sent to you or other	rs by email. (Bo>)	Business Customer Gate
Get current event information <u>Customer Service</u> Forms ht© 2010 USPS. All Rights Reserve	n or updates for your item s <u>Gov't Services</u> <u>Career</u> d. No FEAR Act EEO Data	sent to you or other	rs by email. (80>) Terms of Use	Business Customer Gate
Get current event information	n or updates for your item s <u>Gov't Services</u> <u>Career</u> d. No FEAR Act EEO Data	sent to you or other	rs by email. (80>) <u>Terms of Use</u> Market keppendikers: Market keppendikers: Market keppendikers: Market keppendikers:	Business Customer Gale
Get current event information <u>Customer Service</u> Forms ht© 2010 USPS, All Rights Reserve	n or updates for your item s <u>Gov't Services</u> <u>Career</u> d. No FEAR Act EEO Data	sent to you or other	rs by email. (80>) <u>Terms of Use</u> I he ikit ke perdiker: I he so or oling the first	Business Customer Gale
Get current event information <u>Customer Service</u> Forms ht© 2010 USPS, All Rights Reserve SENDER: COMPLE	n or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data	sent to you or other <u> sent to you or other FOIA COMPLETE </u>	rs by email. (20) Terms of Use I for skill be produce: I for skill b	Business Customer Gate
Get current event information <u>Customer Service</u> Forms ht© 2010 USPS. All Rights Reserve SENDER: COMPLE Complete items 1 form () if Reserved	n or updates for your item s <u>Govt Services</u> Career d. No FEAR Act EEO Data <i>ETE THIS SECTION</i> 2, and 3: Also complete d Delivery is desired	sent to you or other	rs by email. (20)	Business Customer Gate
Get current event information Customer Service Forms ht© 2010 USPS, All Rights Reserve SENDER: COMPLE Complete Items item 4 if Restricte Font your name a So that we can be	n or updates for your item s <u>Gov't Services</u> <u>Career</u> d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Delivery is desired mol address on the reverse itim the card to you	sent to you or other	rs by email.	Eusiness Customer Gate
Get current event information Customer Service Forms ht© 2010 USPS. All Rights Reserve SENDER: COMPLE Complete Items 1 tem 4 It Restricte Print your name a so that we can re a Attach this card to or on the from 115	n or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Dalivery is desired ind address on the reverse turn the card to you o the back of the maliplace, space permits	sent to you or other	Terms of Use	Business Customer Gale
Get current event information Customer Service Forms ht© 2010 USPS. All Rights Reserve SENDER: COMPLI Complete items 1 tem 4 if Restricte Frint your name a so that we can re Attach this card t or on the front if s 1. Article Addressed to	n or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Delivery is desired ind address on the reverse turn the card to you. o the back of the mailplece, space permits.	sent to you or other	Terms of Use Terms of Use Market keypensker: Secondagi Kerl Hurk THIS SECTION ON DE USA (Printed Namo) Secondagi Kerl Hurk Market Secondagi Kerl Hu	Business Customer Gale
Get current event information Customer Service Forms ht© 2010 USPS. All Rights Reserved SENDER: COMPLE Complete Items I item 4 if Restricte Print your name a so that we can re Attach this card to or on the front lifs 1. Article Addressed to	n or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Delivery is desired and address on the reverse turn the card to you o the back of the maliplece, space permits.	sent to you or other	Terms of Use Terms of Use Mer Ad Reportant: Mer Ad Reportant	Business Customer Gale
Get current event information <u>Customer Service</u> Forms ht© 2010 USPS, All Rights Reserve SENDER: COMPLA Complete Items I item 4 if Restricte Print your name a so that we can re a Attach this card the or on the front if s 1. Article Addressed to Mr. Michael F.	n or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Delivery is desired ind address on the reverse turn the card to you. b the back of the mallplece, space permits. Boynton, Town Administra	sent to you or other	rs by email. Terms of Use I he del be persider: I he del be pers	Eusiness Customer Gale
Get current event information Customer Service Forms ht© 2010 USPS. All Rights Reserve SENDER: COMPLE Complete Items I tem 4 If Restricte Print your name a so that we can re Attach this card to or on the front if s I. Article Addressed to Mr. Michael E. Town of Walpo	an or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data ETE THIS SECTION 2, and 3. Also complete d Dalivery is desired ind address on the reverse turn the card to you o the back of the maliplece, space permits. Boynton, Town Administration	sent to you or other	Terms of Use	Business Customer Gale
Get current event information Customer Service Forms ht© 2010 USPS. All Rights Reserved SENDER: COMPLI Complete items 1 tem 4 if Restricte Frint your name a so that we can re Attach this card t or on the front if s 1. Article Addressed ta Mr. Michael E. Town of Walpo 135 School Stra Walpole, MA.	an or updates for your item s <u>Gov't Services</u> Career d. No FEAR Act EEO Data <i>ETE THIS SECTION</i> 2, and 3. Also complete d Delivery is desired ind address on the reverse turn the card to you. the back of the mallplece, space permits. Boynton, Town Administration ble set 02081	sent to you or other	Terms of Use Terms of Use Market keependker: See ervikeg keet Hure THIS SECTION ON DE Use ervikeg keet Hure THIS SECTION ON DE Use ervikeg keet Hure Address different from H ther delivery address be Ype ad Mail	Business Customer Gale

the Market website at www.walpolemafarmersmarket.com for additional details.

Join young swing-dance enthusiast Robert McCarthy for a weekly session of swing dancing in Blackburn Hall. Each session will include a half-hour of basic instruction, followed by two-hours of open dance time. Please wear light, comfortable clothing and your favorite dancin' shoes! Sessions are on Wednesdays from 7-9:30 p.m. Cost is \$10 at the door, or register at the Walpole **Recreation Department office** or at www.WalpoleRec.com.

Lunch served Monday thru Friday at 135 School St., Walpole. Call 508-668-3423 to pre-register 24 hours in advance. Menu is available online at www.hessco.org or the Council on Aging. Suggested confidential donation: \$2.50 per meal. HESS-CO Elder Services is dedicated to finding solutions to help those over 60 take full advantage of their later years. The agency's goal is to make it easier for older individuals and their families to access a comprehensive system of health and supportive services. To learn the very latest about services for the elderly in South Norfolk County, call HESSCO at 781-784-4944 or visit www.hessco.org.

To find out how to participate in the Holiday Book Drive, contact the Anne Marie Kennedy, Barnes & Noble community relations manager at 508-668-6033.

THURSDAY, DEC. 23 The Red Cross will hold a Walpole community blood drive on Thursday, Dec. 23 from 2-7 p.m. at Epiphany Church, 62 Front St., Walpole. Please call 800-REDCROSS or visit redcrossblood.org. All presenting donors will receive a jar candle from Yankee Candle.

FRIDAY, DEC. 24 Join the United Church in Walpole for Advent and Christmas Celebrations.

warden of the last

Dec. 24, on Christmas Eve there will be two services: at 5 p.m. a Family Christmas Service and at 11 p.m. a Candlelight Service with music by the Chancel Choir and Handbell Choir. www.unitedwalpole.org. The United Church in Walpole is located at 30 Common St., next to the post office. All are welcome.

Union Congregational Church announces Christmas season service: Dec. 24 - 7:30 p.m. Christmas Eve Service: Dec. 24 - 11:30 p.m. Christmas Eve Service in the Chapel

MONDAY, DEC. 27 Let's relieve all the stress of the holidays and laugh in 2011 by attending Let's Laugh Today on Monday, 27 at Dec. the First Universalist Society in Franklin Meetinghouse, 262 Chestnut St. in Franklin, at 7:15- 8:30 p.m. We meet on every fourth Monday of the month and everyone is invited to attend. No need to pre-register. There is a \$5 donation per person and \$10 maximum per family. We laugh in a group and initiate laughter as a form of exercise. Please bring your water bottle because laughing is dehydrating. Linda and Bill Hamaker are Certified Laughter Yoga Teachers. Call 508-660-2223

www.letslaughtoday.com for

or

法国际保护 充满的现在分词推动的名词形式

12/23/10

more inforn opportunities

THURS The Walpo

relif

224 C

Norfol

1-508

Mon-Sat

Mention t

ONE CU

see

NOTICE OF & PUBLIC INVOLVEMENT PLAN MEETING

Walpole Park South Walpole Park South Road Walpole, Massachusetts RTN 3-21915

Walpole Park South received a petition from residents in Walpole requesting this location be designated as a Public Involvement Plan (PIP) site, in accordance with MGL c.21E § 14 (a). A PIP, dated April 6, 2005, was prepared for this Site indicating that meetings would be held to present major site documents to the public.

In accordance with the PIP, a public meeting will be held in the Main Meeting Room, Walpole Town Hall, 135 School Street, on January 13, 2011 to present the draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement and to provide an opportunity for public comment. Copies of the draft report will be available at the meeting, and will also be placed in the public information repository at the Walpole Public Library on or before January 13, 2011. The public comment period for the RAO Statement will run through February 2, 2011.

Any questions regarding this meeting or the Public Involvement Plan should be directed to Raymond C. Johnson, P.G., L.S.P., Senior Vice President, Tetra Tech, Inc., 1 Grant Street, Framingham, MA 01701-9005, at 508-903-2000.

Medicare D Plan - Ope

You have trusted us since 1952 with your pr so trust us to help steer you in the right directio

m Norfolk CNH.

Dec. 23 nsported one Post Road to

Transported Main Street

vo-car motor reported on o injuries.

:. 24

nsported one top Drive to

nsported one ute 1 South Hospital. nsported one in Street via Hospital. Transported Main Street ood Hospital.

)ec. 25 CO detector ow battering Main Street. Assisted the out of the in Street. nsported one in Street via

Street via BLS to CNH. 6:18 p.m. Transported one

person from Main Street via BLS to CNH.

7:14 p.m. Alarm system activation unintentional on Killeen Road. Smoke was from cooking. Alarms had resent prior to the Fire Department's arrival. Investigation only.

10:01 p.m. Report of people being stuck in an elevator on Elm Street. They were selfrescued before the Fire Department arrived. Elevator removed from service. Building manager notified. 10:05 p.m. A small grease

fire in the oven was reported on Endean Drive. The fire was the Fire out prior to Department's arrival. Smoke had to be ventilated from the home. After ventilation, the alarm was reset. No damage to the oven.

Sunday, Dec. 26

2:57 a.m. Responded to a report of a fire in the living

was spraying a garden hose on the outside of the home. The siding was burned and melted. Personnel extinguished the fire.

Norfolk 4:26 a.m. Ambulance transported one person from Drake Circle via ambulance transported one person from Neponset View Terrace via BLS to CNH.

12:26 p.m. Investigated an odor of gas outside house on Domenica Road.

1:38 p.m. CO detector activation on Plain Street. No CO person to the nospital from Stone Street via BLS.

ALS = Advanced Life Support

BLS = Basic Life Support **CNH = Caritas Norwood**

Hospital 10

NOTICE OF A PUBLIC INVOLVEMENT PLAN MEETING

Walpole Park South Walpole Park South Road Walpole, Massachusetts RTN 3-21915

Walpole Park South received a petition from residents in Walpole requesting this location be designated as a Public Involvement Plan (PIP) site, in accordance with MGL c.21E § 14 (a). A PIP, dated April 6, 2005, was prepared for this Site indicating that meetings would be held to present major site documents to the public.

In accordance with the PIP, a public meeting will be held in the Main Meeting Room, Walpole Town Hall, 135 School Street, at 7:00 PM on January 13, 2011 to present the draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement and to provide an opportunity for public comment. Copies of the draft report will be available at the meeting, and will also be placed in the public information repository at the Walpole Public Library on or before January 13, 2011. The public comment period for the RAO Statement will run through February 2, 2011.

Any questions regarding this meeting or the Public Involvement Plan should be directed to Raymond C. Johnson, P.G., L.S.P., Senior Vice President, Tetra Tech, Inc., 1 Grant Street, Framingham, MA 01701-9005, at 508-903-2000.

HOLIDAY HOURS

New Year's 2011

We will be closing at 4:00 p.m.

(3:00 p.m. Dedham Square office)

on Friday. December 31.

and we will be closed all day on New Year's Day.

DEDHAM INSTITUTION FOR SAVINGS. Since 1831. Member FDIC / Member DIF @ EQUAL HOUSING LENDER Member of the SUM[™] Program Telephone Banking-Your Personal Bankline: (888) 252-0760 Telephone connecting all offices: (800) 462-1190 Dedham • Needham • Norwood Sharon • Walpole • Westwood www.dedhamsavings.com

February 3, 2011

Mr. Thomas A. Driscoll 16 Old Farm Road Walpole, MA 02081

Re: Notice of Submission of Class A-2 Response Action Outcome Statement and Phase V Completion Report Walpole Park South Walpole, Massachusetts RTN 4-3021915

Dear Mr. Driscoll:

On behalf of Walpole Park South Trust, we are submitting this letter to you, the other petitioners, and others shown on the attached mailing list to inform you that a Class A-2 Response Action Outcome Statement and Phase V Completion Statement will be submitted to the Massachusetts Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about February 4, 2011.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library and on-line at <u>www.walpolema.gov</u>.

Please direct any inquiries to the undersigned.

Very truly yours,

yuoual hubon

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

Attachments: Mailing List

P:\Pre-FY2008\12700000\12700058\12700058-003\RAO Statement\PIP Report Notification Letter_February 2011.doc

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

Public Involvement Plan Mailing List Walpole Park South Walpole, Massachusetts RTN 4-3021915

PIP Petitioners:

Thomas A. Driscoll 16 Old Farm Road Walpole, MA 02081

Daniel Driscoll 16 Old Farm Road Walpole, MA 02081

Deborah Driscoll 16 Old Farm Road Walpole, MA 02081

Dainora Kupcinskas 19 Old Farm Road Walpole, MA 02081

Aidas Kupcinskas 19 Old Farm Road Walpole, MA 02081

Brian Backner 21 Briarwood Lane Walpole, MA 02081

Mark O'Malia 20 Old Farm Road Walpole, MA 02081

Shaunda O'Malia 20 Old Farm Road Walpole, MA 02081

Margaret G. Trudell 15 Old Farm Road Walpole, MA 02081

Mark E. Trudell 15 Old Farm Road Walpole, MA 02081 Preston J. O'Toole 12 Old Farm Road Walpole, MA 02081

Lesley Frankel 4 Old Farm Road Walpole, MA 02081

Richard B. McGrath 3 Old Farm Road Walpole, MA 02081

Barbara J. McGrath 3 Old Farm Road Walpole, MA 02081

Robert J. DeSavage 11 Old Farm Road Walpole, MA 02081

Phil Gouthro 8 Old Farm Road Walpole, MA 02081

Other Recipients:

Representative Louis L. Kafka Massachusetts House of Representatives State House, Room 237 Boston, MA 02133

Ms. Ellie Grillo Commonwealth of Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup Southeast Regional Office 20 Riverside Drive Lakeville, MA 02347

Ms. Robin Chapell, Health Director Board of Health Town of Walpole 135 School Street Walpole, MA 02081 Mr. Michael E. Boynton, Town Administrator Town of Walpole 135 School Street Walpole, MA 02081

Ms. Nancy Mackenzie, Chairman Board of Selectman Town of Walpole 135 School Street Walpole, MA 02081

Mr. Kevin Muti, Chairman Board of Sewer and Water Commissioners Town of Walpole 135 School Street Walpole, MA 02081

February 3, 2011

Ms. Nancy Mackenzie, Chairman Board of Selectmen Town of Walpole 135 School Street Walpole, MA 02081

Re: Notice of Submission of Class A-2 Response Action Outcome Statement and Phase V Completion Report Walpole Park South Walpole, Massachusetts RTN 4-3021915

Dear Ms. Mackenzie:

On behalf of Walpole Park South, Tetra Tech, Inc. is providing this notification that a Class A-2 Response Action Outcome Statement and Phase V Completion Statement will be submitted to the Massachusetts Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about February 4, 2011.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library and on-line at <u>www.walpole-</u> ma.gov.

Please contact the undersigned if you have any questions.

Very truly yours,

Kaymonal Juna

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\12700000\12700058\12700058-003\RAO Statement\Town Notification Letter.doc

One Grant Street Framingham, MA 01701 Tel 508,903.2000 Fax 508.903.2001

February 3, 2011

Ms. Robin Chapell, Health Agent Town of Walpole Board of Health 135 School Street Walpole, MA 02081

Re: Notice of Submission of Class A-2 Response Action Outcome Statement and Phase V Completion Report Walpole Park South Walpole, Massachusetts RTN 4-3021915

Dear Ms. Chapell:

On behalf of Walpole Park South, Tetra Tech, Inc. is providing this notification that a Class A-2 Response Action Outcome Statement and Phase V Completion Statement will be submitted to the Massachusetts Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about February 4, 2011.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library and on-line at <u>www.walpole-ma.gov</u>.

Please contact the undersigned if you have any questions.

Very truly yours,

Kaymonac Shuron

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\12700000\12700058\12700058-003\RAO Statement\BOH Notification Letter.doc

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

Appendix D

Soil Boring Logs and Monitoring Well Construction Diagrams

		TT	C		r			•	1 1 11	• •
	JGEO	HYD	ROUY	CLE,	LNC.		E	nvironme	ntal Drill	ing Log
-	425 Newton	ville Avenue	Newton, MA 024	60		(617) 527-8074				
~ . 						(617) 527-8668				
1000	Project:	Walpol	e Park Sou	ith				Project No.	Location No.	Sheet
		~				~		GHC# 03027	GHC-1	1 of 1
1.000	Drilling	Locatio	n: In the p	arking l	ot of the	first building	to the west of the Route 1	Begun: 01/1	<u>9/04 @ 14:50</u>	
11.150	D.'11 D'		main	entrance	e to Wal	pole Park Sout	h.	Finished: 01/1	9/04 @ 16:15	
-	Drill Ki	g: Iruck	Mounted	Kig		Inspector: TV	VM and KAR	1 0 1		
	Drill Ho	Trans C				Driller: IDS	- Steve and 11m	Groundwa	iter Depth @ Co	mpletion
	Sampler	Type: 2	<u>piit Spoon</u>			Termenet		Date/1ime	Depth	Meas. Pt.
	Sampler	Tengui	Sample		Deals	Temperature:	23 ¹ Semula Description (Charactions white	Mate	1 10C/Grnd
	Denth		Sample	1	ROCK	5011	Sample Description/	Stratigraphic	Mate	
	Depin	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	
	1									
100						· · ·	- · ·		Road Box	
									(0.0')	Ν
		SS-1	(0-2')	24"		46/41/38/31	Dense, brown, f-c SAND, some Gravel,	1	Cement 1-0'	
							Topsoil.			
]			
-					1		1		Betonite 3-2'	700 000
	5	SS-2	(5-7')	12"	1	28/38/38/20	Dense, brown, f. SAND, broken	1		1 / /
							rock nieces		2" PVC Riser	-1/=
and the second									Pine 11 5-0'	┥▤
								1	11pc 11.5-0	
		ia								
-	10	00.2	(10 100)	011		10/00/41/17				┥▤
	10	- 22-3	(10-12)	8		12/33/41/17	Dense, brown, I-c SAND, broken			
					ļ	· · · · ·	rock pieces, Saturated.			
					Į					_/ =
					Į		l de la companya de l		Sand 20-3'	
							-			
i i i Saas	15	SS-4	(15-17')	4"		6/10/12/15	Medium, brown, f-c SAND,			
					Į		broken rock pieces.			
	-							4	2" PVC 10-Slot	
]			Screen 20-5'	
and a second										
	20			•				j		
							EOB = 20 feet.			
					1					
and the second							1	л (
					1					
	25					·····	f			-
in the second										- 1
							-			
					·					-1 1
-				·			4			- 1
						· · · · · · · · · · · · · · · · · · ·	4		ļ	
	30									
interio							4 -			
Ì							4			
	а.						1			
	35						1			
		MINOR C	OMPONENT	<u>rs</u>		RELATIVE	DENSITY OVERA	LL PLASTICITY		
		and	35 to 50	%		0-4	very loose Slight	Clayey SI	LT 1/4"	
		some	20 to 35	% %		4-10 10_30	noose Low	SILT & C	LAY 1/8"	
ġ		trace	1 to 10	/0 %	,	30-50	dense High	n CLAI & Silty CLA	AY 1/32"	
		******		• •		>50	very dense Very H	ligh CLAY	1/64"	
1000							· · · · · · · · · · · · · · · · · · ·			

	GEO	Нур	ROCY	CLE,	INC.		E	nvironme	ntal Drill	ing Log	
	425 Newton	nville Avenue	Newton, MA 024	460		(617) 527-8074 (617) 527-8668					
	Project:	: Walpo	le Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-2	Sheet 1 of 1	
	Drilling	g Locatio	on: Located	d in sout	hern mo	st portion of th	e parking lot for the building	Begun: 01/19/04 @ 13:00			
	D-:11 D:	T1	on the	e southy	vestern s	ide of the Walp	oole Park South Property.	Finished: 01/19/04 @ 14:40			
	Drill H	g: 1 ruck	Mounted	Kig		Inspector: TW	/M Shawe	Grounday	tor Dorth @ Co		
	Sample	r Type: S	Split Spoon	1		Weather: Su	nny and windy	Date/Time	Depth (<i>a</i>) OF	Meas Pt	
	Sample	r Length	: 24"			Temperature:	25°	1/19/04 @ 15:35	18.19	TOC/Grnd	
			Sample		Rock	Soil	Sample Description/	Stratigraphic	Mater	rials	
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled	
									Road Box (0.0')		
		SS-1	(0-2')				Brown, f-m SAND, little Gravel.		Cement 2-0'		
	5	SS-2	(5-7')	14"		12/38/48/60+	Dance brown for SAND trace Group		Betonite 5-2'	₩₩ / ₩₩	
	, in the second s		(3-1)	14	- 441 - 7, - 4	12/30/40/00 1	Dense, blown, 1-c SAND, trace Gravel.	N	2" DVC Digor		
	÷								2 FVC Riser	K I	
	r.		1						1 ipc 7-0		
- 	ļ										
	10	SS-3	(10-12')	0"		102/-/-/-	No Sample.				
1999 - 1999 -											
illione I								•]/目	
					1			1	Sand 22-5'	ΥΞ	
	15		(15-17)	12"		20/10/20/15	Maline house for find little formal				
	15		(13-17)	12		29/19/30/13	Saturated				
	-						Saturatu.		2" PVC 10-Slot		
									Screen 22-7'		
					-						
	20	SS-5	(20-22')	7"		55/80/-/-	Dense, brown, f-c SAND, trace Silt,				
							trace Gravel.				
I											
							EOB = 22 feet.	-		$\{ \mid \mid \mid \}$	
1	25									4	
							,			4	
ann a'											
T.							Υ.			1	
					. /]	
	30										
T											
Read of										4	
T	35				- -						
5	MINOR	COMPON	NENTS		REI	ATIVE DENSITY	OVERALL	PLASTICITY			
	and	35	to 50%		0.	-4 very loose	Slight	Clayey SILT	1/4"		
l	some	20 t	to 35% to 20%		4-	10 loose	Low	SILT & CLA	Y 1/8" T. 1/14"		
	trace	1	to 10%		30-	50 dense	High	Silty CLAY	1/32"		
Į					>	50 very dense	Very High	CLAY	1/64"		

Geo	оНур	ROCYC	CLE,]	INC.		Eı	nvironme	ntal Drill	ing Log
425 Newto	onville Avenue	Newton, MA 024	60		(617) 527-8074 (617) 527-8668				Lor
Project	t: Walpol	e Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-3	Sheet 1 of 1
Drillin	g Locatio	n: Located on the	l in norti e southw	hwestern vestern s	portion of the de of the Walt	parking lot for the building parking lot for the building park South Property.	Begun: 01/19/04 @ 13:10 Finished: 01/19/04 @ 14:30		
Drill R	ig: Truck	Mounted]	Rig		Inspector: L	СВ			·····
Drill H	lole Diam	eter: 6.25"			Driller: TDS	- Shawn	Groundwa	ter Depth @ Co	mpletion
Sample	er Type: S	Split Spoon	1	·····	Weather: Su	nny and windy	Date/Time	Depth	Meas. Pt.
Jampi		Sample		Rock	Soil	Sample Description/	Stratigraphic	Mate	rials
Depth	1 No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled
	1	1	1						
1	-								
							Les.	Road Box	
								(0.0')	N
1								:	
	SS-1	(0-2')	24"		32/32/11/5	Mediun, brown, f. SAND, some Gravel,		Cement 1-0'	
						l'opsoil.			
								Native Fill 2-1'	
	55-2	(5-7')	12"		14/26/20/11	Medium brown f SAND some Gravel		Betonite 4-2'	
	00-2	(3-7)	12		14/20/20/11	Hedduil, blown, I. Brind, some Graver.		2" PVC Riser	
							1	Pipe 6-0'	r 🚍
					*		ν.		1/目
								Sand 16-4'	1 🗐
10	SS-3	(10-12')	18"		13/13/18/15	Medium, brown, f. SAND, little Gravel.			
				·	l			2" PVC 10-Slot	
							r	Screen 16-6'	
	55.4	(15.170)	1.01	the second	12/1001//		r.		- =
15	33-4	(13-17)	10		13/100+/-/-	benken rock nieses			- =
-						EOB = 16 feet.	1	·	
		,							
				·					
20				1. A.					
									4 1 1
						-			-
25									4
					· ·	-			- 2
9				· ·		4			4 1
L			·		· ·	1			1
30									1
4									
									4
•			-					2. 2. 7. 7. 7.	4
35			ra					l	
	and	35 to 50	1 <u>5</u> %		RELATIVE	DENSITY	ALL PLASTICITY	STT T 1/4"	
1	some	20 to 35	%		0-4 4-10	loose Low	SILTASILTS	CLAY 1/8"	
4	little	10 to 20	%		10-30	medium Medi	IM, CLAY OLAY	& SILT 1/16"	
		1 10 1 10	/0		30-50	dense High		LAX 1/32" 1/64"	
L					· • • • • •	· · · · · · · · · · · · · · · · · · ·			

45 Newtoxilli Avenu: Newtox,MA 0240 (617) 327-864 Project: Walpole Park South Project No. GHC4 03027 Location No. GHC4 03027 Sheet 1 o Drilling Location: Located in a field in the northeastern most portion of the Walpole Park South Property. Project No. GHC4 03027 Location No. GHC4 011:20 Sheet 1 o Drilling Location: Located in a field in the northeastern most portion of the Walpole Park South Property. Inspector: TWM Differinted: 0.1/19/04 @ 12:50 Sheet 11:20 Drill Hole Diameter: 6.25" Driller: TDS - Shawn Groundwater Depth @ Gompletion Sampler Length: 24" Depth Mea Sample Length: 24" Rob Sample Description/ Blowspere" Description/ Detector Readings Stratigraphic Description Materials Installed Sample Solution Road Box (0.0') Road Box (0.0') Road Box (0.0') Road Box (0.0') Road Box (0.0') Sample Solution Saturated. Startated. Startated. <th>1</th>	1	
Project: Walpole Park South Project No. CHC# 03027 Location No. CHC# 03027 Sheet I o Drilling Location: Location in a field in the northeastern most portion of the Walpole Park South Property. Inspector: TWM Beguin: 01/19/04 @ 11:20 Finished: 01/19/04 @ 11:20 Drill Rig: Truck Mounted Rig Inspector: TDS - Shawn Groundwater Depth @ Gompletion Meather: Sampler Type: Split Spoon Weather: Sunny and windy Date/Time Depth Mea Sampler Length: 24" Temperature: 25" 1/19/04 @ 15:05 11.87 TOC/ Bepth No. Depth Rock Soil Sample Description/ Stratigraphic Materials Depth No. Depth Rock Soil Description/ Stratigraphic Installed SS-1 (0-2') Light-brown, f. SAND, trace c. Sand. Cement 1-0" Medium, brown, f.c SAND, little 2" PVC Riser Pipe 3-0" Sand 13-2"	1	
Drilling Location: Located in a field in the northeastern most portion of the Walpole Park South Property. Begun: 01/19/04 @ 11:20 Finished: 01/19/04 @ 12:50 Drill Rig: Truck Mounted Rig Drill Hole Diameter: 6.25" Driller: TDS - Shawn Groundwater Depth @ Completion Sampler Type: Split Spoon Weather: Sunny and windy Date/Time Depth Meastern Depth <th c<="" th=""><th></th></th>	<th></th>	
Drill Rig: Inspector: TWM Groundwater Depth @ Completion Sampler Length: 24" Driller: TDS - Shawn Groundwater Depth @ Completion Sampler Length: 24" Temperature: 25° Differ: TDS - Shawn Groundwater Depth @ Completion Depth Rock Soil Sampler Length: 24" Temperature: 25° 1/19/04 @ 15:05 11.87 TOCC Depth No. Depth Rock Soil Sample Description/ Stratigraphic Materials No. Depth Rock Soil Biowsper 0" Detector Readings Description Installed Ss:1 (0-2) Light-brown, f. SAND, trace c. Sand. Carnent 1-0" Betonite 2-1" Betonite 2-1" Betonite 2-1" Betonite 2-1" Sand 13-2" Sand 13-2" Sand 13-2" Sand 13-2" Sartated. Strated. Strater.		
Drill Hole Diameter: 6.25" Driller: TDS - Shawn Groundwater Depth @ @ompletion Sampler Length: 24" Weather: Sunny and windy Date/Time Depth Measurement Sampler Length: 24" Rock Soil Sample Description/ Diritie: TDS - Shawn Date/Time Depth Measurement Bepth No. Depth Rock Soil Sample Description/ Stratigraphic Installed Beth No. Depth Recov. RQD Biowspect Detector Readings Description Installed SS-1 (0-2) Light-brown, f. SAND, trace e. Sand. Cement 1-0' Betonite 2-1' SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f-c SAND, little Sand SS-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Saturated. Z" PVC Riser 10 SS-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Saturated. Z" PVC 10-Slot 14 Construct Construct Construct Construct Construct	-	
Sampler Type: Split Spoon Weather: Sunny and windy Date/Time Depth Mea Sampler Length: 24" Temperature: 25° 11/904@15:05 11.87 TOC Depth No. Depth Rock Sample Description/ Stratigraphic Materials No. Depth Rock ROD Blows pet 6" Detector Readings Description Installed Sst:1 (0-2) Light-brown, f. SAND, trace e. Sand. Cement 1-0" Betonite 2-1" Ss:2 (5-7) 16" 17/20/17/16 Medium, brown, f.c SAND, little 2" PVC Riser Ss:3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Saturated. 2" PVC Riser 10 Ss-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Saturated. 2" PVC Io-Slot 15 Competition Competition Competition Competition Competition 10 Ss-3 Competition Competition Competition Competition Saturated. Competition 11		
Sample Length 24" Temperature: 25" 1/19/04 @ 15:05 11:87 TOC/ Depth No. Depth Recor. ROR Soil Sample Description/ Stratigraphic Materials No. Depth Recor. RQD Biows per 6" Detector Readings Description Installed S8-1 (0-2) Light-brown, f. SAND, trace c. Sand. Cement 1-0" Betonite 2-1" Betonite 2-1" S8-2 (5-7) 16" 17/20/17/16 Medium, brown, f-c SAND, little 2" PVC Riser 10 SS-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, 15 S-3 10 SS-3 10 Source 1-3'	Pt.	
Stimple Rock Soil Sample Description/ Detector Readings Stratigraphic Description Materials Installed No Depth Recov. RQD Blowsper6* Detector Readings Description Installed Image: Second control of the secon	rnd	
Depth Rd Depth Rd Biow per 6" Detector Readings Description Installed S SS-1 (0-2)		
SS-1 (0-2')		
SS-1 (0-2) Light-brown, f. SAND, trace c. Sand. Cement 1-0' SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f.c SAND, little Betonite 2-1' SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f.c SAND, little 2" PVC Riser Negative		
S8-1 (0-2) Light-brown, f. SAND, trace c. Sand. Cernent 1-0' S SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f. c SAND, little Gravel. Betonite 2-1' S SS-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Sand 13-2' Sand 13-2' S SS-3 (10-12) 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Saturated. 2" PVC Io-Slot Screen 13-3' Screen 13-3' Screen 13-3'		
SS-1 (0-2) Light-brown, f. SAND, trace c. Sand. SS-1 (0-2) Image: Comparison of the second sec		
SS-1 (0-2')		
S SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f-c SAND, little Betonite 2-1' SS-2 (5-7) 16" 17/20/17/16 Gravel. Gravel. Pipe 3-0' SS-3 (10-12') 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Sand 13-2' Startated. 2" PVC 10-Slot Screen 13-3' Screen 13-3' Image: Startated in the startage in t		
5 SS-2 (5-7) 16" 17/20/17/16 Gravel. Gravel. Pipe 3-0' 10 SS-3 (10-12') 14" 14" 16/17/18/3 Medium, dark-brown, f-m SAND, 10 SS-3 (10-12') 14" 16/17/18/3 15 Image: Constraint of the second of the secon	ni kaisa	
5 SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f-c SAND, little		
5 SS-2 (5-7) 16" 17/20/17/16 Medium, brown, f-c SAND, little 1		
Image: Constraint of the second se		
10 SS-3 (10-12') 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Sand 13-2' Sand 13-2' Sand 13-2' Sand 13-2' <t< th=""><th></th></t<>		
10 SS-3 (10-12') 14" 16/17/18/3 Medium, dark-brown, f-m SAND, Sand 13-2' Saturated. 2" PVC 10-Slot Screen 13-3' Screen 13-3' 15 Screen 13-3' Saturated. Screen 13-3'		
10 SS-3 (10-12') 14" 16/17/18/3 Medium, dark-brown, f-m SAND,		
Image: Saturated in the second sec		
15 2" PVC 10-Slot 10 EOB = 13 feet.		
IS Screen 13-3'		
EOB = 13 feet.		
20		
25		
30		
35		
MINOR COMPONENTS RELATIVE DENSITY OVERALL PLASTICITY		
and 35 to 50% 0-4 very loose Slight Clayey SILT 1/4"		
some 20 to 35% 4-10 loose Low SILT & CLAY 1/8" little 10 to 20% 10.30 modium 10 to 20% 10.30 modium 10 to 20% 10.30<		
trace 1 to 10% 30-50 dense High Silty CLAY 1/32"		
>50 very dense Very High CLAY 1/64"		

JG	EO	Hyd	ROCY	CLE,	INC.		E	nvironme	ntal Drill	ing Log	
425	Newton	ville Avenue	Newton, MA 024	160	-	(617) 527-8074 (617) 527-8668					
Pro	ject:	Walpol	e Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-5	Sheet 1 of 1	
Dri	lling	Locatio	n: Located	l in nort	hwestern s	portion of the	e parking lot for the building	Begun: 01/1	9/04 @ 09:00		
Dri	ll Rig	g: Truck	Mounted 1	Rig	VCSICIII 5	Inspector: T	WM	Finished: 01/19/04 @ 11:10			
Dri	ll Ho	le Diam	eter: 6.25"			Driller: TDS	- Shawn	Groundwa	ater Depth @ Co	mpletion	
San	npler	Type: S	plit Spoon	1		Weather: Su	unny and windy	Date/Time	Depth	Meas. Pt.	
Joan	ipier	Lengui	Sample		Rock	1 emperature:	23° Sample Description/	Stratigraphia	Mata	TOC/Grnd	
De	pth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled	
T				· · ·						ń,	
d								· · · · · · · · · · · · · · · · · · ·	Road Box		
.							$\sum_{i=1}^{N} a_i ^2 = \sum_{i=1}^{N} a_i ^2 $		(0.0')	ΝΙ	
		SS-1	(0-2')			7	Brown f.c.SAND trace Gravel trace				
			(0 =)	1.00	· · ·	· · · · ·	Silt.		Cement 2-0		
T											
									Native Fill 6-2'		
	5	SS-2	(5-7')	9"		9/7/6/16	Very loose, Grey, f-c SAND, trace				
							Gravel, trace Silt.		2" PVC Riser	00000 00000	
	ł								Pipe 10-0'		
3 9	Ī								Betonite 8-6'		
1	Õ [SS-3	(10-12')	17"		11/5/9/14	Very loose, Grey-brown, f SAND, trace				
						-	m Sand, trace c Sand, trace Silt.				
T											
	ł	-									
1	5	SS-4	(15-17)	13"		7/14/14/21	LOOSE BROWN for SAND trace Ground		·		
1						1111121	trace Silt. Saturated.				
	- [t a			,			
	╞								Sand 40-8'		
	\mathbf{h}	00.5	(00.00)								
	' -	55-5	(20-22')	17"		7/12/21/18	Medium, Brown, f-c SAND, trace				
	: †						Gravel, trace Silt, Saturated.		· · · · · · · · · · · · · · · · · · ·		
		· 1									
	Ľ										
25	5 (SS-6	(25-27')	14"		6/19/31/34	Medium, Grey, f-c SAND, trace Silt,				
	┝						Saturated.				
	ŀ					÷	4				
	ŀ								2" PVC 10-Slot		
30		SS-7	(30-32')			25/32/46/38	Dense, Grey-brown, f SAND, trace		Screen 40-10'		
	. [m Sand, trace c Sand, trace Silt,				
	Ļ						Saturated.		· .		
	┝										
35	┢	SS-8	(35-37)	17"		74/20146166	Dense, Grey-brown, f SAND, trace				
	 M	INOR CO	OMPONENT	 S		24/38/40/00 RELATIVI	E DENSITY				
		and	35 to 50%	6		0-4	very loose Sligh	t Clayev	SILT 1/4"		
		some little	20 to 35% 10 to 20%	6		4-10 10-30	loose Low	SILT &	CLAY 1/8"		
		trace	1 to 10%	6		30-50	dense High	ium CLAY	& SILT 1/16" LAY 1/32"		
						>50	very dense Very	High CLAY	1/64"		

'roject:	Walpol						Project No. GHC# 03027	Boring No. GHC-5	She	et of
Depth	No.	Sample Depth	Recov.	Rock rqd	Soil Blows per 6"	Sample Description	Stratigraphic Description	Mat	terials stalled	;
40	 	(40-42')	12"		28/48/29/19	Dense, Brown, f SAND, little Silt, trace Gravel, trace m Sand, trace c Sand, Moist.		2" PVC 10-Slo Screen 40-10'		
			ļ			EOB = 40 feet.			1	T
45										
50										
55										
F										
60										j.
65										
70										
75										
F										
<u>80</u>		OMPONENI				RELATIVE DENSITY	OVERALL PLAST			
	and some	35 to 50% 20 to 35%	~ %		•	0-4 very loose 4-10 loose	Slight Low	<u>ICITT</u> Clayey SILT SILT & CLAY	1/4" 1/8"	
	little trace	10 to 20% 1 to 10%	6 %			10-30 medium 30-50 dense	Medium High	CLAY & SILT 1 Silty CLAY 1	1/16" 1/32"	

1	Geo	Hyd	ROCYC	CLE,	INC.	······································	E	nvironme	ntal Drill	ing Log	5	
	425 Newtor	nville Avenue	Newton, MA 024	60		(617) 527-8074 (617) 527-8668						
N.	Project:	Walpol	le Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-6	Sheet 1 of 1		
	Drilling	Locatio	n: Located South	l next to Proper	some pi tv.	cnic tables in t	he center of the Walpole Park	Begun: 01/19/04 @ 11:15 Finished: 01/19/04 @ 12:50				
	Drill Ri	g: Truck	Mounted 1	Rig		Inspector: LC	B					
100	Drill Ho	ole Diam	eter: 6.25"		· · ·	Driller: TDS	- Shawn	Groundwa	ater Depth @ Co	mpletion	٦	
	Sampler	r Type: S	Split Spoon	l		Weather: Su	nny and windy	Date/Time	Depth	Meas. Pt.	1	
	Sampler	r Length:	: 24"			Temperature:	25°	1/19/04 @ 15:20	8.71	TOC/Grnd	٦	
			Sample		Rock	Soil	Sample Description/	Stratigraphic	Mate	rials		
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	alled		
	·				1						٦	
1										,		
									Road Box	¢		
							1		(0.0)	k		
									(0.0)			
		60.1	(0.0)	0.41		10/15/04/00						
)	55-1	(0-2')	24"		19/15/24/39	Medium, brown, f-m SAND,		Cement 1-0			
							some Gravel, Topsoil.					
	,								Native Fill 2-1'	_	8	
					·····				Betonite 3-2'	1 K		
	5	SS-2	(5-7')	20"		9/23/26/34	Medium, brown, f-c SAND, some					
							Gravel, broken rock pieces.		2" PVC Riser	7 =		
<u>/</u> ·									Pipe 4-0'			
	-									7/目		
								t .	Sand 19-3'	7 🗐		
	10	SS-3	(10-12')	24"	1	7/8/12/14	Loose, brown, f-c SAND, little gravel.			1 =		
							Saturated			- 1		
				-			Jaturato.		2" BVC 10 Slot			
				·					2 PVC 10-Slot	-1 =		
									Screen 19-4			
			(1.5. 1.5.)									
a See 1	15	SS-4	(15-17')	4"		60+/-/-/-	Dense, brown, f-m SAND, broken					
						· · · · · · · · · · · · · · · · · · ·	rock, Saturated.					
1006	-											
	20						EOB = 19 feet.	-				
				· .						7		
										-		
							1			-		
						· · · · · ·	· · ·				,	
	25											
100000												
						<u></u>				-		
. SHEAR							4					
							4					
	30	ų					4					
٣											•	
L												
	ļ								÷			
Ÿ												
L	35											
]	MINOR C	OMPONENT	rs í		RELAT	IVE DENSITY OVERA	LL PLASTICITY		· ·	-	
		and	35 to 50	%		0-4	very loose Slight	Clayey SI	LT 1/4"			
T		some	20 to 359	%		4-10	loose Low	SILT & C	CLAY 1/8"			
		trace	10 to 205	70 %		10-30	dense Ut-1	n CLAY &	SILT 1/16"			
		uuvv	1 10 10			>50-50	very dense Very H	igh CLAY	1/64"			
							, •••iyii			· · · · · · · · · · · · · · · · · · ·		

	Geo	Hydi	ROCYC	LE,]	[NC.		E	nvironme	ntal Drilli	ng Log
	425 Newtony	ville Avenue 1	Newton, MA 0246	0		(617) 527-8074 (617) 527-8668		~.		
-	Project:	Walpol	e Park Sout	th				Project No. GHC# 03027	Location No. GHC-7	Sheet 1 of 1
	Drilling	Location	n: Located Park S	in a gra South Pr	assy area roperty.	in the southea	stern portion of the Walpole	Begun: 01/1 Finished: 01/1	9/04 @ 09:10 9/04 @ 10:45	
-	Drill Rig	g: Truck	Mounted R	lig		Inspector: LC	B	<u> </u>		
	Drill Ho	le Diame	eter: 6.25"	-		Driller: TDS	- Shawn	Groundwa	ater Depth @ Con	Apreción
	Sampler	Type: S	plit Spoon			Weather: Su	nny and windy	1/10/04 @ 15:13	16.81	TOC/Grnd
	Sampler	Lengui:	24 Semple		Back	Soil	23 Sample Description/	Stratigraphic	Mater	ials
	Denth	N-	Durt		ROCK	Blave agr 6"	Detector Readings	Description	Instal	led
-	Deptin	NO.	Depin	Recov.	RQD	Blows per 0	Detector returnings	Description		
-										
									Road Box	÷
-									(0.0')	
-1										
		00.1	(0.20)	15"		142/172/ /	Very dense brown frm SAND trace		Cement 1-0'	
		55-1	(0-2)	15		143/1/2/-/-	Grovel	,		
							Glavei.			
							4			
	e l	66.2	(5.71)	15"		8/0/10/10	Loose brown f SAND		Native Fill 6-1'	
	5	33-2	(3-7)	15		8/9/10/10				
					ł					
604						-				
					· · · ·		4		Betonite 8-6'	
~			(10.100)	1.68		7/0/10/10			Betomte 8-0	
in and	10	SS-3	(10-12')	16"		7/9/12/10	Medium, brown, I. SAND.		·	
							- · · · · · · · · · · · · · · · · · · ·			
-11									2" PVC Riser	
		ļ							Pipe 10-0	- = 1
					<u> </u>					- =
	15	SS-4	(15-17')	16"		3/6/3/3	Loose, brown, f. SAND, Saturated.			- = 1
		-						$\mathcal{T}_{ij} = \mathcal{T}_{ij} = \mathcal{L}_{ij} = \mathcal{L}_{ij}$		
					5		4		0 1 25 8l	
-					· · ·				Sand 25-8	- =
1										
	20	SS-5	(20-22')	24"		10/10/31/16	Medium, brown, f-m SAND.			- 2
					<u> </u>					-/=
									2" PVC 10-Slot	- =
								• • • •	Screen 25-10	
		ļ			_		4			- =
	25	SS-6	(25-27')	24"		18/30/12/13	Medium, brown, f-c SAND, some		6	
1					-		Gravel.			4
							EOB = 25 feet.			-
			ļ							-
-			ļ	· · · · · · · · · · · · · · · · · · ·						-
	30									-
					_					-
			 							-
						· ·	- · · ·			-
	ľ		ļ							-
	35	L	1	<u> </u>						
		MINOR	COMPONEN	<u>TS</u>		RELATI	VE DENSITY OVE	KALL PLASTICITY	SILT 1/4"	
		and	35 to 50 20 to 34	5%		0-4 4-10	loose Low	SILT &	CLAY 1/8"	
	L	little	10 to 20)%		10-30	medium Med	ium CLAY	& SILT 1/16"	
		trace	1 to 10	0%		30-50	dense High	n Silty C	LAY 1/32"	
						>50	very dense Very	riign CLAY	1/04"	

M

A TETR	A S S C) D C I DMPAN	ATES					WELL	NUMBER RIZ-1 PAGE 1 OF 1
CLIEN	T Walpo	ole Pa	rk South Tru	ıst			PROJECT NAME Walpole Park So	uth	
PROJ		BER					PROJECT LOCATION Walpole, Ma	assachusetts	
DATE	STARTE	D 10	/14/05		COMP	LETED _10/14/05	GROUND ELEVATION	HOLE	SIZE <u>2</u> "
DRILL	ING CON	TRAC	TOR Soil	Explora	ation		GROUND WATER LEVELS:		
DRILL	ING MET	HOD	Hollow Ste	m Aug	er		AT TIME OF DRILLING		
LOGG	ED BY	Dimitri	Gounis		CHEC	KED BY	AT END OF DRILLING		
NOTE	s						AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		M	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
 		50	11-15-52- 93 (67) 42-30		7.0	Tan course to very course Tan medium to fine sand,	e sand with some gravel, moist, no odor uniform, wet, no odor	0	Backfill: Cuttings PVC Riser Bentonite
 - 15 		100	11-42-40- 45 (82)		12.5	boulder Tan fine sand with some no odor	plasticity with gravel and very course sand	, wet, 0.5	Filter Pack PVC Screen
 		0			21.0	Refusal at 21' suspected	pedrock	0	
						В	ottom of hole at 32.0 feet.		

A TETR	A S S A TECH C	0 0 C I 0 MPAN	ATES			W	ELL	NUMBER RIZ-2 PAGE 1 OF 1
CLIEN	IT <u>Walp</u>	ole Pai	rk South Tru	ust		PROJECT NAME Walpole Park South		
PROJ			14 4 10 5			PROJECT LOCATION Walpole, Massach		
DATE	STARTE	D 10	/14/05		COMPLETED <u>10/14/05</u>		HOLE	SIZE <u>2"</u>
			IUR <u>501</u>			GROUND WATER LEVELS:		
DRILL		HUD .	Hollow Ste	em Aug				
LOGG		Dimitri	Gouris					
NOTE	s	1					1	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	M	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		33	50		Tan madium to fine sand	and gravel, dry, no odor	0	Backfill: Cuttings Bentonite
 <u>5</u> 		0		\$ • •	Gravel and cobbles off au fine dry sand 7.0	iger, some angular gravel, some tan medium to	_	
 - 10 		33	6-12-22-12 (34)		Tan coarse sand and gra	vel with fine sand, wet, no odor	0	Filter Pack PVC Screen
 <u>15</u> 		25	70		Tan coarse sand and gra odor, auger refusal at 15.	vel with fines, slightly plastic/cohesive, wet, no 5'	0	
					В	ottom of hole at 27.0 feet.		

A TETF	RIZZO ASSO RATECHICO) D C I DMPAN	ATES				WELL	PAGE 1 OF 2
CLIEN	NT Walpo	ole Pa	rk South Tru	ust		PROJECT NAME _ Walpole Park Sou	th	
PROJ	ECT NUM	BER				PROJECT LOCATION Walpole, Mas	ssachusetts	
DATE	STARTE	D 10	/14/05		COMPLETED _10/14/05	GROUND ELEVATION	HOLES	SIZE _2"
DRILI		TRAC	TOR Soil	Explora	ation	GROUND WATER LEVELS:		
DRILI	ING MET	HOD	Hollow Ste	m Aug	er	AT TIME OF DRILLING		
LOGO	GED BY _	Dimitri	Gounis		CHECKED BY	AT END OF DRILLING		
NOTE	S					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MAT	FERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	-				Brown uniform medium sar 3.0	nd fill, moist, no odor, off auger	0	
		75	5-7-8-6 (15)	-	5.0 Brown uniform medium to f	0	Backfill: Cuttings PVC Riser	
 _ 10 		50	6-7-9-12 (16)		Brown/tan coarse sand and	0		
 _ <u>15</u> 		33	1-6-11-12 (17)		Brown/tan coarse sand and	fine sand with some gravel, wet, no odor	0	Bentonite
 - 20 		75	3-6-8-21 (14)		Brown/tan coarse sand with	n some fines, wet, no odor	0	
109.641 01.00 01.00					Brown/tan coarse sand to v wet, no odor 27.0	ery corase sand and gravel with some fine	es, 0	PVC Screen Filter Pack
		83	7-11-9-11 (20)		Brown/tan coarse sand to v odor 32.0	ery corase sand and gravel with fines, we	t, no 0	
GENEKAL B								

RIZZO

ASSOCIATES

A TETRA TECH COMPANY

WELL NUMBER RIZ-3 PAGE 2 OF 2

	CLIEN PROJI	T <u>Walpo</u> ECT NUM	ble Par BER _	k South Tru	ust	PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachu	PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachusetts				
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM			
3ENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06			0			Mounding prevents acurate sample from this depth, no soil desc. End or boring at 40', no refusal. 42.0 Bottom of hole at 25.0 feet.	0				

A TETR	A S S A TECH C) 0 C I 0 MPAN	ATES			BORING NUMBER RIZ PAGE 1 (Z-4 OF 1			
CLIEN	IT Walp	ole Pa	rk South Tru	ust		PROJECT NAME Walpole Park South				
PROJ	ECT NUN	IBER				PROJECT LOCATION Walpole, Massachusetts				
DATE	STARTE	D 10)/14/05		COMPLETED 10/14/05	GROUND ELEVATION HOLE SIZE _2"				
DRILL	ING CON	ITRAC	TOR Soil	Explora	ation	GROUND WATER LEVELS:				
DRILL	ING MET	HOD	Hollow Ste	em Aug	er	AT TIME OF DRILLING				
LOGG	ED BY _	Dimitr	i Gounis		CHECKED BY	AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)			
					Brown medium to fine sai	nd and gravel, dry, no odor, off auger	0			
5		75	25-30-27- 23 (57)		Brown medium to fine sai	nd and gravel, dry, no odor	0			
 10										
		33	17-27-27- 29 (54)		Brown medium to fine sau Auger refusal at 13' 12.0	nd and gravel with some coarse sand few orange mottles, moist, no odor.	0			
						Bottom of hole at 27.0 feet.				

A TET	RIZZ ASS RATECH C	0 0 C I 0 MPAN	ATES			BORING NUMBER RI PAGE 1	Z-5 OF 1			
CLIE	NT Walp	<u>ole P</u> a	<u>rk Sout</u> h Tru	ust		PROJECT NAME Walpole Park South				
PRO	JECT NUN	IBER				PROJECT LOCATION Walpole, Massachusetts				
DAT	E STARTE	D _2/*	16/06		COMPLETED _2/16/06	GROUND ELEVATION HOLE SIZE _6"				
DRIL	LING CON	ITRAC	TOR Geo	search		GROUND WATER LEVELS:				
DRIL	LING MET	HOD	Hollow Ste	em Aug	er	AT TIME OF DRILLING				
LOG	GED BY _	Chris I	Nitchie		CHECKED BY	AT END OF DRILLING				
NOT	ES					AFTER DRILLING				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)			
-		50	8-9-12-9 (21)	• • • • • • • • • • • • • • • • • • •	Brown medium to f	ne uniform sand, moist, no odor	0			
	-									
-		25	16-18-20- 25 (38)		Brown medium to fine uniform sand with angular gravel, dry, no odor					
- - 10										
-		0	6-21-45-30 (66)		No recovery, brown medium to fine uniform sand with angular gravel off auger					
- - 15	-									
_		83	6-9-11-7 (20)		Brown/tan medium	sand uniform with little gravel, moist, no odor	0			
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06	-					Bottom of hole at 20.0 feet.				

	A TETR	A S S C) D C I DMPAN	ATES			BORING NUMBER RI PAGE 1	Z-6 OF 1			
	CLIEN PROJ	IT <u>Walpo</u> ECT NUM	ole Pa BER	rk South Tru	ust		PROJECT NAME <u>Walpole Park South</u> PROJECT LOCATION Walpole, Massachusetts				
	DATE DRILL	STARTE	D _2/' TRAC	16/06 TOR <u>Geo</u>	search	COMPLETED _2/16/06	GROUND ELEVATION HOLE SIZE _6"				
	DRILL LOGG NOTE	ING MET iED BY _ S	HOD Chris I	Hollow Ste	m Aug	CHECKED BY	AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING				
	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)			
•	 		100	6-10-9-10 (19)		12" loamy top soil, 12" brov	wn medium to coarse sand and gravel with some fines, moist to wet, no odor.	0			
-	 		33	10-9-8-7 (17)		Brown medium to fine sand	Brown medium to fine sand and gravel with some organic material (plant), wet at bottom of spoon 2.9				
•	 										
			83	3-9-10-13 (19)		Tan uniform medium to fine refusal 12.0	Tan uniform medium to fine sand, moist, no odor, boring ended due to proximity to overhead utilities, no refusal				
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06											

A TETR	RIZZ ASS A TECH C	О О С І омрал	ATES			BORING NUMBER RI PAGE 1	Z-7 OF 1			
		olo Do	rk South Tri	t		DDO JECT NAME Walcolo Dark South				
PRO.I	FCT NUM			151		PROJECT OCATION Walpole Massachusetts	PROJECT NAME Walpole Park South			
DATE	STARTE	D 2/	16/06		COMPLETED 2/16/00	6 GROUND ELEVATION HOLE SIZE 6"				
DRILL	ING CON	ITRAC	TOR Geo	search		GROUND WATER LEVELS:				
DRILL	ING MET	HOD	Hollow Ste	m Aug	er	AT TIME OF DRILLING				
LOGG	ED BY _	Chris	Nitchie		CHECKED BY	AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
b DEPTH (ft) (ft) (ft) (ft) SAMPLE TYPE NUMBER NUMBER RECOVERY % BLOW COUNTS (N VALUE) (N VALUE) GRAPHIC LOG						MATERIAL DESCRIPTION	PID (ppm)			
					Tan to light brow	vn medium sand and gravel with some fines, wet (snow melt), no odor				
 		25	5-5-6-7 (11)		Brown medium t	to coarse sand with fines and some gravel, wet (snow melt), no odor	0			
 _ <u>10</u>			14 42 62		Tan/Prown mod	lium to coorse cand with fines and gravel, wet no oder. Likely pear ten of water table				
 15		42	30 (106)		12.0		0			
		50	51		Tan/Brown unifc refusal at 18' 17.0	orm coarse sand with some fines transitioning to angular gravel with fines. Auguer	0			
						Bottom of hole at 18.0 feet.				

GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06

T	TET	RAT	ECH RIZ	220				VVE		PAGE 1 OF 1
	T Walno	ole Pa	rk South Tru	st			PROJECT NAME Walnole	Park South		
PROJE		BER	12700058				PROJECT LOCATION Wal	pole. Massachu	setts	
DATE	STARTE	D 12	/5/07	COMPLETED	12/5/0	07	GROUND ELEVATION		IOLE S	SIZE 2"
DRILL	ING CON	TRAC	TOR Geos	search			GROUND WATER LEVELS:			
DRILL	ING MET	HOD	Hollow Ster	m Auger			AT TIME OF DRILLING	G _24'		
LOGG	ED BY _	_uke T	ulley	CHECKED BY			AT END OF DRILLING			
NOTES	S						AFTER DRILLING	-		
DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTIC	DN	PID (ppm)	WELL DIAGRAM
	S-1	50	6-6-8-5			2.0 Dry, t	an, well sorted medium angula	r sand, trace	12.3	KZZ Flush Mounted Road
		00	5-3-4-7		<u> </u>		ark brown, poorly sorted coars		0.4	Box
	5-2	90	(7)			<u>6.0</u> <u>grave</u>	ark brown, poony sorreu coars		0.1	
10		00	6-13-21-18	Sample taken and		9.0Dry, li	ght tan, well sorted fine sand	/	10.4	
	5-3	00	(34)	submitted for VOC	600	11.0 Dry, g	ray, large gravel, little sand		12.4	
	0.4	00	12-23-23-	from 9'-11'		14.0		nd some silt		■ 2" PVC
	5-4	80	30	(RIZ-8-9'-11')		rocky	sown, poony soned coarse sa		0	Capped Riser
20	0.5	00	11-18-15-		<u>.</u>	19.0	an poorly sorted coarse and fir		0.1	
	5-5	80	17 (33)		*****	grave	l, rocky		0.1	
	S-6	50	14-23-27-			24.0	prown, large gravel and rocks v	with coarse	0.1	
			21 (50)		******	sand.	Auger refusal at 27', bedrock			
30										→ Bentonite Seal
RING LOGS.GPJ GINT US.GDT 12/11/07										Sand Filter Pack
GENERAL BH / TP / WELL BO										 2" Machine Slotted Well Screen 2" PVC Plug

Γ

WELL NUMBER RIZ-8

F	TET	RAT	ECH RIZZO				WELL N	PAGE 1 OF 1		
CLIEN	T Walp	ole Par	k South Trust			PROJECT NAME Walpole Park South				
PROJ	ECT NUN	IBER _	12700058			PROJECT LOCATION Wa	alpole, Massachusetts			
DATE	STARTE	D <u>12</u>	/6/07	COMPLETED 1	2/6/07	GROUND ELEVATION	HOLE S	SIZE _2"		
DRILL	ING CON	ITRAC	TOR Geosearc	n		GROUND WATER LEVELS	S:			
DRILL	ING MET	HOD	Hollow Stem Au	ger		AT TIME OF DRILLI	NG N/A			
LOGG	ED BY _	Luke T	ulley	_ CHECKED BY _			IG			
NOTE	s					AFTER DRILLING				
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIA	L DESCRIPTION				
								Flush Mounted Road Box 42" PVC Canned Picer		
 - 10										
								Sand Filter Pack 2" Machine Slotted Well Screen		

	L TET	'RA 1		220			WELL	PAGE 1 OF 1			
CLIEN		ole Pa	rk South Tru	st			PROJECT NAME Walpole Park South				
PRUJ			12700058		12/6/0			217E 0"			
					12/0/0						
DRILL			IUR Geos								
DRILL			HOIIOW Ster								
LUGU		Luke I	ulley								
NOTE	.o	1	1				1				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	(mqq) OIA	WELL DIAGRAM			
	S-1	50	3-2-3-4 (5)		<u></u>	Dry, brown, pete, some poorly sorted coarse sa gravel 2.0	and 0	Konted Road Box			
 	S-2	15	9-10-12-18 (22)			 Dry, brown to tan, poorly sorted coarse angular sand with gravel, some large rocks 0 	0				
 - 10 	S-3	80	3-5-9-10 (14)	Sample taken and submitted for VOC and MCP-14 analysis from 9'-11' (RIZ-9-9'-11')		Dry, tan uniform coarse sand with some fines transitioning to angular gravel with fines	0	■ 2" PVC Capped Riser			
 _ <u>15</u>	S-4	50	34-19-13-7 (32)			14.0 Wet, tan, well sorted coarse sand with angular gravel. Soft bedrock at 16'. 16.0	0				
20 20 20 20 25 25	-							Bentonite Seal			
BH/TP/WELL BORING LOGS. GPJ GIN								 Sand Filter Pack 2" Machine Slotted Well Screen 			
GENERA 35						Bottom of hole at 35.0 feet.		2" PVC Plug			
WELL NUMBER RIZ-10

PAGE	1	OF
------	---	----

TETRA TECH RIZZO

CLIENT Walpole Park South Trust

PROJECT NUMBER 12700058

ŦŁ

PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachusetts

AT TIME OF DRILLING 39'

AT END OF DRILLING _---

DATE STARTED 12/6/07 COMPLETED 12/6/07 GROUND ELEVATION HOLE SIZE 2"

GROUND WATER LEVELS:

DRILLING CONTRACTOR Geosearch

DRILLING METHOD Hollow Stem Auger

LOGGED BY Luke Tulley CHECKED BY

N	NOTES AFTER DRILLING								
	DEPTH (ft) SAMPLE TYPE NUMBER NUMBER RECOVERY % BLOW COUNTS (N VALUE)		NUMBER NU		MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM		
	_	S-1	50	5-7-7-8 (14)			Dry, tan/brown, poorly sorted coarse sand and 2.0 gravel	0	Mounted Road Box
-	-	S-2	75	5-7-7-4 (14)			4.0 Dry, tan, well sorted medium to fine sand, trace 6.0 gravel	0	
_	- 10 -	S-3	80	2-3-3-4 (6)			9.0	0	
-	-	S-4	85	3-4-3-4 (7)			14.0	0	✓2" PVC Capped Riser
_	- 20	S-5	25	5-8-15-13 (23)			19.0 Dry, tan, poorly sorted medium to fine sand and 21.0 medium angular gravel	0	-
-	-	S-6	12	-		<u>, .</u>	23.0 24.0 Dry, tan, poorly sorted medium to fine sand and 25.0 large angular gravel	0	
12/11/07	<u>30</u>	S-7	30	9-23			29.0 Dry, tan, poorly sorted coarse sand and angular 31.0 gravel	0	
	_								Bentonite Seal
ORING LOGS.GP	40 _	S-8	50	11-16-11- 20 (27)			39.0 Wet, brown, poorly sorted coarse to fine sand and 41.0 gravel, rocky	0	Sand Filter
RAL BH / TP / WELL E	_	S-9	15		Sample taken and submitted for VOC and MCP-14 analysis from 44-46' (RIZ-10-44'-46')		44.0 Wet, brown, poorly sorted coarse to fine sand and and gravel 46.0 gravel Bottom of hole at 46.0 feet.	0	Slotted Well Screen
ENE									

Appendix E

Laboratory Certificates of Analysis

ANALYTICAL REPORT

Lab Number:	L0718979
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ray Johnson
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058
Report Date:	01/03/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08

Alpha Sample ID	Client ID	Sample Location
L0718979-01	RIZ-8	WALPOLE, MA
L0718979-02	RIZ-10	WALPOLE, MA
L0718979-03	RIZ-9	WALPOLE, MA
L0718979-04	GHC-6	WALPOLE, MA
L0718979-05	MW-9	WALPOLE, MA
L0718979-06	RIZ-3	WALPOLE, MA
L0718979-07	MW-3	WALPOLE, MA

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An at	An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status					
А	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES				
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES				
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES				
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A				
A res	ponse to questions E and F is required for "Presumptive Certainty" status					
	<u></u>					
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO				
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700058
 Lab Number:
 L0718979

 Report Date:
 01/03/08

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question E:

The WG307181-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane and the LCS % recovery for 1,4-Dioxane are below the individual acceptance criteria for the compounds, but within the overall method

allowances. These are both difficult analytes.

The WG307181-1/2 LCS/LCSD % RPD for 1,4-Dioxane is above the method acceptance criteria.

The WG307363-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane are below and the LCSD % recoveries for Acetone (a difficult analyte) and 1,4-Dioxane are above the individual acceptance criteria for the compounds, but within the overall method allowances.

Metals

L0718979-01 through -07 were diluted 4x for the analysis of all 6020A analytes due to non-target analyte interference.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Date: 01/03/08

ORGANICS

VOLATILES

WALPOLE PARK SOUTH

01030816:13

L0718979

01/03/08

Lab Number: Report Date:

Project Number: 12700058

Project Name:

Lab ID:	L0718979-01	Date Collected:	12/19/07 11:10
Client ID:	RIZ-8	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	60,8260B		
Analytical Date:	12/27/07 17:23		
Analyst:	GK		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Project Number: 12700058

Lab ID:	L0718979-01				Date Collected:	12/19/07 11:10
Client ID:	RIZ-8				Date Received:	12/21/07
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-01 RIZ-8 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/19/07 11:10 12/21/07 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	95		70-130
4-Bromofluorobenzene	98		70-130
Dibromofluoromethane	105		70-130

01030816:13 Lab Number:

Report Date:

L0718979

01/03/08

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-02 Date Collected: 12/19/07 12:40 Client ID: Date Received: **RIZ-10** 12/21/07 Field Prep: WALPOLE, MA Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 18:01 Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID:	L0718979-02				Date Collected:	12/19/07 12:4
Client ID:	RIZ-10				Date Received:	12/21/07
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
1 4-Dichlorobenzene		ND		ug/l	25	1
Methyl tert butyl ether		1.2		ug/l	1.0	1
n/m-Xylene		ND		ug/l	1.0	1
		ND		ug/l	1.0	1
cis-1 2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1.2.3-Trichloropropaga		ND		ug/l	5.0	1
Styropo		ND		ug/l	1.0	1
Dichlorodifluoromothano		ND		ug/l	5.0	1
				ug/I	5.0	
Carbon disulfido		ND		ug/I	5.0	1
2 Putanono		ND		ug/I	5.0	1
4-Methyl-2-pontanono		ND		ug/l	5.0	1
2-Hexanono		ND		ug/l	5.0	1
Promochloromothono		ND		ug/I	3.0	1
Totrabydrofuran		ND		ug/l	2.5	1
		ND		ug/I	25	1
1.2 Dibromosthana		ND		ug/i	2.5	1
		ND		ug/i	2.0	1
1,3-Dichloropropane		ND		ug/I	2.5	1
Promohonzono		ND		ug/i	0.50	1
Bromobenzene		ND		ug/i	2.5	1
n-Butylbenzene		ND		ug/i	0.50	1
sec-Butylbenzene		ND		ug/i	0.50	1
tert-Butyibenzene		ND		ug/i	2.5	1
o-Chiorotoluene		ND		ug/i	2.5	1
p-Chlorotoluene		ND		ug/I	2.5	1
1,2-Dibromo-3-chioropropa	ane	ND		ug/i	2.5	1
Hexachlorobutadiene		ND		ug/I	0.60	1
Isopropyibenzene		ND		ug/l	0.50	1
p-isopropyltoluene		ND		ug/l	0.50	1
		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-02 RIZ-10 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/19/07 12: 12/21/07 Field Filtered	40 I
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	y MCP 8260B						
Isopropyl Ether		ND		ug/l	2.0	1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1	
Tertiary-Amyl Methyl Ethe	r	ND		ug/l	2.0	1	
1,4-Dioxane		ND		ug/l	250	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	99		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-03 Date Collected: 12/19/07 13:40 Client ID: RIZ-9 Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered Matrix: Water Anaytical Method: 60,8260B 12/27/07 18:40 Analytical Date: Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID: Client ID:	L0718979-03 RIZ-9				Date Collected: Date Received:	12/19/07 13:40 12/21/07
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

12700058

Project Number:

(SOUTH

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-03 RIZ-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/19/07 13:40 12/21/07 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-04 Date Collected: 12/19/07 16:00 Client ID: Date Received: GHC-6 12/21/07 Field Prep: WALPOLE, MA Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 19:18 Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID:	L0718979-04				Date Collected:	12/19/07 16:0
Client ID:	GHC-6				Date Received:	12/21/07
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
o/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
1-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
ert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ine	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
sopropylbenzene		ND		ug/l	0.50	1
o-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
ı-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
I,2,4-Trimethylbenzene		ND		ug/l	2.5	1
- - thyl ether		ND		ua/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-04 GHC-6 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/19/07 16:00 12/21/07 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-05 Date Collected: 12/20/07 09:00 Client ID: MW-9 Date Received: 12/21/07 WALPOLE, MA Field Prep: Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 19:57 Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Project Number: 12700058

Lab ID:	L0718979-05				Date Collected:	12/20/07 09:00
Client ID:	MW-9				Date Received:	12/21/07
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		5.1		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-lsopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-05 MW-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/20/07 09:00 12/21/07 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	101		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab ID:	L0718979-06	Date Collected:	12/20/07 10:30
Client ID:	RIZ-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	60,8260B		
Analytical Date:	12/27/07 20:36		
Analyst:	GK		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID:	L0718979-06				Date Collected:	12/20/07 10:30
Sample Location:					Field Prop:	12/21/07 Field Filtered
Sample Location.					riela riep.	Field Fillered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ine	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

12700058

Project Number:

01030816:13

L0718979

Report Date: 01/03/08

Lab Number:

Lab ID: Client ID: Sample Location:	L0718979-06 RIZ-3 WALPOLE, MA				Date Collected: Date Received: Field Prep:	12/20/07 10 12/21/07 Field Filter	0:30 ed
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	MCP 8260B						
Isopropyl Ether		ND		ug/l	2.0	1	
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1	
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1	
1,4-Dioxane		ND		ug/l	250	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-07 Date Collected: 12/20/07 11:25 Client ID: MW-3 Date Received: 12/21/07 Field Prep: Sample Location: WALPOLE, MA Field Filtered Matrix: Water Anaytical Method: 60,8260B 12/28/07 21:58 Analytical Date: Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

l ah ID:	1 0718979-07				Date Collected:	12/20/07 11.4
Client ID:	MW-3				Date Received:	12/20/07 11.2
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Denometer		Desult	Qualifian	l luite		Dilution Fostor
Volotilo Organico hu		Result	Qualifier	Units	RDL	Dilution Factor
volatile Organics by						
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		1.7		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethvl ether		ND		ug/l	2.5	1

12700058

Project Number:

01030816:13 ber: L0718979

01/03/08

Report Date:

Lab Number:

Lab ID: Client ID: Sample Location:	L0718979-07 MW-3 WALPOLE, MA				Date Collected: Date Received: Field Prep:	: 12/20/07 11:25 : 12/21/07 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	107		70-130	

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

arameter	Result	Qualifie	r U	nits	RDL
olatile Organics by MCP 8260B for	sample(s):	01-06	Batch:	WG	307181-3
Methylana ablarida	ND			ua/I	5.0
				ug/i	5.0
I, I-Dichloroethane				ug/i	0.75
	ND			ug/i	0.75
	ND			ug/i	0.50
1,2-Dichloropropane	ND			ug/I	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND		1	ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

arameter	Result	Qualifie	r U	nits	RDL
olatile Organics by MCP 8260B	for sample(s):	01-06	Batch:	WG	307181-3
Methyl tert butyl ether	ND			ua/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ua/l	5.0
1,2.3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropane	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND			ug/l	0.50

Project Number: 127

12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

Parameter	Result Qı	ualifier Unit	s RDL	
olatile Organics by MCP 8260	B for sample(s): 0	1-06 Batch: V	VG307181-3	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Isopropyl Ether	ND	ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,4-Dioxane	ND	ug/l	250	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	107	70-130

Project Number: 12700058

00050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

Diatile Organics by MCP 8260B fo Methylene chloride	or sample(s): ND ND	07	Batch:	WG3073	863-3	
Methylene chloride	ND ND					
	ND			ug/l	5.0	
1.1 Dichlaraathana	ND			ug/i	0.75	
	ND			ug/i	0.75	
	ND			ug/i	0.75	
Carbon tetrachloride	ND			ug/l	0.50	
1,2-Dichloropropane	ND			ug/l	1.8	
Dibromochloromethane	ND			ug/l	0.50	
1,1,2-Trichloroethane	ND			ug/l	0.75	
Tetrachloroethene	ND			ug/l	0.50	
Chlorobenzene	ND			ug/l	0.50	
Trichlorofluoromethane	ND			ug/l	2.5	
1,2-Dichloroethane	ND			ug/l	0.50	
1,1,1-Trichloroethane	ND			ug/l	0.50	
Bromodichloromethane	ND			ug/l	0.50	
trans-1,3-Dichloropropene	ND			ug/l	0.50	
cis-1,3-Dichloropropene	ND			ug/l	0.50	
1,1-Dichloropropene	ND			ug/l	2.5	
Bromoform	ND			ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50	
Benzene	ND			ug/l	0.50	
Toluene	ND			ug/l	0.75	
Ethylbenzene	ND			ug/l	0.50	
Chloromethane	ND			ug/l	2.5	
Bromomethane	ND			ug/l	1.0	
Vinyl chloride	ND			ug/l	1.0	
Chloroethane	ND			ug/l	1.0	
1,1-Dichloroethene	ND			ug/l	0.50	
trans-1,2-Dichloroethene	ND			ug/l	0.75	
Trichloroethene	ND			ug/l	0.50	
1,2-Dichlorobenzene	ND			ug/l	2.5	
1,3-Dichlorobenzene	ND			ug/l	2.5	
1,4-Dichlorobenzene	ND			ug/l	2.5	

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

Parameter	Result	Qual	lifier	Units	RDL
/olatile Organics by MCP 8260B for	sample(s):	07	Batch:	WG307	363-3
•• • • • • • • •	ND				1.0
Methyl tert butyl ether	ND			ug/I	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropane	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND			ug/l	0.50

Project Number: 12

12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

Parameter	Result	Qual	ifier	Units	RDL	
Volatile Organics by MCP 826	0B for sample(s):	07	Batch:	WG3073	363-3	
1,2,3-Trichlorobenzene	ND			ug/l	2.5	
1,2,4-Trichlorobenzene	ND			ug/l	2.5	
1,3,5-Trimethylbenzene	ND			ug/l	2.5	
1,2,4-Trimethylbenzene	ND			ug/l	2.5	
Ethyl ether	ND			ug/l	2.5	
Isopropyl Ether	ND			ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND			ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND			ug/l	2.0	
1,4-Dioxane	ND			ug/l	250	

			Acceptance		
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	108		70-130		
Toluene-d8	95		70-130		
4-Bromofluorobenzene	94		70-130		
Dibromofluoromethane	107		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number: L0718979 **Report Date:** 01/03/08

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associate	ed sample(s): (01-06 Batch:	WG307181-1	WG307181-2		
Methylene chloride	99		101	70-130	2	25
1,1-Dichloroethane	100		100	70-130	0	25
Chloroform	102		104	70-130	2	25
Carbon tetrachloride	89		98	70-130	10	25
1,2-Dichloropropane	95		97	70-130	2	25
Dibromochloromethane	86		92	70-130	7	25
1,1,2-Trichloroethane	91		87	70-130	4	25
Tetrachloroethene	99		103	70-130	4	25
Chlorobenzene	96		98	70-130	2	25
Trichlorofluoromethane	105		108	70-130	3	25
1,2-Dichloroethane	97		100	70-130	3	25
1,1,1-Trichloroethane	99		102	70-130	3	25
Bromodichloromethane	93		98	70-130	5	25
trans-1,3-Dichloropropene	84		86	70-130	2	25
cis-1,3-Dichloropropene	94		95	70-130	1	25
1,1-Dichloropropene	99		102	70-130	3	25
Bromoform	82		89	70-130	8	50
1,1,2,2-Tetrachloroethane	84		85	70-130	1	25
Benzene	97		99	70-130	2	25
Toluene	95		97	70-130	2	25
Ethylbenzene	97		98	70-130	1	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	/	c	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associated	sample(s):	01-06 E	Batch:	WG307181-1	WG307181-2		
Chloromethane	78			83	70-130	6	50
Bromomethane	91			89	70-130	2	50
Vinyl chloride	83			88	70-130	6	25
Chloroethane	111			106	70-130	5	25
1,1-Dichloroethene	102			104	70-130	2	25
trans-1,2-Dichloroethene	96			99	70-130	3	25
Trichloroethene	96			100	70-130	4	25
1,2-Dichlorobenzene	99			97	70-130	2	25
1,3-Dichlorobenzene	98			101	70-130	3	25
1,4-Dichlorobenzene	98			98	70-130	0	25
Methyl tert butyl ether	100			98	70-130	2	25
p/m-Xylene	101			104	70-130	3	25
o-Xylene	101			102	70-130	1	25
cis-1,2-Dichloroethene	97			100	70-130	3	25
Dibromomethane	93			94	70-130	1	25
1,2,3-Trichloropropane	86			88	70-130	2	25
Styrene	100			102	70-130	2	25
Dichlorodifluoromethane	60			65	70-130	8	50
Acetone	95			92	70-130	3	50
Carbon disulfide	90			91	70-130	1	25
2-Butanone	87			90	70-130	3	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associated	l sample(s): 01-06	Batch: WG307181-1	WG307181-2		
4-Methyl-2-pentanone	93	99	70-130	6	50
2-Hexanone	84	86	70-130	2	50
Bromochloromethane	100	106	70-130	6	25
Tetrahydrofuran	91	94	70-130	3	25
2,2-Dichloropropane	100	105	70-130	5	50
1,2-Dibromoethane	90	91	70-130	1	25
1,3-Dichloropropane	88	90	70-130	2	25
1,1,1,2-Tetrachloroethane	88	93	70-130	6	25
Bromobenzene	98	97	70-130	1	25
n-Butylbenzene	95	96	70-130	1	25
sec-Butylbenzene	96	98	70-130	2	25
tert-Butylbenzene	98	98	70-130	0	25
o-Chlorotoluene	94	94	70-130	0	25
p-Chlorotoluene	95	96	70-130	1	25
1,2-Dibromo-3-chloropropane	74	87	70-130	16	50
Hexachlorobutadiene	96	101	70-130	5	25
Isopropylbenzene	103	106	70-130	3	25
p-Isopropyltoluene	102	102	70-130	0	25
Naphthalene	90	97	70-130	7	25
n-Propylbenzene	96	96	70-130	0	25
1,2,3-Trichlorobenzene	100	105	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recover	у		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s):	01-06	Batch:	WG307181-1	WG307181-2		
1,2,4-Trichlorobenzene	103			106	70-130	3	25
1,3,5-Trimethylbenzene	97			96	70-130	1	25
1,2,4-Trimethylbenzene	97			97	70-130	0	25
Ethyl ether	103			103	70-130	0	25
Isopropyl Ether	100			100	70-130	0	25
Ethyl-Tert-Butyl-Ether	101			94	70-130	7	25
Tertiary-Amyl Methyl Ether	96			100	70-130	4	25
1,4-Dioxane	53			113	70-130	72	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
ounogate			• monta	_
1,2-Dichloroethane-d4	99	100	70-130	
Toluene-d8	98	95	70-130	
4-Bromofluorobenzene	97	96	70-130	
Dibromofluoromethane	102	102	70-130	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associated	I sample(s): 07 Batch	: WG307363-1	WG307363-2		
Methylene chloride	99	100	70-130	1	25
1,1-Dichloroethane	103	99	70-130	4	25
Chloroform	108	105	70-130	3	25
Carbon tetrachloride	111	101	70-130	9	25
1,2-Dichloropropane	94	91	70-130	3	25
Dibromochloromethane	94	92	70-130	2	25
1,1,2-Trichloroethane	88	92	70-130	4	25
Tetrachloroethene	104	98	70-130	6	25
Chlorobenzene	96	91	70-130	5	25
Trichlorofluoromethane	118	110	70-130	7	25
1,2-Dichloroethane	104	109	70-130	5	25
1,1,1-Trichloroethane	111	107	70-130	4	25
Bromodichloromethane	102	100	70-130	2	25
trans-1,3-Dichloropropene	88	86	70-130	2	25
cis-1,3-Dichloropropene	100	98	70-130	2	25
1,1-Dichloropropene	108	101	70-130	7	25
Bromoform	95	93	70-130	2	50
1,1,2,2-Tetrachloroethane	82	84	70-130	2	25
Benzene	100	95	70-130	5	25
Toluene	94	88	70-130	7	25
Ethylbenzene	97	92	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associated	sample(s): 07 Bate	h: WG307363-1	WG307363-2		
Chloromethane	80	76	70-130	5	50
Bromomethane	82	75	70-130	9	50
Vinyl chloride	88	83	70-130	6	25
Chloroethane	105	100	70-130	5	25
1,1-Dichloroethene	111	104	70-130	7	25
trans-1,2-Dichloroethene	102	97	70-130	5	25
Trichloroethene	103	97	70-130	6	25
1,2-Dichlorobenzene	94	93	70-130	1	25
1,3-Dichlorobenzene	96	91	70-130	5	25
1,4-Dichlorobenzene	97	93	70-130	4	25
Methyl tert butyl ether	106	117	70-130	10	25
p/m-Xylene	102	96	70-130	6	25
o-Xylene	101	94	70-130	7	25
cis-1,2-Dichloroethene	102	106	70-130	4	25
Dibromomethane	100	105	70-130	5	25
1,2,3-Trichloropropane	82	92	70-130	11	25
Styrene	99	95	70-130	4	25
Dichlorodifluoromethane	66	63	70-130	5	50
Acetone	118	147	70-130	22	50
Carbon disulfide	89	87	70-130	2	25
2-Butanone	100	112	70-130	11	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

_	LCS		LCSD	%Recovery		
Parameter	%Recovery		%Recovery	Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Asso	ociated sample(s): 07	Batch:	WG307363-1	WG307363-2		
4-Methyl-2-pentanone	101		116	70-130	14	50
2-Hexanone	85		98	70-130	14	50
Bromochloromethane	103		108	70-130	5	25
Tetrahydrofuran	99		114	70-130	14	25
2,2-Dichloropropane	111		108	70-130	3	50
1,2-Dibromoethane	92		93	70-130	1	25
1,3-Dichloropropane	88		93	70-130	6	25
1,1,1,2-Tetrachloroethane	95		91	70-130	4	25
Bromobenzene	97		92	70-130	5	25
n-Butylbenzene	98		91	70-130	7	25
sec-Butylbenzene	98		91	70-130	7	25
tert-Butylbenzene	100		93	70-130	7	25
o-Chlorotoluene	93		87	70-130	7	25
p-Chlorotoluene	94		89	70-130	5	25
1,2-Dibromo-3-chloropropane	83		85	70-130	2	50
Hexachlorobutadiene	106		101	70-130	5	25
Isopropylbenzene	106		99	70-130	7	25
p-Isopropyltoluene	104		97	70-130	7	25
Naphthalene	93		96	70-130	3	25
n-Propylbenzene	96		89	70-130	8	25
1,2,3-Trichlorobenzene	100		104	70-130	4	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recove	ry		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s):	07	Batch:	WG307363-1	WG307363-2		
1,2,4-Trichlorobenzene	102			100	70-130	2	25
1,3,5-Trimethylbenzene	98			90	70-130	9	25
1,2,4-Trimethylbenzene	95			90	70-130	5	25
Ethyl ether	103			116	70-130	12	25
Isopropyl Ether	101			104	70-130	3	25
Ethyl-Tert-Butyl-Ether	104			107	70-130	3	25
Tertiary-Amyl Methyl Ether	105			114	70-130	8	25
1,4-Dioxane	130			144	70-130	10	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1.2-Dichloroethane-d4	106	109	70-130
Toluene-d8	93	95	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	109	109	70-130

METALS

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-01	Date Collected:	12/19/07 11:10
Client ID:	RIZ-8	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	/ MCP 60	00/7000 sei	ries							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0508		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:31	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0048		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-02	Date Collected:	12/19/07 12:40
Client ID:	RIZ-10	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0958		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:36	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0079		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Zinc, Dissolved	0.0216		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM

Matrix:

Water

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-03	Date Collected:	12/19/07 13:40
Client ID:	RIZ-9	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0153		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:38	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-04	Date Collected:	12/19/07 16:00
Client ID:	GHC-6	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 60	00/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0459		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:40	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM

Matrix:

Water

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-05	Date Collected:	12/20/07 09:00
Client ID:	MW-9	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0070		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:42	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Zinc, Dissolved	0.0259		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM

Matrix:

Water

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-06	Date Collected:	12/20/07 10:30
Client ID:	RIZ-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	V MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0256		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:44	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-07	Date Collected:	12/20/07 11:25
Client ID:	MW-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Dissolved Metals b	y MCP 60	00/7000 sei	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0152		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:45	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series f	or sample	(s): 01-	07 Batch:	WG307204-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:25	64,7470A	DM

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilut Fac	tion tor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01	-07	Batch:	WG307274-1			
Antimony, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Barium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Beryllium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Cadmium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Chromium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Lead, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Nickel, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Selenium, Dissolved	ND	mg/l	0.001		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Silver, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.0005		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Zinc, Dissolved	ND	mg/l	0.0050		1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Parameter	LCS %Recovery	LC: %Rec	SD %F overy	Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Ba	atch: WG307204-	2 WG307204-3		
Mercury, Dissolved	98	Ş	8	80-120	0	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Ba	atch: WG307274-	2 WG307274-3		
Antimony, Dissolved	95	ç	8	80-120	3	20
Arsenic, Dissolved	101	1	00	80-120	1	20
Barium, Dissolved	97	1	00	80-120	3	20
Beryllium, Dissolved	89	3	6	80-120	3	20
Cadmium, Dissolved	104	1	05	80-120	1	20
Chromium, Dissolved	101	1)4	80-120	3	20
Lead, Dissolved	102	1	05	80-120	3	20
Nickel, Dissolved	102	1	06	80-120	4	20
Selenium, Dissolved	100	ç	8	80-120	2	20
Silver, Dissolved	95	ç	7	80-120	2	20
Thallium, Dissolved	95	ç	9	80-120	4	20
Vanadium, Dissolved	98	1	01	80-120	3	20
Zinc, Dissolved	102	1	02	80-120	0	20

Project Name: WALPOLE PARK SOUTH Project Number: 12700058

Lab Number: L0718979 Report Date: 01/03/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Container Information

Cooler	Custody Seal
A	Absent

Container ID Container Type Cooler pН Temp Pres Seal Analysis MCP-8260-04 L0718979-01A Vial HCI preserved A N/A 2.2 C Y Absent L0718979-01B Vial HCI preserved A N/A 2.2 C Υ Absent MCP-8260-04 L0718979-01C Plastic 500ml HNO3 preserved MCP-7470S, MCP-AG-A <2 2.2 C Υ Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S MCP-8260-04 L0718979-02A Vial HCI preserved А N/A 2.2 C Y Absent L0718979-02B Vial HCI preserved N/A 2.2 C MCP-8260-04 A Y Absent L0718979-02C Plastic 500ml HNO3 preserved Y MCP-7470S, MCP-AG-A <2 2.2 C Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S.MCP-CR-6020S.MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S, MCP-SE-6020S, MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S Vial HCl preserved N/A 2.2 C MCP-8260-04 L0718979-03A А Y Absent L0718979-03B Vial HCl preserved A N/A 2.2 C Y Absent MCP-8260-04 L0718979-03C Plastic 500ml HNO3 preserved 2.2 C Y MCP-7470S, MCP-AG-A <2 Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S, MCP-CR-6020S, MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S Vial HCI preserved 2.2 C MCP-8260-04 L0718979-04A А N/A Y Absent L0718979-04B Vial HCI preserved A N/A 2.2 C Y Absent MCP-8260-04 L0718979-04C Plastic 500ml HNO3 preserved MCP-7470S, MCP-AG-A <2 2.2 C Y Absent 6020S.MCP-AS-6020S.MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S, MCP-CR-6020S, MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S, MCP-SE-6020S, MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S L0718979-05A Vial HCI preserved А N/A 2.2 C Y Absent MCP-8260-04 L0718979-05B Vial HCI preserved A N/A 2.2 C Absent MCP-8260-04 Υ

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0718979 Report Date: 01/03/08

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0718979-05C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-06A	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-06B	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-06C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Υ	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-07A	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-07B	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-07C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-07N	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04

Container Comments

L0718979-07B

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979 Report Date: 01/03/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
 LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0718979

 Report Date:
 01/03/08

REFERENCES

- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

PLEASE ANSWER QUESTIONS ABOVE! IS YOUR PROJECT MA MCP or CT RCP?	2 R:2-10 2 R:2-10 4 GHC-6 6 R:2-3 6 R:2-3 4 MW-3	Phone: (553) 903-2001 Fax: (563) 903-2001 Email: <u>COY</u> <u>JOMMSON® tretreteres</u> I These samples have been previously analyzed by Alph Other Project Specific Requirements/Comm MCP (Lab Use Only) Sample ID	Client: Tetra Tech Kizes Address: 16 rant Mansfred Kizes
Relinquished By: Relinquished By: Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time	12/19/07 1112 GW 12T 12/19/07 112 GW 12T 12/19/07 12 ¹⁰ GW 12T 12/19/07 10 ²⁰ GW 12T 12/19/07 10 ²⁰ GW 12T 12/10/07 10 ²⁰ GW 12T 12/10/07 10 ²⁰ GW 12T	Turn-Around Time a Standard \square RUSH (only continued if pre-approved) a Date Due: $1/2/25$ Time: a nents/Detection Limi:s:	FCUSTODY PAGE 1 OF Project Information Project Name: Walker's fort South Project Location: Walpele, MA Project #: 127 6002558 Project Manager: Ray Johnson ALPHA Quote #:
PV CB Colley Received By: Lolley A Sugnaha 12/11 12/21 / 21 / 21	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ANALYSIS ANALYS	Date Rec'd in Lab: $\mathcal{V}/2/$ Report Information - Data Deliverables \Box FAX \Box ADEX \Box Add'l DeliverablesRegulatory Requirements/Report LimitsState / Fed Program $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}CP$ $\mathcal{G}\omega$ $\mathcal{M}A$ $\mathcal{M}F$ $\mathcal{M}CP$
Please print clearly, legibly ard completely. Samples can not be logged in and turnaround time clock will not start until any ambigu ties are resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side.		equired? dence Protocols) Required? SAMPLE HANDLING Filtration Preservation Preservation (Please specify below) Sample Specific Comments	ALPHA Job #: 16778777 Billing Information I Same as Client info PO #: AP

ANALYTICAL REPORT

Lab Number:	L0806023
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	lan Cannan
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058-003
Report Date:	05/05/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08

Alpha Sample ID	Client ID	Sample Location
L0806023-01	RIZ-10-042808	WALPOLE, MA
L0806023-02	RIZ-9-042808	WALPOLE, MA
L0806023-03	MW-3-042808	WALPOLE, MA
L0806023-04	RIZ-8-042808	WALPOLE, MA
L0806023-05	RIZ-8S-042808	WALPOLE, MA
L0806023-06	GHC-6-042808	WALPOLE, MA
L0806023-07	MW-2-042808	WALPOLE, MA
L0806023-08	TRIP BLANK-042808	WALPOLE, MA

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status					
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES			
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES			
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES			
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A			
A res	A response to questions E and F is required for "Presumptive Certainty" status				
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES			
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES			

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

MCP Related Narratives:

Metals

L0806023-01 through -07 were diluted for the analysis of all analytes by method 6020A due to high concentrations of target and non-target analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

King & Westernet

Title: Technical Director/Representative

Date: 05/05/08

ORGANICS

VOLATILES

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID:	L0806023-01	Date Collected:	04/28/08 09:10
Client ID:	RIZ-10-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 10:04		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	0.73		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1 2-Dichlorobenzene	ND		ua/l	0.50	1

Project Name: WALPOLE PARK SOUTH

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID:	L0806023-01 RIZ-10-042808				Date Collected: Date Received:	04/28/08 09:10 04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	e	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene)	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

Unknown Alkene	2.6	J	ug/l	1
Unknown Hydrocarbon	0.90	J	ug/l	1
Acetone	0.78	J	ug/l	1

Volatile Organics b	y GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Client ID:	RIZ-10-042808				Date Received:	04/29/08
Lab ID:	L0806023-01				Date Collected:	04/28/08 09:10
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	88		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID:	L0806023-02	Date Collected:	04/28/08 10:12
Client ID:	RIZ-9-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 10:38		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

Project Name: WALPOLE PARK SOUTH

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-02 RIZ-9-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 10:12 04/29/08 Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene)	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

	No Tentatively Identified Compounds	ND	ug/l	1
--	-------------------------------------	----	------	---

Volatile Organics b	oy GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Client ID:	RIZ-9-042808				Date Received:	04/29/08
Lab ID:	L0806023-02				Date Collected:	04/28/08 10:12
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	116		80-120	
4-Bromofluorobenzene	87		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID:	L0806023-03	Date Collected:	04/28/08 11:20
Client ID:	MW-3-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 11:10		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-03 MW-3-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 11:20 04/29/08 Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene)	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

	No Tentatively Identified Compounds	ND	ug/l	1
--	-------------------------------------	----	------	---

Volatile Organics b	y GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Client ID:	MW-3-042808				Date Received:	04/29/08
Lab ID:	L0806023-03				Date Collected:	04/28/08 11:20
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	90		80-120	

05050820:02

L0806023

05/05/08

Lab Number:

Report Date:

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

Lab ID:	L0806023-04	Date Collected:	04/28/08 12:15
Client ID:	RIZ-8-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 11:43		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID:	L0806023-04				Date Collected:	04/28/08 12:15
Client ID:	RIZ-8-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ine	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	9	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	9	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1
No Tentatively Identified Compounds	ND	ug/l	1

Volatile Organics b	oy GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Client ID:	RIZ-8-042808				Date Received:	04/29/08
Lab ID:	L0806023-04				Date Collected:	04/28/08 12:1
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	91		80-120	

05050820:02

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-05	Date Collected:	04/28/08 12:30
Client ID:	RIZ-8S-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 12:17		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-05 RIZ-8S-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 12:30 04/29/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	9	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

Unknown Alkane	0.62	J	ug/l	1
Unknown Alkane	2.7	J	ug/l	1
Unknown Hydrocarbon	4.3	J	ug/l	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-05				Date Collected:	04/28/08 12:30
Client ID:	RIZ-8S-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					
Tentatively Identified C	compounds					
Unknown Hydrocarbon	l	0.64	J	ug/l		1
Pentane		1.2	J	ug/l		1
				Accept	ance	

Surrogate	% Recovery	Qualifier	Criteria
1,2-Dichlorobenzene-d4	116		80-120
4-Bromofluorobenzene	87		80-120

05050820:02

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-06	Date Collected:	04/28/08 14:36
Client ID:	GHC-6-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 12:50		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

Lab ID: Client ID: Sample Location:	L0806023-06 GHC-6-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 14:36 04/29/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene)	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

No Tentatively Identified Compounds	ND	ug/l	1

Volatile Organics b	y GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Client ID:	GHC-6-042808				Date Received:	04/29/08
Lab ID:	L0806023-06				Date Collected:	04/28/08 14:36
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	117		80-120	
4-Bromofluorobenzene	88		80-120	

05050820:02

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-07	Date Collected:	04/28/08 14:52
Client ID:	MW-2-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 13:23		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	2.2		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID:	L0806023-07				Date Collected:	04/28/08 14:52
Client ID:					Date Received:	04/29/08 Field Filtered
Sample Location.	WALFOLE, MA		0		rieiu riep.	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ine	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	e	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	9	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	9	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/I	1
---	---

Volatile Organics b	y GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Client ID:	MW-2-042808				Date Received:	04/29/08
Lab ID:	L0806023-07				Date Collected:	04/28/08 14:52
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	118		80-120	
4-Bromofluorobenzene	87		80-120	

05050820:02

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-08	Date Collected:	04/23/08 18:00
Client ID:	TRIP BLANK-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 09:31		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

Project Number: 12700058-003

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

Lab ID:	L0806023-08				Date Collected:	04/23/08 18:00
Client ID:	TRIP BLANK-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

No Tentatively Identified Compounds	ND	ug/l	1

Volatile Organics b	oy GC/MS 524.2					
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Client ID:	TRIP BLANK-042808				Date Received:	04/29/08
Lab ID:	L0806023-08				Date Collected:	04/23/08 18:00
		SAMPLE F	RESULTS			
Project Number:	12700058-003				Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
						05050820:02

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	113		80-120	
4-Bromofluorobenzene	95		80-120	

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Delatile Organics by GC/MS 524.2 for sample(s): 01,04-08 Batch: WG319665-8 Methylene chloride ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,2-Trichloroethane ND ug/l 0.50 1,2-Trichloroethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Trichoroethane ND ug/l 0.50 Trichloroethane ND ug/l 0.50 Trichloroethane ND ug/l 0.50 Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 Bromodichloropropene ND ug/l	Parameter	Result C	Qualifier	Units	RDL
Methylene chloride ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 Chloroform ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform	Volatile Organics by GC/MS 52	4.2 for sample(s):	01,04-08	Batch:	WG319665-8
Methylene Chloride ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 Chloroform ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 Toluene<	Mathulana aklasida	ND			0.50
I, 1-Dichloroethane ND ug/l 0.50 Chloroform ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichloroftluoromethane ND ug/l 0.50 Trichloroftluoromethane ND ug/l 0.50 Trichloroftluoromethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 Irrichloroftluoromethane ND ug/l 0.50 Irrichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Irrichloropropene ND ug/l 0.50 Irrichloroptopene ND ug/l 0.50		ND		ug/i	0.50
ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Irichlorofluoromethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Irichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Irichloropropene ND ug/l 0.50 Irichloroptopene ND ug/l 0.50 Irichloropthane		ND		ug/i	0.50
Carbon tetrachlonde ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichloroethane ND ug/l 0.50 Trichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 I,1,2,2-Tetrachloroethane ND ug/l 0.50 Bromoform ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene N	Chloroform	ND		ug/i	0.50
1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND		ND		ug/l	0.50
Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Simodichloromethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Bromoform ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 P/m-Xylene	1,2-Dichloropropane	ND		ug/l	0.50
1,1,2-Trichloroethane ND ug/l 0.50 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Bromoform ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 P/m-Xylene ND ug/l 0.50 Chloromethane N	Dibromochloromethane	ND		ug/l	0.50
Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Promomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Chloromethane ND ug/l	1,1,2-Trichloroethane	ND		ug/l	0.50
ND ug/l 0.50 Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 Bromodichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 I,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Promomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50	Tetrachloroethene	ND		ug/l	0.50
Trichlorofluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1.1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Indicate ND ug/l 0.50 Chloroethene ND ug/l	Chlorobenzene	ND		ug/l	0.50
1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene	Trichlorofluoromethane	ND		ug/l	0.50
1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vingl chloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene	1,2-Dichloroethane	ND		ug/l	0.50
Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene<	1,1,1-Trichloroethane	ND		ug/l	0.50
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene	Bromodichloromethane	ND		ug/l	0.50
cis-1,3-Dichloropropene ND ug/l 0.50 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 rick-1,2-Dichloroethene ND ug/l 0.50 trickloroethene ND ug/l	trans-1,3-Dichloropropene	ND		ug/l	0.50
Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trichloroethene ND ug/l 0.50 trichloroethene ND ug/l 0.50 trichloroethene ND ug/l 0.50 trichloroethene ND ug/l	cis-1,3-Dichloropropene	ND		ug/l	0.50
1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 I,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l	Bromoform	ND		ug/l	0.50
Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50
Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	Benzene	ND		ug/l	0.50
Ethylbenzene ND ug/l 0.50 p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 I,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	Toluene	ND		ug/l	0.50
p/m-Xylene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	Ethylbenzene	ND		ug/l	0.50
Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	p/m-Xylene	ND		ug/l	0.50
Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	Chloromethane	ND		ug/l	0.50
Vinyl chloride ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50 trans-1,2-Dichloroethene ND ug/l 0.50 cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50 1,2-Dichloroethene ND ug/l 0.50	Bromomethane	ND		ug/l	0.50
ChloroethaneNDug/l0.501,1-DichloroetheneNDug/l0.50trans-1,2-DichloroetheneNDug/l0.50cis-1,2-DichloroetheneNDug/l0.50TrichloroetheneNDug/l0.50TrichloroetheneNDug/l0.501,2-DichlorobenzeneNDug/l0.501,3-DichlorobenzeneNDug/l0.50	Vinyl chloride	ND		ug/l	0.50
1,1-DichloroetheneNDug/l0.50trans-1,2-DichloroetheneNDug/l0.50cis-1,2-DichloroetheneNDug/l0.50TrichloroetheneNDug/l0.501,2-DichlorobenzeneNDug/l0.501,3-DichlorobenzeneNDug/l0.50	Chloroethane	ND		ug/l	0.50
trans-1,2-DichloroetheneNDug/l0.50cis-1,2-DichloroetheneNDug/l0.50TrichloroetheneNDug/l0.501,2-DichlorobenzeneNDug/l0.501,3-DichlorobenzeneNDug/l0.50	1,1-Dichloroethene	ND		ug/l	0.50
cis-1,2-Dichloroethene ND ug/l 0.50 Trichloroethene ND ug/l 0.50 1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	trans-1,2-Dichloroethene	ND		ug/l	0.50
TrichloroetheneNDug/l0.501,2-DichlorobenzeneNDug/l0.501,3-DichlorobenzeneNDug/l0.50	cis-1,2-Dichloroethene	ND		ug/l	0.50
1,2-Dichlorobenzene ND ug/l 0.50 1,3-Dichlorobenzene ND ug/l 0.50	Trichloroethene	ND		ug/l	0.50
1.3-Dichlorobenzene ND ua/l 0.50	1,2-Dichlorobenzene	ND		ug/l	0.50
	1,3-Dichlorobenzene	ND		ua/l	0.50

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Parameter Result Qualifier Units RDL
Volatile Organics by GC/MS 524.2 for sample(s): 01,04-08 Batch: WG319665-8
1,4-Dichlorobenzene ND Ug/I 0.50
Styrene ND ug/I 0.50
o-Xylene ND ug/l 0.50
1,1-Dichloropropene ND ug/l 0.50
2,2-Dichloropropane ND ug/l 0.50
1,1,1,2-Tetrachloroethane ND ug/l 0.50
1,2,3-Trichloropropane ND ug/l 0.50
Bromochloromethane ND ug/l 0.50
n-Butylbenzene ND ug/l 0.50
Dichlorodifluoromethane ND ug/l 0.50
Hexachlorobutadiene ND ug/l 0.50
Isopropylbenzene ND ug/l 0.50
p-Isopropyltoluene ND ug/l 0.50
Naphthalene ND ug/l 0.50
n-Propylbenzene ND ug/l 0.50
sec-Butylbenzene ND ug/l 0.50
tert-Butylbenzene ND ug/l 0.50
1,2,3-Trichlorobenzene ND ug/l 0.50
1,2,4-Trichlorobenzene ND ug/l 0.50
1,2,4-Trimethylbenzene ND ug/l 0.50
1,3,5-Trimethylbenzene ND ug/l 0.50
Bromobenzene ND ug/l 0.50
o-Chlorotoluene ND ug/l 0.50
p-Chlorotoluene ND ug/l 0.50
Dibromomethane ND ug/I 0.50
1,2-Dibromoethane ND ug/l 0.50
1,2-Dibromo-3-chloropropane ND ug/l 0.50
1,3-Dichloropropane ND ug/l 0.50
Methyl tert butyl ether ND ug/l 0.50

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08
	Method Blank Analysis		

Batch Quality Control

Analytical Method:16,524.2Analytical Date:05/01/08 08:25Analyst:MM

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS 524.2 f	or sample(s): 01,04-08	Batch:	WG319665-8	

Tentatively Identified Compounds
No Tentatively Identified Compounds ug/I

Surrogate	%Recovery	Acceptance Qualifier Criteria		
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	87		80-120	

Project Number: 12700058-003 Lab Number: L0806023 Report Date: 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Parameter	Result	Qualifier	Uni	ts	RDL	
/olatile Organics by GC/MS 524.2	for sample(s):	02-03	Batch:	WG32	0296-4	
Methylene chloride	ND		ЦQ	1	0.50	
1.1-Dichloroethane	ND		uq/	1	0.50	
Chloroform	ND		uq/	1	0.50	
Carbon tetrachloride	ND		uq/	1	0.50	
1.2-Dichloropropane	ND		uq/	1	0.50	
Dibromochloromethane	ND		ua/	1	0.50	
1.1.2-Trichloroethane	ND		ua/	1	0.50	
Tetrachloroethene	ND		ua	1	0.50	
Chlorobenzene	ND		ug	1	0.50	
Trichlorofluoromethane	ND		ug/	Ί	0.50	
1,2-Dichloroethane	ND		ug/	Ί	0.50	
1,1,1-Trichloroethane	ND		ug/	1	0.50	
Bromodichloromethane	ND		ug/	1	0.50	
trans-1,3-Dichloropropene	ND		ug/	1	0.50	
cis-1,3-Dichloropropene	ND		ug/	1	0.50	
Bromoform	ND		ug/	Ί	0.50	
1,1,2,2-Tetrachloroethane	ND		ug	Ί	0.50	
Benzene	ND		ug	Ί	0.50	
Toluene	ND		ug/	1	0.50	
Ethylbenzene	ND		ug/	1	0.50	
p/m-Xylene	ND		ug/	Ί	0.50	
Chloromethane	ND		ug/	Ί	0.50	
Bromomethane	ND		ug/	Ί	0.50	
Vinyl chloride	ND		ug/	Ί	0.50	
Chloroethane	ND		ug/	1	0.50	
1,1-Dichloroethene	ND		ug/	1	0.50	
trans-1,2-Dichloroethene	ND		ug/	1	0.50	
cis-1,2-Dichloroethene	ND		ug/	Ί	0.50	
Trichloroethene	ND		ug/	Ί	0.50	
1,2-Dichlorobenzene	ND		ug/	Ί	0.50	
1,3-Dichlorobenzene	ND		ug/	Ί	0.50	

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Parameter	Result	Qualifier	Uni	ts RDL
/olatile Organics by GC/MS 52	4.2 for sample(s):	02-03	Batch:	WG320296-4
1.4 Dichlorobonzono	ND			// 0.50
1,4-Dichlorobenzene	ND		ug/	0.50
Styrene	ND		ug/	/I 0.50
o-xylene	ND		ug/	/I 0.50
1,1-Dichloropropene	ND		ug/	/I 0.50
2,2-Dichloropropane	ND		ug/	/1 0.50
1,1,1,2-Tetrachloroethane	ND		ug/	/I 0.50
1,2,3-Trichloropropane	ND		ug/	/I 0.50
Bromochloromethane	ND		ug/	/I 0.50
n-Butylbenzene	ND		ug/	/I 0.50
Dichlorodifluoromethane	ND		ug/	/I 0.50
Hexachlorobutadiene	ND		ug/	/I 0.50
Isopropylbenzene	ND		ug/	/I 0.50
p-Isopropyltoluene	ND		ug/	/I 0.50
Naphthalene	ND		ug/	/I 0.50
n-Propylbenzene	ND		ug/	/I 0.50
sec-Butylbenzene	ND		ug/	/I 0.50
tert-Butylbenzene	ND		ug/	/I 0.50
1,2,3-Trichlorobenzene	ND		ug	/I 0.50
1,2,4-Trichlorobenzene	ND		ug/	/I 0.50
1,2,4-Trimethylbenzene	ND		ug/	/I 0.50
1,3,5-Trimethylbenzene	ND		ug/	/I 0.50
Bromobenzene	ND		ug/	/I 0.50
o-Chlorotoluene	ND		ug/	/I 0.50
p-Chlorotoluene	ND		ug/	/I 0.50
Dibromomethane	ND		ug/	/I 0.50
1,2-Dibromoethane	ND		ug/	/I 0.50
1,2-Dibromo-3-chloropropane	ND		ug/	/I 0.50
1,3-Dichloropropane	ND		ug/	/I 0.50
Methyl tert butyl ether	ND		ug/	/I 0.50
· ·			0	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023		
Project Number:	12700058-003	Report Date:	05/05/08		
Method Blank Analysis					

Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Parameter	Result	Qualifier	Uni	ts RDL	
Volatile Organics by GC/MS 524.2 f	or sample(s)): 02-03	Batch:	WG320296-4	

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	

Surrogate	%Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	114		80-120
4-Bromofluorobenzene	87		80-120

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	1	LC %Re	CSD covery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associate	ed sample(s):	01,04-08	Batch:	WG319665-7			
Methylene chloride	99			-	70-130	-	
1,1-Dichloroethane	107			-	70-130	-	
Chloroform	106			-	70-130	-	
Carbon tetrachloride	103			-	70-130	-	
1,2-Dichloropropane	106			-	70-130	-	
Dibromochloromethane	96			-	70-130	-	
1,1,2-Trichloroethane	98			-	70-130	-	
Tetrachloroethene	112			-	70-130	-	
Chlorobenzene	108			-	70-130	-	
Trichlorofluoromethane	93			-	70-130	-	
1,2-Dichloroethane	109			-	70-130	-	
1,1,1-Trichloroethane	108			-	70-130	-	
Bromodichloromethane	102			-	70-130	-	
trans-1,3-Dichloropropene	86			-	70-130	-	
cis-1,3-Dichloropropene	90			-	70-130	-	
Bromoform	90			-	70-130	-	
1,1,2,2-Tetrachloroethane	90			-	70-130	-	
Benzene	111			-	70-130	-	
Toluene	116			-	70-130	-	
Ethylbenzene	110			-	70-130	-	
p/m-Xylene	113			-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	,	LC %Ree	CSD covery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associate	d sample(s):	01,04-08	Batch:	WG319665-7			
Chloromethane	101			-	70-130	-	
Bromomethane	103			-	70-130	-	
Vinyl chloride	107			-	70-130	-	
Chloroethane	106			-	70-130	-	
1,1-Dichloroethene	100			-	70-130	-	
trans-1,2-Dichloroethene	103			-	70-130	-	
cis-1,2-Dichloroethene	111			-	70-130	-	
Trichloroethene	101			-	70-130	-	
1,2-Dichlorobenzene	95			-	70-130	-	
1,3-Dichlorobenzene	99			-	70-130	-	
1,4-Dichlorobenzene	95			-	70-130	-	
Styrene	108			-	70-130	-	
o-Xylene	109			-	70-130	-	
1,1-Dichloropropene	107			-	70-130	-	
2,2-Dichloropropane	93			-	70-130	-	
1,1,1,2-Tetrachloroethane	101			-	70-130	-	
1,2,3-Trichloropropane	91			-	70-130	-	
Bromochloromethane	106			-	70-130	-	
n-Butylbenzene	102			-	70-130	-	
Dichlorodifluoromethane	106			-	70-130	-	
Hexachlorobutadiene	98			-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 As	ssociated sample(s): 01,04-08	Batch: WG319665-	-7		
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Lab Control Sample Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control
Project Number:	12700058-003	

LCSLCSD%Recovery%RecoveryParameter%RecoveryLimitsRPDRPD LimitsVolatile Organics by GC/MS 524.2Associated sample(s): 01,04-08Batch: WG319665-7

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 Batch: WG320296-3

Methylene chloride	99	-	70-130	-
1,1-Dichloroethane	107	-	70-130	-
Chloroform	106	-	70-130	-
Carbon tetrachloride	103	-	70-130	-
1,2-Dichloropropane	106	-	70-130	-
Dibromochloromethane	96	-	70-130	-
1,1,2-Trichloroethane	98	-	70-130	-
Tetrachloroethene	112	-	70-130	-
Chlorobenzene	108	-	70-130	-

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	,	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associate	d sample(s):	02-03	Batch:	WG320296-3			
Trichlorofluoromethane	93			-	70-130	-	
1,2-Dichloroethane	109			-	70-130	-	
1,1,1-Trichloroethane	108			-	70-130	-	
Bromodichloromethane	102			-	70-130	-	
trans-1,3-Dichloropropene	86			-	70-130	-	
cis-1,3-Dichloropropene	90			-	70-130	-	
Bromoform	90			-	70-130	-	
1,1,2,2-Tetrachloroethane	90			-	70-130	-	
Benzene	111			-	70-130	-	
Toluene	116			-	70-130	-	
Ethylbenzene	110			-	70-130	-	
p/m-Xylene	113			-	70-130	-	
Chloromethane	101			-	70-130	-	
Bromomethane	103			-	70-130	-	
Vinyl chloride	107			-	70-130	-	
Chloroethane	106			-	70-130	-	
1,1-Dichloroethene	100			-	70-130	-	
trans-1,2-Dichloroethene	103			-	70-130	-	
cis-1,2-Dichloroethene	111			-	70-130	-	
Trichloroethene	101			-	70-130	-	
1,2-Dichlorobenzene	95			-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recover	%Recovery y Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associate	d sample(s): 02	2-03 Batch: WG320	296-3		
1,3-Dichlorobenzene	99	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	109	-	70-130	-	
1,1-Dichloropropene	107	-	70-130	-	
2,2-Dichloropropane	93	-	70-130	-	
1,1,1,2-Tetrachloroethane	101	-	70-130	-	
1,2,3-Trichloropropane	91	-	70-130	-	
Bromochloromethane	106	-	70-130	-	
n-Butylbenzene	102	-	70-130	-	
Dichlorodifluoromethane	106	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associated	sample(s): 02-03	Batch: WG320296-3			
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1.2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Project Name: WALPC	OLE PARK SOUTH	ł
---------------------	----------------	---

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MSD MS Recovery MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Native Sample MS Added Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 QC Sample: L0805753-01 Client ID: MS Sample Methylene chloride ND 4 3.9 98 70-130 20 _ -ND 4.2 1.1-Dichloroethane 4 106 70-130 20 --Chloroform ND 4 4.4 109 70-130 20 --Carbon tetrachloride ND 4 4.4 110 70-130 20 --1,2-Dichloropropane ND 4 4.2 105 70-130 20 --Dibromochloromethane 97 ND 4 3.9 70-130 20 ---1,1,2-Trichloroethane ND 4 4.0 101 70-130 20 --Tetrachloroethene ND 4.7 70-130 20 4 117 ---Chlorobenzene ND 4 4.6 70-130 20 114 --Trichlorofluoromethane ND 4 4.1 103 70-130 20 --1,2-Dichloroethane ND 4 4.4 70-130 20 109 --1,1,1-Trichloroethane ND 4 4.6 114 70-130 20 --Bromodichloromethane ND 4 4.2 105 --70-130 20 trans-1,3-Dichloropropene ND 4 3.4 85 70-130 20 --cis-1,3-Dichloropropene ND 4 3.6 90 70-130 20 -_ Bromoform ND 4 3.8 96 70-130 20 ---1.1.2.2-Tetrachloroethane ND 4 3.9 98 70-130 20 _ --Benzene ND 4 4.5 112 -70-130 20 --Toluene ND 4 4.8 121 70-130 20 -_ Ethylbenzene ND 4 4.8 120 70-130 20 --p/m-Xylene ND 8 9.7 121 70-130 20 --

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MSD MS Recovery MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Native Sample MS Added Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 QC Sample: L0805753-01 Client ID: MS Sample Chloromethane ND 4 4.3 107 70-130 20 _ -ND **Bromomethane** 4 4.0 101 70-130 20 --Vinyl chloride ND 4 4.7 118 70-130 20 --ND Chloroethane 4 4.6 115 70-130 20 --1.1-Dichloroethene ND 4 4.3 107 70-130 20 -trans-1.2-Dichloroethene ND 4 4.2 104 70-130 20 --cis-1,2-Dichloroethene ND 4 4.5 112 70-130 20 --Trichloroethene ND 4.2 20 4 106 --70-130 -1.2-Dichlorobenzene ND 4 4.0 70-130 20 101 --1,3-Dichlorobenzene ND 4 4.1 104 70-130 20 --1,4-Dichlorobenzene ND 4 4.0 70-130 20 101 -_ Styrene ND 4 4.6 115 70-130 20 -o-Xylene ND 4 4.7 118 --70-130 20 -1,1-Dichloropropene ND 4 4.5 112 70-130 20 ---2,2-Dichloropropane ND 4 3.8 95 70-130 20 -_ 1,1,1,2-Tetrachloroethane ND 4 4.3 109 70-130 20 ---1,2,3-Trichloropropane ND 4 3.9 98 70-130 20 _ --Bromochloromethane ND 4 4.2 105 -70-130 20 -n-Butylbenzene ND 4 4.3 108 70-130 20 -_ Dichlorodifluoromethane ND 4 4.8 120 70-130 20 ---Hexachlorobutadiene ND 4 4.1 102 70-130 20 --

Project Name: WAL	POLE PARK SOUTH
-------------------	-----------------

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MSD MS Recovery Limits Native Sample MS Added MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 Client ID: MS Sample QC Sample: L0805753-01 Isopropylbenzene ND 4 4.5 113 70-130 20 _ p-Isopropyltoluene ND 4.5 113 70-130 20 4 ---Naphthalene ND 4 3.6 89 _ 70-130 20 n-Propylbenzene ND 4.9 70-130 20 4 123 --sec-Butylbenzene ND 4 4.8 120 70-130 20 -tert-Butylbenzene ND 4.9 123 70-130 20 4 ---1,2,3-Trichlorobenzene ND 4 3.7 92 70-130 20 --1,2,4-Trichlorobenzene ND 4 3.7 92 70-130 20 ---1,2,4-Trimethylbenzene ND 4 4.6 114 70-130 20 --1,3,5-Trimethylbenzene ND 4 4.9 122 70-130 20 --Bromobenzene ND 4 4.4 70-130 20 110 -_ o-Chlorotoluene ND 4 4.7 118 70-130 20 --p-Chlorotoluene ND 4 4.4 111 --70-130 20 -Dibromomethane ND 4 4.1 102 70-130 20 _ --1.2-Dibromoethane ND 4 3.9 98 70-130 20 _ -1,2-Dibromo-3-chloropropane ND 4 3.7 92 70-130 20 ---1,3-Dichloropropane ND 4 4.0 100 _ 70-130 20 _ -Methyl tert butyl ether ND 4 3.6 90 -70-130 20 --

		MO	MOD	D	
Project Number:	12700058-003			Report Date:	05/05/08
Project Name:	WALPOLE PARK SOUTH	Matrix Spike Analysis Batch Quality Control		Lab Number:	L0806023

Parameter	Native Sample	MS Added	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 01	,04-08 QC	Batch ID: WG3	319665-1 QC	Sample: L080	5753-01 Clie	ent ID: M	S Sample
			N	IS		MSD	Accepta	nce	
	Surrogate		% Recovery	v Qualifier	% Recover	y Qualifier	Criteri	а	

1,2-Dichlorobenzene-d4	101	80-120
4-Bromofluorobenzene	104	80-120

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MSD MS Recovery MS Found %Recovery %Recovery **RPD** Limits Native Sample MS Added MSD Found Limits RPD Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-1 QC Sample: L0806023-02 Client ID: RIZ-9-042808 Methylene chloride ND 4 4.5 113 70-130 20 --ND 1.1-Dichloroethane 4 4.6 116 70-130 20 ---Chloroform ND 4 4.6 115 70-130 20 --Carbon tetrachloride ND 4.7 4 119 70-130 20 --1,2-Dichloropropane ND 4 4.6 115 70-130 20 --Dibromochloromethane ND 4 4.1 103 70-130 20 ---1,1,2-Trichloroethane ND 4 4.3 107 70-130 20 --Tetrachloroethene ND 5.0 70-130 20 4 124 ---Chlorobenzene ND 4 4.5 70-130 20 113 --Trichlorofluoromethane ND 4 4.2 106 70-130 20 --1,2-Dichloroethane ND 4 4.5 70-130 20 113 --1,1,1-Trichloroethane ND 4 4.8 119 70-130 20 --Bromodichloromethane ND 4 4.5 112 --70-130 20 trans-1,3-Dichloropropene ND 4 3.6 91 70-130 20 --cis-1,3-Dichloropropene ND 4 3.9 98 70-130 20 -_ Bromoform ND 4 3.8 95 70-130 20 ---1.1.2.2-Tetrachloroethane ND 4 3.8 96 70-130 20 _ --Benzene ND 4 5.0 125 -70-130 20 --Toluene ND 4 5.2 130 70-130 20 -_ Ethylbenzene ND 4 4.7 117 70-130 20 --p/m-Xylene ND 8 9.6 120 70-130 20 --

Project Name: WA	LPOLE PARK SOUTH
------------------	------------------

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MSD MS Recovery MS Found %Recovery %Recovery **RPD** Limits Native Sample MS Added MSD Found Limits RPD Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-1 QC Sample: L0806023-02 Client ID: RIZ-9-042808 Chloromethane ND 4 4.4 110 70-130 20 --ND 4.2 **Bromomethane** 4 106 70-130 20 --Vinyl chloride ND 4 4.9 122 70-130 20 --ND Chloroethane 4 4.9 123 70-130 20 --1.1-Dichloroethene ND 4 4.6 114 70-130 20 -trans-1.2-Dichloroethene ND 4 4.5 113 70-130 20 --cis-1,2-Dichloroethene ND 4 4.5 113 70-130 20 --Trichloroethene ND 4.5 20 4 112 --70-130 -1.2-Dichlorobenzene ND 4 3.9 97 70-130 20 --1,3-Dichlorobenzene ND 4 4.0 99 70-130 20 --1,4-Dichlorobenzene ND 4 3.9 97 70-130 20 -_ Styrene ND 4 4.6 114 70-130 20 -o-Xylene ND 4 4.6 116 --70-130 20 -1,1-Dichloropropene ND 4 4.7 118 70-130 20 ---2,2-Dichloropropane ND 4 4.3 108 70-130 20 -_ 1,1,1,2-Tetrachloroethane ND 4 4.2 106 70-130 20 ---1,2,3-Trichloropropane ND 4 3.9 98 70-130 20 _ --Bromochloromethane ND 4 4.4 111 -70-130 20 -n-Butylbenzene ND 4 4.1 103 70-130 20 -_ Dichlorodifluoromethane ND 4 4.9 122 70-130 20 ---Hexachlorobutadiene ND 4 4.1 102 70-130 20 --

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter	Native Sample	MS Added	MS Found	MS %Recoverv	MSD Found	MSD %Recoverv	Recovery Limits	RPD	RPD I imits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 02	-03 QC Bat	ch ID: WG3202	296-1 QC S	ample: L080602	3-02 Client	ID: RIZ-	9-042808
Isopropylbenzene	ND	4	4.4	111	-	<u>-</u>	70-130	-	20
p-Isopropyltoluene	ND	4	4.3	109			70-130	-	20
Naphthalene	ND	4	3.3	83	-	-	70-130	_	20
n-Propylbenzene	ND	4	4.8	120	-	-	70-130	_	20
sec-Butylbenzene	ND	4	4.7	117	-	-	70-130	-	20
tert-Butylbenzene	ND	4	4.8	120		-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.6	90	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.5	87	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.4	110	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.8	119	-	-	70-130	-	20
Bromobenzene	ND	4	4.3	108	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.6	115	-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.3	108	•	-	70-130	-	20
Dibromomethane	ND	4	4.4	111	•	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.8	96	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.2	81	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.3	107	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	4.3	107	-	-	70-130	-	20

		Matrix Spike Analys	sis		
Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	//	Lab Number:	L0806023
Project Number:	12700058-003			Report Date:	05/05/08
		MS	MSD	Recovery	

Parameter	Native Sample	MS Added	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by GC/M	S 524.2 Associated	sample(s): 02-	03 QC Bat	ch ID: WG320	296-1 QC Sa	ample: L0806023	-02 Client	ID: RIZ-9	9-042808

	MS	5	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	98				80-120	
4-Bromofluorobenzene	103				80-120	

Project Name: WALPOLE PARK SOUTH

Batch

Lab Number: Report Date:

er: L0806023 te: 05/05/08

Project Number: 12700058-003

Parameter	Native Sa	mple Duplicate Sa	mple Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	QC Batch ID: WG319665-2	2 QC Sample:	L0805753-02 Client ID:	DUP Sample
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

Parameter	Native Sar	nple Duplicate Sam	ple Units	RPD	RPD Limits
/olatile Organics by GC/MS 524.2 Associated s	ample(s): 01,04-08	QC Batch ID: WG319665-2	QC Sample: L080	5753-02 Client ID	: DUP Sample
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Lab Number: Report Date:

er: L0806023

Project Number: 12700058-003

Parameter	Native Sa	mple Duplicate Sam	ple Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Asso	ociated sample(s): 01,04-08	QC Batch ID: WG319665-2	QC Sample: L080	5753-02 Client ID:	DUP Sample
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter Native Sample **Duplicate Sample** Units RPD **RPD** Limits Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-2 QC Sample: L0805753-02 Client ID: DUP Sample 1,2-Dibromo-3-chloropropane ND ND NC 20 ug/l 1,3-Dichloropropane 20 ND ND ug/l NC Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	115		115		80-120	
4-Bromofluorobenzene	87		88		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

Parameter	Native Sample	Duplicate Sar	mple Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID	: WG320296-2	QC Sample: L0806023-0	3 Client ID:	MW-3-042808
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

Parameter	Native Sample	Duplicate San	nple Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associated sample(s)	: 02-03 QC Batch ID:	WG320296-2	QC Sample: L0806023-03	Client ID:	MW-3-042808
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

Parameter	Native Sample	Duplicate Sa	mple Units	RPD	RPD Limits	
Volatile Organics by GC/MS 524.2 Associated sam	ple(s): 02-03 QC Batch ID	WG320296-2	QC Sample: L0806023-0	3 Client ID:	MW-3-042808	
Bromochloromethane	ND	ND	ug/l	NC	20	
n-Butylbenzene	ND	ND	ug/l	NC	20	
Dichlorodifluoromethane	ND	ND	ug/l	NC	20	
Hexachlorobutadiene	ND	ND	ug/l	NC	20	
Isopropylbenzene	ND	ND	ug/l	NC	20	
p-Isopropyltoluene	ND	ND	ug/l	NC	20	
Naphthalene	ND	ND	ug/l	NC	20	
n-Propylbenzene	ND	ND	ug/l	NC	20	
sec-Butylbenzene	ND	ND	ug/l	NC	20	
tert-Butylbenzene	ND	ND	ug/l	NC	20	
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20	
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20	
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20	
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20	
Bromobenzene	ND	ND	ug/l	NC	20	
o-Chlorotoluene	ND	ND	ug/l	NC	20	
p-Chlorotoluene	ND	ND	ug/l	NC	20	
Dibromomethane	ND	ND	ug/l	NC	20	
1,2-Dibromoethane	ND	ND	ug/l	NC	20	

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter Native Sample **Duplicate Sample** Units RPD **RPD** Limits Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-2 QC Sample: L0806023-03 Client ID: MW-3-042808 1,2-Dibromo-3-chloropropane ND NC ND ug/l 20 1,3-Dichloropropane 20 ND ND ug/l NC Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	112		111		80-120	
4-Bromofluorobenzene	90		88		80-120	

METALS

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name:	WALPO	VALPOLE PARK SOUTH				Lab	Lab Number:			
Project Number:	1270005	8-003				Rep	oort Date:		05/05/08	
SAMPLE RESULTS										
Lab ID:	L080602	3-01				Dat	e Collected:	:	04/28/08 09:	10
Client ID:	RIZ-10-0	42808				Dat	e Received:	:	04/29/08	
Sample Location:	WALPO	E, MA				Fiel	d Prep:		Not Specified	b
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600)0/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:28	8 EPA 3005	64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 17:28 EPA 3005A

05/01/08 18:00 05/02/08 13:48 EPA 7470A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/01/08 22:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.062

Project Name: Project Number:	WALPO	LE PARK S	OUTH			Lab	Number:		L0806023 05/05/08	
	127 0000	.0.000	SA		RESULT	S			00/00/00	
Lab ID:	L080602	3-02	•			Dat	e Collected:	:	04/28/08 10:	12
Client ID:	RIZ-9-04	2808				Dat	e Received:	:	04/29/08	
Sample Location:	WALPOI	_E, MA				Fiel	d Prep:		Not Specified	b
Matrix:	Water						·			
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:3	4 EPA 3005	A 64,6020A	BM

Antimony, Dissolved	ND	mg/l	0.0020	4	04/30/08 12:00 05/01/08 22:34 EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Barium, Dissolved	0.021	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	05/01/08 18:00 05/02/08 13:55 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND	mg/l	0.025	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	4	04/30/08 12:00 05/01/08 22:34 EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO 1270005	LE PARK S 58-003	OUTH			Lal Re	Lab Number: Report Date:			
-			SA		RESULT	S	-			
Lab ID:	L080602	23-03				Da	te Collected	:	04/28/08 11:	20
Client ID:	MW-3-04	42808				Da	te Received	:	04/29/08	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Not Specifie	b
Matrix:	Water						·		·	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00) 05/01/08 22:4	0 EPA 3005	A 64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:03 EPA 3005A

05/01/08 18:00 05/02/08 13:57 EPA 7470A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/01/08 22:40 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

	$\langle \rangle$				
	Δ	È	-	iA	
-	NA	LY	71	C A	L

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.010

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO 1270005	VALPOLE PARK SOUTH 2700058-003 SAMPLE RESULT					Lab Number:			
			SA		RESULT	S				
Lab ID:	L080602	3-04				Dat	e Collected:	0	4/28/08 12:	15
Client ID:	RIZ-8-04	-8-042808				Dat	Date Received:			
Sample Location:	WALPO	LE, MA				Fiel	d Prep:	F	ield Filtered	t
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:45	5 EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:06	6 EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:06 EPA 3005A

05/01/08 18:00 05/02/08 13:58 EPA 7470A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/01/08 22:45 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

0.025

ND

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO 1270005	LE PARK S 58-003	OUTH			Lal Re	o Number: port Date:		L0806023 05/05/08	
-			SA		RESULT	S	-			
Lab ID:	L080602	3-05				Da	te Collected	:	04/28/08 12:	30
Client ID:	RIZ-8S-0	042808				Da	te Received	:	04/29/08	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Field Filtered	ł
Matrix:	Water						-			
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:0	7 EPA 3005	A 64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:10 EPA 3005A

05/01/08 18:00 05/02/08 14:00 EPA 7470A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/01/08 23:07 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

0.054

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO	LE PARK S	OUTH			Lai Re	b Number: port Date:		L0806023	
	1210000		SA		RESULT	'S			00/00/00	
Lab ID:	L080602	23-06	0,			Da	te Collected	:	04/28/08 14:	36
Client ID:	GHC-6-0)42808				Da	te Received	:	04/29/08	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Field Filtered	ł
Matrix:	Water						·			
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	0 05/01/08 23:1	3 EPA 3005	5A 64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:14 EPA 3005A

05/01/08 18:00 05/02/08 14:02 EPA 7470A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/01/08 23:13 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

0.059

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

	$\langle \rangle$				
	Δ	È	-	iA	
-	NA	LY	71	C A	L

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003					Lab Number:			L0806023		
Project Number.	1270005	08-003	S		RESULT	ке 'S	port Date.		05/05/08	
Lab ID:	L080602	3-07	Ŭ,			Dat	e Collected	:	04/28/08 14:	52
Client ID:	MW-2-04	42808				Dat	e Received	:	04/29/08	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Field Filtered	ł
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	y MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:1	8 EPA 3005	A 64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:17 EPA 3005A

05/01/08 18:00 05/02/08 14:04 EPA 7470A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/01/08 23:18 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

	A
^	NALYTICAL

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.031

ND

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst Factor Prepared Analyzed Parameter **Result Qualifier** Units RDL Dissolved Metals by MCP 6000/7000 series for sample(s): 01-07 Batch: WG320004-1 0.005 Arsenic, Dissolved ND mg/l 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 Barium, Dissolved mg/l 1 05/02/08 15:41 60,6010B AI 04/30/08 12:00 Beryllium, Dissolved ND 0.005 1 60,6010B mg/l 04/30/08 12:00 05/02/08 15:41 AI Cadmium, Dissolved ND mg/l 0.004 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI Chromium, Dissolved ND mg/l 0.01 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 1 04/30/08 12:00 Lead, Dissolved mg/l 05/02/08 15:41 60,6010B AI Nickel, Dissolved ND mg/l 0.025 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 1 AI Selenium, Dissolved mg/l 05/02/08 15:41 60,6010B 04/30/08 12:00 ND 1 0.007 60,6010B AI Silver, Dissolved mg/l 04/30/08 12:00 05/02/08 15:41 ND 1 AI Vanadium, Dissolved mg/l 0.010 04/30/08 12:00 05/02/08 15:41 60,6010B Zinc, Dissolved ND mg/l 0.050 1 05/02/08 15:41 60,6010B AI 04/30/08 12:00

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series fo	or sample	(s): 01	-07 Batch:	WG320013-	1		
Antimony, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01-	07 Batch:	WG320203-	1		
Mercury, Dissolved	ND	mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:25	64,7470A	RC

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: Report Date: L0806023 05/05/08

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number: L0806023 Report Date: 05/05/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch:	WG320004-2 WG320004-3		
Arsenic, Dissolved	107	106	80-120	1	20
Barium, Dissolved	94	92	80-120	2	20
Beryllium, Dissolved	97	95	80-120	2	20
Cadmium, Dissolved	108	106	80-120	2	20
Chromium, Dissolved	95	95	80-120	0	20
Lead, Dissolved	97	95	80-120	2	20
Nickel, Dissolved	96	95	80-120	1	20
Selenium, Dissolved	103	103	80-120	0	20
Silver, Dissolved	94	92	80-120	2	20
Vanadium, Dissolved	98	96	80-120	2	20
Zinc, Dissolved	96	93	80-120	3	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch:	WG320013-2 WG320013-3		
Antimony, Dissolved	93	96	80-120	3	20
Thallium, Dissolved	96	97	80-120	1	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch:	WG320203-2 WG320203-3		
Mercury, Dissolved	109	105	80-120	4	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler	Custody Seal
A	Absent

Container Info	ormation						
Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0806023-01A	Vial HCI preserved	A	NA	4 C	Y	Absent	524.2
L0806023-01B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-01C	Plastic 500ml HNO3 preserved	A	<2	4 C	Υ	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-02A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-02B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-02C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-03A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-03B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-03C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-04A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-04B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-04C	Plastic 500ml HNO3 preserved	A	<2	4 C	Υ	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-05A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0806023-05B	Vial HCI preserved	A	NA	4 C	Y	Absent	524.2
L0806023-05C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-06A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-06B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-06C	Plastic 500ml HNO3 preserved	A	<2	4 C	Υ	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-07A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-07B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-07C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-08A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2

Container	Comments
0011101	00111101110

L0806023-01A	IR Gun
L0806023-01B	IR Gun
L0806023-01C	IR Gun
L0806023-02A	IR Gun
L0806023-02B	IR Gun
L0806023-02C	IR Gun
L0806023-03A	IR Gun
L0806023-03B	IR Gun
L0806023-03C	IR Gun

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
			-				-

Container Comments

L0806023-04A	IR Gun
L0806023-04B	IR Gun
L0806023-04C	IR Gun
L0806023-05A	IR Gun
L0806023-05B	IR Gun
L0806023-05C	IR Gun
L0806023-06A	IR Gun
L0806023-06B	IR Gun
L0806023-06C	IR Gun
L0806023-07A	IR Gun
L0806023-07B	IR Gun
L0806023-07C	IR Gun
L0806023-08A	IR Gun

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0806023

 Report Date:
 05/05/08

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Tetra Tech Rizzo One Grant Street - P.O. Box 9005 Framingham, MA 01701 Attn: Ray Johnson

Project: Walpole Park South-Walpole, MA Project 12700058

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA87371-01	RIZ-10-GW	Ground Water	11-Nov-08 14:35	12-Nov-08 17:15
SA87371-02	RIZ-8-GW	Ground Water	11-Nov-08 13:50	12-Nov-08 17:15
SA87371-03	RIZ-3-GW	Ground Water	11-Nov-08 15:40	12-Nov-08 17:15
SA87371-04	MW-9-GW	Ground Water	11-Nov-08 11:50	12-Nov-08 17:15
SA87371-05	MW-2-GW	Ground Water	11-Nov-08 09:50	12-Nov-08 17:15
SA87371-06	RIZ-9-GW	Ground Water	11-Nov-08 11:00	12-Nov-08 17:15
SA87371-07	MW-3-GW	Ground Water	11-Nov-08 08:35	12-Nov-08 17:15
SA87371-08	GHC-6-GW	Ground Water	11-Nov-08 09:20	12-Nov-08 17:15
SA87371-09	Trip Blank 111108	Aqueous	11-Nov-08 00:00	12-Nov-08 17:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 43 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

The samples were received 3.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended 70%-130% recovery range, a range has been set based on historical control limits.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 624

Laboratory Control Samples:

8111076-BSD1

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

1,1,1-Trichloroethane 1,1-Dichloroethene Carbon tetrachloride Trichlorofluoromethane (Freon 11) Vinyl chloride

8111194-BSD1

Analyte out of acceptance range.

2-Hexanone (MBK) Vinyl chloride

EPA 624

Spikes:

8111194-MS1 Source: SA87191-03

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene Benzene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene

8111194-MSD1 Source: SA87191-03

Analyte out of acceptance range.

Toluene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene Benzene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene

8111291-MS1 Source: SA87501-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

8111291-MSD1 Source: SA87501-01

Analyte out of acceptance range.

1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Bromodichloromethane Bromoform Chlorobenzene Chloroform cis-1,3-Dichloropropene Ethylbenzene Toluene trans-1,3-Dichloropropene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

SW846 6010B

SW846 6010B

Duplicates:

8111042-DUP1 Source: SA87401-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Lead

Sample Identification			Client Broject #		Motrix	Matrix Collection Date/Time				Pagaiwad	
RIZ-10-GW			<u>12</u>	<u>1 PI0ject #</u>	G	Iviau IX	$\frac{11_{\text{Nov}} - 08}{14.35}$			<u>Received</u>	
SA87	/371-01		12700038		Ground water		11-NOV	12-1NOV-08			
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Droanic Compounds by GCMS										
Preparec	t by method SW846 5030 Water M	15									
67 64 1	A setone	RDI		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
71_43_2	Renzene	BRI		µg/i	1.0	1	"	"	"	"	x
75 27 4	Benzene	BDI		µg/i	1.0	1		"	"	"	x
75 25 2	Bromotorm			µg/i	1.0	1					x
73-23-2				µg/l	2.0	1			"		×
74-03-9	Bromometnane			µg/i	10.0	1	"		"		^
78-93-3	2-Butanone (MEK)			µg/i	10.0	1			"		v
50-23-5	Carbon tetrachioride			µg/i	1.0	1			"		×
108-90-7	Chlorobenzene			µg/i	1.0	1					×
75-00-3	Chloroethane	BRL		µg/i	2.0	1					X
67-66-3	Chloroform	BRL		µg/I	1.0	1					X
74-87-3	Chloromethane	BRL		µg/I	2.0	1					X
124-48-1	Dibromochloromethane	BRL		µg/l	1.0	1					X
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	х
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	х
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	х
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
100-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
75-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	х
100-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
127-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
108-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	х
71-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
79-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
79-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	х
75-01-4	Vinvl chloride	BRL		µg/l	1.0	1	"	"	"	"	х
179601-23-	1m p-Xvlene	BRL		µg/l	2.0	1	"	"	"	"	х
95-47-6	o-Xvlene	BRL		µg/l	1.0	1	"	"	"	"	х
	A-Bromofluorobenzene	105		70-130	<u>،</u>						
2027-26-5	Toluene-d8	100		70-130) %						
17060.07.0	1 2-Dichloroethane-d4	107		70-130) %						
1060 52 7	Dibromofluoromothono	107		70-130	י י <i>ס</i> 19/		"		"		
Soluble N	Jorola by EDA 200/6000 Source Math	ode		70-730	/0						
Soluble N	Tetais by EFA 200/0000 Series Meth			N1/*				44.51 05	44.51 65	0444000	
· · · ·		rieia Filterec	I	N/A		1 1	=PA 200.7/3005A	14-NOV-08	14-NOV-08	8111039	
Soluble N	1etals by EPA 6000/7000 Series Met	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
7440-39-3	Barium	88.4		µg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-10-GW SA87371-01		<u>Client Project #</u> 12700058	(<u>Matrix</u> Fround Wat	<u>Collection</u> er 11-Nov	2 <u>Received</u> 12-Nov-08				
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	1etals by EPA 6000/7	000 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	µg/l	2.5	1	"	"	"		
7440-47-3	Chromium	BRL	µg/l	5.0	1	"	"	"		
7440-02-0	Nickel	BRL	µg/l	5.0	1	"	"	"		
7439-92-1	Lead	BRL	µg/l	7.5	1	"	"	"		
7440-36-0	Antimony	BRL	µg/l	6.0	1	"	"	"		
7782-49-2	Selenium	BRL	µg/l	15.0	1	"	"	"		
7440-28-0	Thallium	11.6	µg/l	5.0	1	"	"	"		
7440-62-2	Vanadium	BRL	µg/l	5.0	1	"	"	"		
7440-66-6	Zinc	36.3	µg/l	7.5	1	"	"	"		
Soluble N	fetals by EPA 200 Se	ries Methods								
7439-97-6	Mercury	BRL	μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Sample Identification			Client Project # Mate		Motrix	Astrix Collection Date/Time				Pagaiwad	
RIZ-8-GW			12700058		G	Tound Water	11-Nov-08 13:50			12 Nov 08	
SA87	/371-02		12/00038		Glound water		11-100		10		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Droanic Compounds by GCMS										
Preparec	t by method SW846 5030 Water M	15									
67 64 1	A setone	RDI		ua/l	20.0	1	EPA 624	18-Nov-08	18-Nov-08	8111201	
71 42 2	Acelone			µg/l	1.0	1	"	"	"	"	Y
71-43-2	Benzene Branna diable and the ne			µg/i	1.0	1	"				×
75-27-4	Bromodichioromethane			µg/l	1.0	1			"		x
75-25-2	Bromotorm			µg/i	2.0	1	"		"		×
74-03-9	Bromometnane			µg/i	2.0	1			"		^
78-93-3	2-Butanone (MEK)			µg/i	10.0	1			"		v
50-23-5	Carbon tetrachioride			µg/i	1.0	1	"		"		×
75.00.2	Chlorobenzene			µg/i	1.0	1	"		"		×
75-00-3	Chloroethane			µg/i	2.0	1			"		×
07-00-3	Chloroform			µg/i	1.0	1			"		×
/4-8/-3	Chloromethane	BRL		µg/i	2.0	1					×
124-48-1	Dibromochloromethane	BRL		µg/i	1.0	1					X
95-50-1	1,2-Dichlorobenzene	BRL		µg/i	1.0	1					X
541-73-1	1,3-Dichlorobenzene	BRL		µg/I	1.0	1					X
106-46-7	1,4-Dichlorobenzene	BRL		µg/I	1.0	1					X
75-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1					Х
107-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
100-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
75-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
100-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
127-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
108-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
79-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	х
75-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	х
179601-23-	¹ m.p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	х
95-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	х
Surrogate											
460-00-4	4-Bromofluorobenzene	86		70-130	0%		"	"	"	"	
2037-26-5	Toluene-d8	97		70-130	7 %		"		"	"	
17060-07-0	1 2-Dichloroethane-d4	107		70-130	, %) %		"		"	"	
1868-53-7	Dibromofluoromethane	112		70-130) %				"	"	
Soluble N	Letals by FPA 200/6000 Sarias Math	ods		, 0- , 00							
Soluble N	Etherice	Field Filters -		NI/A		1 7		14 Nov 00	14 Nov 00	0111020	
6-1-11 5		rieiù Filterec	I	IN/A		1 1	=FA 200.7/3005A	14-1107-08	14-1107-08	0111039	
Soluble N	tetais by EPA 6000//000 Series Met	noas			_						
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
7440-39-3	Barium	27.6		µg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-8-GW SA87371-02		<u>Client Project #</u> 12700058	(<u>Matrix</u> Fround Wat	<u>Collection</u> er 11-Nov	<u>Received</u> 12-Nov-08				
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/7	7000 Series Methods								
7440-41-7	Beryllium	BRL	μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL	μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL	μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL	μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL	μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL	µg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL	μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL	μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	26.4	μg/l	7.5	1	"	"	"	"	
Soluble N	letals by EPA 200 Se	eries Methods								
7439-97-6	Mercury	BRL	μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Sample Identification RIZ-3-GW			<u>Client Project #</u> 12700058		G	<u>Matrix</u> fround Wate	Collection Date/Time 11-Nov-08 15:40			<u>Received</u> 12-Nov-08	
SA87	/371-03		12,00000		oround tru						-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	IS									
67-64-1	Acetone	BRL		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
71-43-2	Benzene	BRI		ua/l	1.0	1	"	"	"	"	х
75-27-4	Bromodichloromethane	BRI		ua/l	1.0	1	"		"	"	х
75-25-2	Bromoform	BRL		µg/l	1.0	1	"		"	"	х
74-83-9	Bromomethane	BRL		µq/l	2.0	1	"		"	"	х
78-93-3	2-Butanone (MEK)	BRL		µq/l	10.0	1	"		"	"	
56-23-5	Carbon tetrachloride	BRL		ua/l	1.0	1	"		"	"	х
108-90-7	Chlorobenzene	BRL		µq/l	1.0	1	"		"	"	х
75-00-3	Chloroethane	BRL		µq/l	2.0	1	"		"	"	х
67-66-3	Chloroform	BRL		ua/l	1.0	1	"	"	"	"	х
74-87-3	Chloromethane	BRL		µg/l	2.0	1	"		"	"	х
124-48-1	Dibromochloromethane	BRL		ua/l	1.0	1	"	"	"	"	х
95-50-1	1 2-Dichlorobenzene	BRL		ua/l	1.0	1	"		"	"	х
541-73-1	1.3-Dichlorobenzene	BRI		ua/l	1.0	1	"		"	"	х
106-46-7	1 4-Dichlorobenzene	BRI		ua/l	1.0	1	"		"	"	X
75-34-3	1 1-Dichloroethane	BRI		ua/l	1.0	1	"		"	"	x
107-06-2	1.2 Dichloroethane	BRI		ua/l	1.0	1	"		"	"	x
75-35-4	1 1-Dichloroethene	BRI		ua/l	1.0	1	"		"	"	x
156-59-2	cis_1 2-Dichloroethene	BRI		ua/l	1.0	1	"		"	"	~
156-60-5	trans_1.2 Dichloroethene	BRI		ua/l	1.0	1	"		"	"	х
78-87-5		BRI		µg/l	1.0	1	"			"	x
10061-01-5		BRI		µg/i	1.0	1			"	"	x
10061 02 6		BDI		µg/i	1.0	1					x
100 41 4				µg/l	1.0	1	"				x
501 79 6				µg/l	10.0	1	"				~
1624 04 4	2-Hexanone (MBK)			µg/i	10.0	1	"				
1034-04-4				µg/l	10.0	1	"				
75 00 0	4-Methyl-2-pentanone (MIBK)			µg/i	10.0	1	"				×
100 42 5	Methylene chloride			µg/i	10.0	1	"				~
70.04.5	Styrene			µg/i	1.0	1	"				×
19-34-5	1,1,2,2-1 etrachioroethane			µg/i	1.0	1	"				×
127-18-4				µg/i	1.0	1					×
100-00-3	I oluene			µg/i	1.0	1					×
71-55-6				µg/i	1.0	1					×
79-00-5	1,1,2-I richloroethane			µg/i	1.0	1	"			"	×
79-01-6	I richloroethene			µg/i	1.0	1					×
75-69-4	I richlorofluoromethane (Freon 11)	BRL		µg/i	1.0	1					X
/5-01-4	Vinyl chloride	BRL		µg/i	1.0	1					X
1/9601-23-	¹ m,p-Xylene	BRL		µg/i	2.0	1					X
95-47-6	o-Xylene	BRL		μg/i	1.0	1					×
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	104		70-130	0%		"	"	"	"	
2037-26-5	Toluene-d8	99		70-130	0%		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	114		70-130	0%		"	"	"	"	
1868-53-7	Dibromofluoromethane	109		70-130)%		"	"	"	"	
Soluble N	Ietals by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered	ł	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	fetals by EPA 6000/7000 Series Meth	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
7440-39-3	Barium	86.2		µg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-3-GW SA87371-03		<u>Client Project #</u> 12700058	(<u>Matrix</u> Fround Wate	er <u>Collection Date/Tim</u> 11-Nov-08 15:40		e <u>Received</u> 12-Nov-08				
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.	
Soluble N	letals by EPA 6000/70	000 Series Methods									
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042		
7440-43-9	Cadmium	BRL	µg/l	2.5	1	"	"	"	"		
7440-47-3	Chromium	BRL	μg/l	5.0	1	"	"	"	"		
7440-02-0	Nickel	BRL	µg/l	5.0	1	"	"	"	"		
7439-92-1	Lead	BRL	µg/l	7.5	1	"	"	"	"		
7440-36-0	Antimony	BRL	µg/l	6.0	1	"	"	"	"		
7782-49-2	Selenium	BRL	µg/l	15.0	1	"	"	"	"		
7440-28-0	Thallium	BRL	µg/l	5.0	1	"	"	24-Nov-08	"		
7440-62-2	Vanadium	BRL	µg/l	5.0	1	"	"	21-Nov-08	"		
7440-66-6	Zinc	21.0	µg/l	7.5	1	"	"	"	"		
Soluble N	fetals by EPA 200 Ser	ies Methods									
7439-97-6	Mercury	BRL	µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	х	
<u>Samp</u> MW-	<u>le Identification</u> 9-GW		Clien	<u>t Project #</u>	G	Matrix Fround Wate	Collection	<u>n Date/Tim</u>	<u>e</u>	Received	<u>1</u>
--------------------	------------------------------------	----------------	-------	--------------------	------------	-----------------------	-----------------	-------------------	------------------	-----------	----------
SA87	371-04		12	/00038	U	nound wate	21 11-INON	-08 11.50		12-1100-0	10
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	IS									
67-64-1	Acetone	BRL		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
71-43-2	Benzene	BRI		ua/l	1.0	1	"		"	"	х
75-27-4	Bromodichloromethane	BRI		ua/l	1.0	1	"		"	"	х
75-25-2	Bromoform	BRL		µg/l	1.0	1	"		"	"	х
74-83-9	Bromomethane	BRL		µq/l	2.0	1	"		"	"	х
78-93-3	2-Butanone (MEK)	BRL		µq/l	10.0	1	"		"	"	
56-23-5	Carbon tetrachloride	BRL		µq/l	1.0	1	"		"	"	х
108-90-7	Chlorobenzene	BRL		µq/l	1.0	1	"		"	"	х
75-00-3	Chloroethane	BRL		µq/l	2.0	1	"		"	"	х
67-66-3	Chloroform	2.2		ua/l	1.0	1	"	"	"	"	х
74-87-3	Chloromethane	BRI		ua/l	2.0	1	"	"	"	"	х
124-48-1	Dibromochloromethane	BRI		ua/l	1.0	1	"		"	"	х
95-50-1	1.2 Dichlorobenzene	BRI		µg/l	1.0	1	"		"	"	x
541-73-1	1.3 Dichlorobenzene	BRI		µg/l	1.0	1	"		"	"	x
106-46-7	1,3-Dichlorobenzene	BRI		µg/1	1.0	1	"		"	"	x
75-34-3	1,4-Dichloroothano	BRI		µg/l	1.0	1	"			"	x
107-06-2	1, 1-Dichloroethane	BRI		µg/i	1.0	1			"	"	x
75 35 4	1,2-Dichloroethane	BDI		µg/i	1.0	1			"	"	x
156 50 2	i, i-Dichloroethene			µg/i	1.0	1			"	"	~
150-59-2				µg/l	1.0	1	"			"	Y
100-00-0	trans-1,2-Dichloroethene			µg/i	1.0	1	"			"	×
10-01-0	1,2-Dichloropropane			µg/i	1.0	1					×
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/i	1.0	1					X
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/i	1.0	1					X
100-41-4	Ethylbenzene	BRL		µg/i	1.0	1					X
591-78-6	2-Hexanone (MBK)	BRL		µg/I	10.0	1					
1634-04-4	Methyl tert-butyl ether	2.7		µg/I	1.0	1					
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/I	10.0	1					
75-09-2	Methylene chloride	BRL		µg/l	10.0	1					х
100-42-5	Styrene	BRL		µg/l	1.0	1					
79-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/I	1.0	1					X
127-18-4	Tetrachloroethene	BRL		µg/l	1.0	1					X
108-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
79-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
79-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
75-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
179601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
95-47-6	o-Xylene	BRL		µg/l	1.0	1	п	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	103		70-130)%		"	"	"	"	
2037-26-5	Toluene-d8	100		70-130	0%		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	113		70-130	0%		"	"	"	"	
1868-53-7	Dibromofluoromethane	110		70-130	0%		"	"	"	"	
Soluble N	Ietals by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered	ł	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	Ietals by EPA 6000/7000 Series Met	hods		-							
7440.22.4	Silver	BRI		ua/l	5.0	1	SW/846 6010P	21-Nov-08	21-Nov-08	8111042	
7440 20 0		BDI		P9/1	3.0 ∡ ∩	1	"	∠ i-iNUV-UO "	∠ i-iNUV-UO "	"	
7440 20 0	Arsenic	18.6		P9/1	-+.U	1 1		"			
1440-39-3	Barium	10.0		μg/i	5.0	I					

<u>Samp</u> MW- SA87	<u>le Identification</u> 9-GW 371-04		<u>Client Project #</u> 12700058	C	<u>Matrix</u> Fround Wat	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> y-08 11:50	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u> 18
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	1etals by EPA 6000/7	000 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	μg/l	2.5	1	"	"	"		
7440-47-3	Chromium	BRL	μg/l	5.0	1	"	"	"		
7440-02-0	Nickel	BRL	μg/l	5.0	1	"	"	"		
7439-92-1	Lead	BRL	μg/l	7.5	1	"	"	"		
7440-36-0	Antimony	BRL	μg/l	6.0	1	"	"	"		
7782-49-2	Selenium	BRL	μg/l	15.0	1	"	"	"		
7440-28-0	Thallium	BRL	μg/l	5.0	1	"	"	"		
7440-62-2	Vanadium	BRL	μg/l	5.0	1	"	"	"		
7440-66-6	Zinc	34.7	μg/l	7.5	1	"	"	"		
Soluble N	letals by EPA 200 Se	ries Methods								
7439-97-6	Mercury	BRL	µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

<u>Samp</u> MW-	le Identification 2-GW		<u>Clien</u> 12	<u>t Project #</u> 700058	G	<u>Matrix</u> fround Wate	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> v-08 09:50	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u>)8
SA87	371-05				-						
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	IS									
67-64-1	Acetone	BRL		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
71-43-2	Benzene	BRI		ua/l	1.0	1	"	"	"	"	х
75-27-4	Bromodichloromethane	BRI		ua/l	1.0	1	"	"	"	"	х
75-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	X
74-83-9	Bromomethane	BRL		µq/l	2.0	1	"	"	"	"	х
78-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
56-23-5	Carbon tetrachloride	BRL		µq/l	1.0	1	"	"	"	"	х
108-90-7	Chlorobenzene	BRL		µq/l	1.0	1	"	"	"	"	х
75-00-3	Chloroethane	BRL		µq/l	2.0	1	"	"	"	"	х
67-66-3	Chloroform	BRL		ua/l	1.0	1	"	"	"	"	х
74-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	х
124-48-1	Dibromochloromethane	BRL		µq/l	1.0	1	"	"	"	"	х
95-50-1	1 2-Dichlorobenzene	BRL		ua/l	1.0	1	"	"	"	"	х
541-73-1	1 3-Dichlorobenzene	BRI		ua/l	1.0	1	"	"	"	"	х
106-46-7	1 4-Dichlorobenzene	BRI		ua/l	1.0	1	"	"	"	"	X
75-34-3	1 1-Dichloroethane	BRI		ua/l	1.0	1	"	"	"	"	X
107-06-2	1, 2 Dichloroethane	BRI		ua/l	1.0	1	"		"	"	x
75-35-4	1,2-Dichloroethene	BRI		ua/l	1.0	1	"		"	"	x
156-59-2	cis-1 2-Dichloroethene	BRI		ua/l	1.0	1	"	"	"	"	~
156-60-5	trans_1.2 Dichloroethene	BRI		ua/l	1.0	1	"		"	"	х
78-87-5	1 2 Dichloropropage	BRI		ua/l	1.0	1	"		"	"	x
10061-01-5	cis 1.3 Dichloropropene	BRI		м9/1 ua/l	1.0	1	"		"	"	x
10061-01-0	trans 1.3 Dichloropropopo	BRI		µg/1 ua/l	1.0	1	"		"	"	x
100-41-4		BRI		м9/1 ug/l	1.0	1			"	"	x
591-78-6		BRI		м9/1 ug/l	10.0	1			"	"	~
1634 04 4	2-Revaluote (IMBR)	BDI		µg/l	10.0	1			"	"	
108 10 1	4 Mothyl 2 poptopopo (MIRK)	BRI		м9/1 ug/l	10.0	1			"	"	
75-09-2	4-methyl-z-pentanone (mibr)	BRI		м9/1 ug/l	10.0	1			"	"	x
100-42-5	Sturano	BRI		м9/1 ug/l	10	1			"	"	~
70 34 5	1 1 2 2 Totrachlaraethana	BDI		µg/l	1.0	1			"	"	x
127 18 /		BRI		м9/1 ug/l	1.0	1			"	"	x
108-88-3		BRI		м9/1 ug/l	1.0	1			"	"	x
71 55 6	1 1 1 Tripherosthopo	BDI		µg/l	1.0	1					x
79.00.5		BDI		µg/l	1.0	1			"	"	x
79-01-6		BRI		м9/1 ug/l	1.0	1			"	"	x
75 69 4	Trichlorofluoromothene (Freen 11)	BDI		µg/l	1.0	1					x
75 01 4	Vipul oblorido	BDI		µg/l	1.0	1					x
170601 22		BDI		µg/i	2.0	1					x
95-47-6		BRI		µg/i ua/l	1.0	1		"	"	"	x
		DITE		M9.							
Surrogate	recoveries:	101		70 400	2.0/						
460-00-4		104		70-130) % 						
2037-26-5	1 oluene-as	99		70-130	/ % > %				"		
17060-07-0	1,2-Dichloroethane-d4	111		70-130) % 						
1868-53-7		109		70-130	/ %						
Soluble N	ietais by EPA 200/6000 Series Meth	oas									
~	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	letals by EPA 6000/7000 Series Mether	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
7440-39-3	Barium	129		µg/l	5.0	1	"	"	"	"	

<u>Samp</u> MW- SA87	<u>le Identification</u> 2-GW 371-05		<u>Client Project #</u> 12700058	C	<u>Matrix</u> Fround Wat	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> y-08 09:50	<u>e</u>	Received 2-Nov-0	<u>1</u> 8
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/70	000 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	µg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL	µg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL	µg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL	µg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL	µg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL	µg/l	15.0	1	"	"		"	
7440-28-0	Thallium	BRL	µg/l	5.0	1	"	"		"	
7440-62-2	Vanadium	BRL	µg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	28.0	µg/l	7.5	1	"	"	"	"	
Soluble N	letals by EPA 200 Ser	ries Methods								
7439-97-6	Mercury	BRL	µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

<u>Samp</u> RIZ-	<u>ele Identification</u> 9-GW		<u>Clien</u> 12	<u>t Project #</u> 700058	G	<u>Matrix</u> fround Wate	er <u>Collectio</u>	<u>n Date/Tim</u> 7-08 11:00	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u>)8
SA87	/371-06										
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	IS									
67-64-1	Acetone	BRL		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
71-43-2	Benzene	BRI		ua/l	1.0	1	"	"	"	"	х
75-27-4	Bromodichloromethane	BRL		ua/l	1.0	1	"		"	"	х
75-25-2	Bromoform	BRL		µg/l	1.0	1	"		"	"	х
74-83-9	Bromomethane	BRL		µq/l	2.0	1	"		"	"	х
78-93-3	2-Butanone (MEK)	BRL		µq/l	10.0	1	"		"	"	
56-23-5	Carbon tetrachloride	BRL		ua/l	1.0	1	"	"	"	"	х
108-90-7	Chlorobenzene	BRL		µq/l	1.0	1	"		"	"	х
75-00-3	Chloroethane	BRL		µq/l	2.0	1	"		"	"	х
67-66-3	Chloroform	BRL		ua/l	1.0	1	"	"	"	"	х
74-87-3	Chloromethane	BRI		ua/l	2.0	1	"	"	"	"	х
124-48-1	Dibromochloromethane	BRI		ua/l	1.0	1	"		"	"	х
95-50-1	1.2 Dichlorobenzene	BRI		ua/l	10	1	"		"	"	X
541-73-1	1.3 Dichlorobenzene	BRI		µg/l	1.0	1	"		"	"	x
106-46-7	1.4-Dichlorobenzene	BRI		µg/l	1.0	1	"		"	"	x
75-34-3	1 1-Dichloroethane	BRI		µg/l	1.0	1	"		"	"	x
107-06-2	1.2 Dichloroethane	BRI		µg/l	1.0	1	"		"	"	x
75-35-4	1,2-Dichloroethene	BRI		µg/l	1.0	1	"			"	x
156-59-2	cis 1.2 Dichloroothono	BRI		µg/l	1.0	1	"		"	"	X
156-60-5	trans 1.2 Dichloroothono	BRI		µg/l	1.0	1	"			"	x
78-87-5		BRI		µg/l	1.0	1			"	"	x
10061 01 5		BDI		µg/l	1.0	1					x
10061 02 6		BDI		µg/i	1.0	1					x
100 41 4				µg/l	1.0	1	"				x
501 79 6				µg/l	10.0	1	"				Χ
1624 04 4	2-Hexanone (MBK)			µg/l	10.0	1	"				
1034-04-4				µg/l	10.0	1	"				
75 00 0	4-Methyl-2-pentanone (MIBK)			µg/i	10.0	1	"				v
100 42 5	Methylene chloride			µg/i	10.0	1	"				~
70.04.5	Styrene			µg/i	1.0	1	"				v
19-34-5	1,1,2,2-1 etrachioroethane			µg/i	1.0	1	"				×
127-18-4				µg/i	1.0	1					×
108-88-3	I oluene			µg/i	1.0	1					×
71-55-6				µg/i	1.0	1					×
79-00-5	1,1,2-I richloroethane	BRL		µg/i	1.0	1					×
79-01-6	I richloroethene			µg/i	1.0	1					×
75-69-4	I richlorofluoromethane (Freon 11)	BRL		µg/i	1.0	1					X
/5-01-4	Vinyl chloride	BRL		µg/i	1.0	1					X
179601-23-	¹ m,p-Xylene	BRL		µg/i	2.0	1					X
95-47-6	o-Xylene	BRL		μg/i	1.0	I					
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	101		70-130	0%		"	"	"	"	
2037-26-5	Toluene-d8	99		70-130	0%		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	111		70-130	0%		"	"	"	"	
1868-53-7	Dibromofluoromethane	109		70-130	0%		"	"	"	"	
Soluble N	Ietals by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered	ł	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	fetals by EPA 6000/7000 Series Met	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1		"	"	"	
7440-39-3	Barium	14.8		µg/l	5.0	1	"	"	"	"	

<u>Samp</u> RIZ-9 SA87	<u>le Identification</u> 9-GW 371-06		Client Project # 12700058	C	<u>Matrix</u> Ground Wate	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> 7-08 11:00	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u> 18
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/7	000 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL	μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL	μg/l	5.0	1	"	"	"		
7439-92-1	Lead	BRL	μg/l	7.5	1	"	"	"		
7440-36-0	Antimony	BRL	μg/l	6.0	1	"	"	"		
7782-49-2	Selenium	BRL	μg/l	15.0	1	"	"	"		
7440-28-0	Thallium	BRL	μg/l	5.0	1	"	"	24-Nov-08		
7440-62-2	Vanadium	BRL	μg/l	5.0	1	"	"	21-Nov-08		
7440-66-6	Zinc	20.0	μg/l	7.5	1	"	"	"	"	
Soluble N	letals by EPA 200 Se	ries Methods								
7439-97-6	Mercury	BRL	µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

<u>Samp</u> MW-	<u>ele Identification</u> 3-GW		Clien	<u>t Project #</u> 700058	G	<u>Matrix</u> Fround Wate	<u>Collection</u>	<u>n Date/Tim</u> 7-08 08:35	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u> 18
SA87	/371-07			,00000		i ound i uu		00 00.00		12 1101 0	0
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile 0	Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	IS									
67-64-1	Acetone	BRI		ua/l	20.0	1	EPA 624	17-Nov-08	17-Nov-08	8111194	
71-43-2	Benzene	BRI		ua/l	1.0	1	"	"	"	"	х
75-27-4	Bromodichloromethane	BRI		ua/l	1.0	1	"		"	"	х
75-25-2	Bromoform	BRI		ua/l	1.0	1	"		"	"	X
74-83-9	Bromomethane	BRL		µq/l	2.0	1	"		"	"	х
78-93-3	2-Butanone (MEK)	BRL		µq/l	10.0	1	"		"	"	
56-23-5	Carbon tetrachloride	BRL		µq/l	1.0	1	"		"	"	х
108-90-7	Chlorobenzene	BRL		µq/l	1.0	1	"		"	"	х
75-00-3	Chloroethane	BRL		µq/l	2.0	1	"		"	"	х
67-66-3	Chloroform	BRL		ua/l	1.0	1	"	"	"	"	х
74-87-3	Chloromethane	BRL		µg/l	2.0	1	"		"	"	х
124-48-1	Dibromochloromethane	BRL		ua/l	1.0	1	"	"	"	"	х
95-50-1	1 2-Dichlorobenzene	BRL		ua/l	1.0	1	"		"	"	х
541-73-1	1.3-Dichlorobenzene	BRI		ua/l	1.0	1	"		"	"	х
106-46-7	1 4-Dichlorobenzene	BRI		ua/l	1.0	1	"		"	"	X
75-34-3	1 1-Dichloroethane	BRI		ua/l	1.0	1	"		"	"	x
107-06-2	1.2-Dichloroethane	BRI		ua/l	1.0	1	"		"	"	x
75-35-4	1 1-Dichloroethene	BRI		ua/l	1.0	1	"		"	"	x
156-59-2	cis 1.2 Dichloroethene	BRI		ua/l	1.0	1	"		"	"	~
156-60-5	trans_1.2 Dichloroethene	BRI		ua/l	1.0	1	"		"	"	х
78-87-5		BRI		м9/1 ua/l	1.0	1	"			"	x
10061-01-5		BRI		µg/i	1.0	1			"	"	x
10061 02 6		RDI		µg/i	1.0	1					x
100 41 4				µg/l	1.0	1	"				x
501 79 6				µg/l	10.0	1	"				~
1624 04 4	2-Hexanone (MBK)			µg/i	10.0	1	"				
1034-04-4				µg/l	10.0	1	"				
75 00 0	4-Methyl-2-pentanone (MIBK)			µg/I	10.0	1	"				v
100 42 5				µg/I	10.0	1	"				~
70.04.5	Styrene			µg/i	1.0	1	"				v
19-34-5				µg/I	1.0	1	"				×
127-18-4				µg/i	1.0	1					×
108-88-3	I oluene			µg/i	1.0	1					×
71-55-6				µg/i	1.0	1					×
79-00-5	1,1,2-Irichloroethane	BRL		µg/i	1.0	1					×
79-01-6	I richloroethene			µg/i	1.0	1					×
75-69-4	I richlorofluoromethane (Freon 11)	BRL		µg/i	1.0	1					X
/5-01-4	Vinyl chloride	BRL		µg/i	1.0	1					X
179601-23-	¹ m,p-Xylene	BRL		µg/i	2.0	1					X
95-47-6	o-Xylene	BRL		μg/i	1.0	1					
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	81		70-130	0%		"	"	"	"	
2037-26-5	Toluene-d8	95		70-130	0%		"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	127		70-130	0%		"	"	"	"	
1868-53-7	Dibromofluoromethane	119		70-130	0%		"	"	"	"	
Soluble N	1etals by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered	ł	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	Ietals by EPA 6000/7000 Series Met	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1		"	"	"	
7440-39-3	Barium	11.4		µg/l	5.0	1	"	"	"	"	

<u>Samp</u> MW- SA87	<u>le Identification</u> 3-GW 371-07		<u>Client Project #</u> 12700058	(<u>Matrix</u> Fround Wat	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> -08 08:35	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u> 18
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/70	00 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	µg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL	µg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL	µg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	8.8	µg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL	µg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL	µg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL	µg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL	µg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	34.5	µg/l	7.5	1	"	"	"	"	
Soluble N	letals by EPA 200 Ser	ies Methods								
7439-97-6	Mercury	BRL	μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	х

<u>Samp</u> GHC	<u>le Identification</u> -6-GW		Clien	<u>t Project #</u> 700058	6	<u>Matrix</u> Fround Wate	<u>Collection</u>	<u>n Date/Tim</u> 7-08 09 [.] 20	<u>e</u>	Received	<u>1</u> 8
SA87	371-08		12	100050	0	found wate		00 09.20		12 1107 0	.0
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile (Organic Compounds by GCMS										
Preparec	by method SW846 5030 Water M	IS									
67 64 1		BDI		ua/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
71 42 0	Acetone			µg/l	1.0	1	"	"	"	"	~
71-43-2	Benzene			µg/I	1.0	1	"		"		~
75-27-4	Bromodicniorometnane			µg/i	1.0	1	"		"		~
75-25-2	Bromotorm			µg/i	1.0	1	"		"		~
74-83-9	Bromomethane			µg/i	2.0	1			"		^
78-93-3	2-Butanone (MEK)	BRL		µg/i	10.0	1					v
56-23-5	Carbon tetrachloride	BRL		µg/i	1.0	1					X
108-90-7	Chlorobenzene	BRL		µg/i	1.0	1					X
75-00-3	Chloroethane	BRL		µg/i	2.0	1					X
67-66-3	Chloroform	BRL		µg/l	1.0	1					X
74-87-3	Chloromethane	BRL		µg/l	2.0	1					Х
124-48-1	Dibromochloromethane	BRL		µg/l	1.0	1		"	"		Х
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
75-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
107-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
75-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
78-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"		Х
100-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
591-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
75-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"		Х
100-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"		
79-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"		х
127-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
108-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"		х
71-55-6	1 1 1-Trichloroethane	BRL		µq/l	1.0	1	"	"	"		х
79-00-5	1 1 2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"		х
79-01-6	Trichloroethene	BRL		µq/l	1.0	1	"	"	"		х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		ua/l	1.0	1	"	"	"	"	х
75-01-4	Vinyl chloride	BRL		ua/l	1.0	1	"		"	"	х
179601-23-	1m n-Xvlene	BRL		ua/l	2.0	1	"		"	"	X
95-47-6	o-Xvlene	BRL		ua/l	1.0	1	"		"	"	х
	·			10	-						
Surrogate	recoveries:	0.4		70 120	<i>م</i> د				"		
460-00-4		04 05		70-730	/ 70 0 /		"		"		
2037-26-5	Toluene-a8	95		70-130) % > 0/						
17060-07-0	1,2-Dichloroethane-d4	127		70-130	/%						
1868-53-7		120		70-130	/%						
Soluble N	ietais by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered	I	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
Soluble N	letals by EPA 6000/7000 Series Met	hods									
7440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
7440-39-3	Barium	36.8		µg/l	5.0	1		"	"		

<u>Samp</u> GHC SA87	<u>le Identification</u> - 6-GW 371-08		<u>Client Project #</u> 12700058	C	<u>Matrix</u> Ground Wat	<u>Collection</u> er 11-Nov	<u>n Date/Tim</u> 7-08 09:20	<u>e</u>	<u>Received</u> 12-Nov-0	<u>1</u> 18
CAS No.	Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/7	000 Series Methods								
7440-41-7	Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL	μg/l	2.5	1		"	"		
7440-47-3	Chromium	BRL	μg/l	5.0	1	"	"	"		
7440-02-0	Nickel	BRL	μg/l	5.0	1	"	"	"		
7439-92-1	Lead	BRL	μg/l	7.5	1		"	"	"	
7440-36-0	Antimony	BRL	μg/l	6.0	1	"	"	"		
7782-49-2	Selenium	BRL	μg/l	15.0	1		"	"		
7440-28-0	Thallium	BRL	μg/l	5.0	1	"	"	"		
7440-62-2	Vanadium	BRL	μg/l	5.0	1	"	"	"		
7440-66-6	Zinc	21.6	μg/l	7.5	1	"	"	"		
Soluble N	letals by EPA 200 Se	ries Methods								
7439-97-6	Mercury	BRL	µg/I	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

<u>Samp</u> Trip SA87	<u>le Identification</u> Blank 111108 371-09		<u>Clien</u> 12	<u>t Project #</u> 700058		<u>Matrix</u> Aqueous	<u>Collectio</u> 11-No	on Date/Time v-08 00:00	<u>e</u>	<u>Receive</u> 12-Nov-(<u>d</u> 08
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
Volatile 0	Organic Compounds by GCMS										
Prepared	by method SW846 5030 Water M	1S									
67-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
71-43-2	Benzene	BRL		µg/l	1.0	1		"	"		х
75-27-4	Bromodichloromethane	BRL		µg/l	1.0	1		"	"		х
75-25-2	Bromoform	BRL		µg/l	1.0	1		"	"		Х
74-83-9	Bromomethane	BRL		µg/l	2.0	1		"	"		Х
78-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1		"	"		
56-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1		"	"		х
108-90-7	Chlorobenzene	BRL		µg/l	1.0	1		"	"		Х
75-00-3	Chloroethane	BRL		µg/l	2.0	1		"	"		Х
67-66-3	Chloroform	BRL		µg/l	1.0	1		"	"		Х
74-87-3	Chloromethane	BRL		µg/l	2.0	1		"	"		Х
124-48-1	Dibromochloromethane	BRL		µg/l	1.0	1		"	"		Х
95-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1		"	"		Х
541-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1		"	"		Х
106-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1		"	"		Х
75-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1		"	"		Х
107-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1		"	"		Х
75-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1		"	"		Х
156-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1		"	"		
156-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1		"	"		Х
78-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1		"	"		Х
10061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1		"	"		Х
10061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1		"	"		Х
100-41-4	Ethylbenzene	BRL		µg/l	1.0	1		"	"		Х
591-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1		"	"		
1634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1		"	"		
108-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1		"	"	"	
75-09-2	Methylene chloride	BRL		µg/l	10.0	1		"	"	"	Х
100-42-5	Styrene	BRL		µg/l	1.0	1		"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1		"	"	"	Х
127-18-4	Tetrachloroethene	BRL		µg/l	1.0	1		"	"	"	Х
108-88-3	Toluene	BRL		µg/l	1.0	1		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1		"	"	"	Х
79-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1		"	"	"	Х
79-01-6	Trichloroethene	BRL		µg/l	1.0	1		"	"	"	Х
75-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1		"	"	"	Х
75-01-4	Vinyl chloride	BRL		µg/l	1.0	1		"	"	"	Х
179601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1		"	"	"	Х
95-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	82		70-13	80 %			"	"		
2037-26-5	Toluene-d8	93		70-13	80 %			"	"		
17060-07-0	1,2-Dichloroethane-d4	127		70-13	80 %			"	"		
1868-53-7	Dibromofluoromethane	120		70-13	80 %			"	"		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water MS										
Blank (8111076-BLK1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	BRL		ua/l	20.0						
Benzene	BRL		ua/l	1.0						
Bromodichloromethane	BRL		ua/l	1.0						
Bromoform	BRL		ua/l	1.0						
Bromomethane	BRL		ua/l	2.0						
2-Butanone (MEK)	BRL		ua/l	10.0						
Carbon tetrachloride	BRL		ua/l	1.0						
Chlorobenzene	BRL		ua/l	1.0						
Chloroethane	BRI		ua/l	2.0						
Chloroform	BRI		µg/l	1.0						
Chloromethane	BRI		µg/i ug/l	2.0						
Dibromochloromethane	BRI		µg/1	1.0						
	BRI		µg/i	1.0						
1,2 Dichlorobonzono			µg/i	1.0						
	BDI		µg/i	1.0						
			µg/i	1.0						
1, 1-Dichloroethane			µg/i	1.0						
1,2-Dichloroethane	DRL		µg/i	1.0						
	BRL		µg/i	1.0						
cis-1,2-Dicnioroetnene	BRL		µg/i	1.0						
trans-1,2-Dichloroethene	BRL		µg/l	1.0						
1,2-Dichloropropane	BRL		µg/I	1.0						
cis-1,3-Dichloropropene	BRL		µg/l	1.0						
trans-1,3-Dichloropropene	BRL		µg/l	1.0						
Ethylbenzene	BRL		µg/l	1.0						
2-Hexanone (MBK)	BRL		µg/l	10.0						
Methyl tert-butyl ether	BRL		µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0						
Methylene chloride	BRL		µg/l	10.0						
Styrene	BRL		µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0						
Tetrachloroethene	BRL		µg/l	1.0						
Toluene	BRL		µg/l	1.0						
1,1,1-Trichloroethane	BRL		µg/l	1.0						
1,1,2-Trichloroethane	BRL		µg/l	1.0						
Trichloroethene	BRL		µg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0						
Vinyl chloride	BRL		µg/l	1.0						
m,p-Xylene	BRL		µg/l	2.0						
o-Xylene	BRL		µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.2		µg/l		30.0		84	70-130		
Surrogate: Toluene-d8	29.2		µg/l		30.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.0 32.3		µg/i ug/l		30.0 30.0		110 108	70-130 70-130		
LCS (8111076-BS1)	22.0		r3							
Prepared & Analyzed: 14-Nov-08										
	18.0		uc/l		20.0		۵۵	70-120		
Renzene	24.7		µg/i		20.0		90 100	70-130		
Bromodichloromethane	21.1 01 1		μg/i		20.0		100	35 155		
Bromoform	24.1 17 5		µg/i		20.0		121	45 460		
	17.5		µg/i		20.0		8/	45-169		
Bromomethane	22.2		µg/I		20.0		111	1-242		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water MS										
LCS (8111076-BS1)										
Prepared & Analyzed: 14-Nov-08										
2-Butanone (MEK)	18.1		ua/l		20.0		90	70-130		
Carbon tetrachloride	23.3		ua/l		20.0		117	70-140		
Chlorobenzene	21.2		ua/l		20.0		106	70-130		
Chloroethane	22.4		µg/l		20.0		112	14-230		
Chloroform	23.0		ua/l		20.0		115	51-138		
Chloromethane	20.3		ua/l		20.0		101	1-273		
Dibromochloromethane	19.2		ua/l		20.0		96	53-149		
1.2-Dichlorobenzene	20.4		ua/l		20.0		102	18-190		
1.3-Dichlorobenzene	22.2		ua/l		20.0		111	59-156		
1 4-Dichlorobenzene	20.4		µg/l		20.0		102	18-190		
1 1-Dichloroethane	20.8		ua/l		20.0		104	59-155		
1 2-Dichloroethane	20.0		ug/l		20.0		100	49-155		
1.1-Dichloroethene	20.1		мэ/і Ца/і		20.0		100	70-130		
cis-1 2-Dichloroethene	20.0		r-9′' ⊔a/l		20.0		100	70-130		
trans-1 2-Dichloroethene	20.0		μg/i		20.0		105	54-156		
1 2-Dichloropropane	21.0		ug/l		20.0		107	1-210		
cis-1 3-Dichloropropene	18.6		ua/l		20.0		93	1-227		
trans-1 3-Dichloropropene	18.3		µg/l		20.0		92	17-183		
Ethylbenzene	22.0		ua/l		20.0		110	37-162		
2-Hexanone (MBK)	14.5		µg/l		20.0		72	70-130		
Methyl tert-butyl ether	20.2		μg/i		20.0		101	70-130		
4-Methyl-2-pentanone (MIBK)	18.1		ug/l		20.0		90	70-130		
Methylene chloride	22.5		µg/i		20.0		113	1-221		
Styrene	19.4		µg/i		20.0		97	70-130		
1 1 2 2-Tetrachloroethane	20.1		µg/1		20.0		101	46-157		
Tetrachloroethene	10.1		µg/i		20.0		95	64-148		
	21.0		µg/i		20.0		105	70-130		
1 1 1-Trichloroethane	21.0		µg/i		20.0		100	52-162		
	20.0		µg/i		20.0		103	52 150		
Trichloroethene	20.7		µg/i		20.0		105	71-157		
Trichlorofluoromethane (Freen 11)	20.3		µg/i		20.0		107	17 191		
Vinul chloride	21.4		µg/i		20.0		107	1 251		
m n Xylene	25.0 45.3		µg/i		20.0		113	70 130		
	40.0		µg/i		40.0 20.0		113	70-130		
Surrogate: 4 Bromofluorobenzene	22.0		µg/i		20.0		104	70-130		
Surrogate: Toluene-d8	30.2		µg/i µg/l		30.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.2		µg/l		30.0		97	70-130		
Surrogate: Dibromofluoromethane	30.8		µg/l		30.0		103	70-130		
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	17.0		µg/l		20.0		85	70-130	6	30
Benzene	17.3		µg/l		20.0		87	70-130	22	30
Bromodichloromethane	20.3		µg/l		20.0		101	35-155	17	30
Bromoform	16.3		µg/l		20.0		82	45-169	7	30
Bromomethane	17.8		µg/l		20.0		89	1-242	22	30
2-Butanone (MEK)	19.1		µg/l		20.0		96	70-130	6	30
Carbon tetrachloride	15.8	QR2	µg/l		20.0		79	70-140	39	30
Chlorobenzene	17.6		µg/l		20.0		88	70-130	18	30
Chloroethane	17.8		µg/l		20.0		89	14-230	23	30
Chloroform	19.4		µg/l		20.0		97	51-138	17	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water M	MS									
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Chloromethane	15.6		µg/l		20.0		78	1-273	26	30
Dibromochloromethane	17.3		µg/l		20.0		87	53-149	10	30
1,2-Dichlorobenzene	17.4		μg/l		20.0		87	18-190	16	30
1,3-Dichlorobenzene	19.3		µg/l		20.0		96	59-156	14	30
1,4-Dichlorobenzene	17.5		µq/l		20.0		88	18-190	15	30
1,1-Dichloroethane	17.3		µg/l		20.0		87	59-155	18	30
1,2-Dichloroethane	17.9		μg/l		20.0		90	49-155	11	30
1,1-Dichloroethene	14.2	QR2	µg/l		20.0		71	70-130	34	30
cis-1,2-Dichloroethene	16.8		µg/l		20.0		84	70-130	18	30
trans-1,2-Dichloroethene	16.4		µg/l		20.0		82	54-156	24	30
1,2-Dichloropropane	17.9		µg/l		20.0		89	1-210	18	30
cis-1,3-Dichloropropene	16.1		µq/l		20.0		80	1-227	14	30
trans-1,3-Dichloropropene	16.3		µg/l		20.0		82	17-183	11	30
Ethylbenzene	17.1		µq/l		20.0		86	37-162	25	30
2-Hexanone (MBK)	14.2		µq/l		20.0		71	70-130	2	30
Methyl tert-butyl ether	19.1		µq/l		20.0		96	70-130	6	30
4-Methyl-2-pentanone (MIBK)	18.6		µg/l		20.0		93	70-130	3	30
Methylene chloride	19.0		µq/l		20.0		95	1-221	17	30
Styrene	15.7		µg/l		20.0		78	70-130	21	30
1.1.2.2-Tetrachloroethane	19.4		ua/l		20.0		97	46-157	4	30
Tetrachloroethene	14.4		ua/l		20.0		72	64-148	27	30
Toluene	17.0		ua/l		20.0		85	70-130	21	30
1,1,1-Trichloroethane	14.6	QR2	µg/l		20.0		73	52-162	31	30
1,1,2-Trichloroethane	18.8		µq/l		20.0		94	52-150	9	30
Trichloroethene	16.3		µq/l		20.0		82	71-157	25	30
Trichlorofluoromethane (Freon 11)	13.9	QR2	µg/l		20.0		69	17-181	43	30
Vinyl chloride	15.8	QR2	µq/l		20.0		79	1-251	41	30
m,p-Xylene	35.6		µq/l		40.0		89	70-130	24	30
o-Xylene	18.4		µq/l		20.0		92	70-130	21	30
Surrogate: 4-Bromofluorobenzene	30.9		µg/l		30.0		103	70-130		
Surrogate: Toluene-d8	30.4		µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.8		µg/l		30.0		99	70-130		
Surrogate: Dibromotiuorometnane	31.1		μg/i		30.0		104	70-130		
Matrix Spike (8111076-MS1)	Source: SA8726	7-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.5		µg/l		20.0	BRL	88	70-130		
Bromodichloromethane	23.0		µg/l		20.0	BRL	115	35-155		
Bromoform	17.2		µg/l		20.0	BRL	86	45-169		
Bromomethane	11.9		µg/l		20.0	BRL	60	1-242		
Carbon tetrachloride	21.0		µg/l		20.0	BRL	105	70-140		
Chlorobenzene	19.3		µg/l		20.0	BRL	97	70-130		
Chloroethane	13.9		µg/l		20.0	BRL	70	14-230		
Chloroform	21.5		µg/l		20.0	BRL	108	51-138		
Chloromethane	10.0		µg/l		20.0	BRL	50	1-273		
Dibromochloromethane	18.5		µg/l		20.0	BRL	92	53-149		
1,2-Dichlorobenzene	21.4		µg/l		20.0	BRL	107	18-190		
1,3-Dichlorobenzene	21.8		µg/l		20.0	BRL	109	59-156		
1,4-Dichlorobenzene	20.1		µg/l		20.0	BRL	100	18-190		
1,1-Dichloroethane	19.3		µg/l		20.0	BRL	97	59-155		
1,2-Dichloroethane	18.0		µg/l		20.0	BRL	90	49-155		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water	MS									
Matrix Spike (8111076-MS1) Prenared & Analyzed: 14-Nov-08	Source: SA87267	'-01								
1 1-Dichloroethene	14 1		ua/l		20.0	BRI	71	70-130		
trans-1 2-Dichloroethene	14.1		µg/l		20.0	BRI	71	54-156		
1 2-Dichloropropane	20.1		м9/1 ца/I		20.0	BRI	101	1-210		
cis-1 3-Dichloropropene	16.9		ua/l		20.0	BRI	84	1-227		
trans-1 3-Dichloropropene	17.0		ua/l		20.0	BRI	85	17-183		
Ethylbenzene	19.3		ua/l		20.0	BRI	97	37-162		
Methylene chloride	17.8		ua/l		20.0	BRI	89	1-221		
1 1 2 2-Tetrachloroethane	20.1		ua/l		20.0	BRI	101	46-157		
Tetrachloroethene	16.0		м9/1 ца/I		20.0	BRI	80	64-148		
Toluene	17.6		м9/1 ца/I		20.0	BRI	88	70-130		
1 1 1-Trichloroethane	17.5		µg/i		20.0	BRI	96	52-162		
1 1 2-Trichloroethane	20.8		µg/l		20.0	BRI	104	52-150		
Trichloroethene	17.5		µg/l		20.0	BRI	88	71-157		
Trichlorofluoromethane (Freon 11)	17.5		µg/l		20.0	BRI	83	17-181		
Vinyl chloride	11.0		µg/l		20.0	BRI	57	1-251		
Surrogate: 4-Bromofluorobenzene	30.6		µg/l		30.0	DILL	102	70_130		
Surrogate: Toluene-d8	30.1		µg/l		30.0		102	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	29.6		µg/l		30.0		99	70-130		
Surrogate: Dibromofluoromethane	31.5		µg/l		30.0		105	70-130		
Matrix Spike Dup (8111076-MSD1)	Source: SA87267	'-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.5		µg/l		20.0	BRL	88	70-130	0.06	30
Bromodichloromethane	23.5		µg/l		20.0	BRL	118	35-155	2	30
Bromoform	17.2		µg/l		20.0	BRL	86	45-169	0.4	30
Bromomethane	12.0		µg/l		20.0	BRL	60	1-242	0.9	30
Carbon tetrachloride	20.9		µg/l		20.0	BRL	104	70-140	0.7	30
Chlorobenzene	19.1		µg/l		20.0	BRL	96	70-130	0.9	30
Chloroethane	13.0		µg/l		20.0	BRL	65	14-230	7	30
Chloroform	21.5		µg/l		20.0	BRL	107	51-138	0.2	30
Chloromethane	9.4		µg/l		20.0	BRL	47	1-273	7	30
Dibromochloromethane	19.0		µg/l		20.0	BRL	95	53-149	2	30
1,2-Dichlorobenzene	21.1		µg/l		20.0	BRL	105	18-190	1	30
1,3-Dichlorobenzene	21.8		µg/l		20.0	BRL	109	59-156	0.2	30
1,4-Dichlorobenzene	19.8		µg/l		20.0	BRL	99	18-190	1	30
1,1-Dichloroethane	19.1		µg/l		20.0	BRL	95	59-155	1	30
1,2-Dichloroethane	18.2		µg/l		20.0	BRL	91	49-155	1	30
1,1-Dichloroethene	14.4		µg/l		20.0	BRL	72	70-130	2	30
trans-1,2-Dichloroethene	14.2		µg/l		20.0	BRL	71	54-156	0.2	30
1,2-Dichloropropane	19.9		µg/l		20.0	BRL	100	1-210	1	30
cis-1,3-Dichloropropene	17.4		µg/l		20.0	BRL	87	1-227	3	30
trans-1,3-Dichloropropene	17.5		µg/l		20.0	BRL	88	17-183	3	30
Ethylbenzene	19.8		µg/l		20.0	BRL	99	37-162	2	30
Methylene chloride	17.5		µg/l		20.0	BRL	87	1-221	2	30
1,1,2,2-Tetrachloroethane	19.6		µg/l		20.0	BRL	98	46-157	3	30
Tetrachloroethene	16.5		µg/l		20.0	BRL	83	64-148	4	30
Toluene	18.1		µg/l		20.0	BRL	91	70-130	3	30
1,1,1-Trichloroethane	19.0		µg/l		20.0	BRL	95	52-162	0.5	30
1,1,2-Trichloroethane	20.6		µg/l		20.0	BRL	103	52-150	1	30
Trichloroethene	17.7		µg/l		20.0	BRL	88	71-157	1	30
Trichlorofluoromethane (Freon 11)	15.7		µg/l		20.0	BRL	79	17-181	5	30

				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water	r MS								
Matrix Spike Dup (8111076-MSD1)	Source: SA87267	-01							
Prepared & Analyzed: 14-Nov-08	11 5			20.0	וחח	50	1 051	0.6	20
	11.5	µg/l		20.0	BRL	58	1-251	0.6	30
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	30.9 31.0	µg/i µg/i		30.0 30.0		103	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	30.2	μg/l		30.0		101	70-130		
Surrogate: Dibromofluoromethane	31.4	μg/l		30.0		105	70-130		
Batch 8111077 - SW846 5030 Water	r MS								
Blank (8111077-BLK1)									
Prepared & Analyzed: 14-Nov-08									
Acetone	BRL	µg/l	20.0						
Benzene	BRL	µg/l	1.0						
Bromodichloromethane	BRL	µg/l	1.0						
Bromoform	BRL	µg/l	1.0						
Bromomethane	BRL	µg/l	2.0						
2-Butanone (MEK)	BRL	µg/l	10.0						
Carbon tetrachloride	BRL	µg/l	1.0						
Chlorobenzene	BRL	µg/l	1.0						
Chloroethane	BRL	µg/l	2.0						
Chloroform	BRL	µg/l	1.0						
Chloromethane	BRL	µg/l	2.0						
Dibromochloromethane	BRL	µg/l	1.0						
1,2-Dichlorobenzene	BRL	µg/l	1.0						
1,3-Dichlorobenzene	BRL	µg/l	1.0						
1,4-Dichlorobenzene	BRL	µg/l	1.0						
1,1-Dichloroethane	BRL	µg/l	1.0						
1,2-Dichloroethane	BRL	µg/l	1.0						
1,1-Dichloroethene	BRL	µg/l	1.0						
cis-1,2-Dichloroethene	BRL	µg/l	1.0						
trans-1,2-Dichloroethene	BRL	µg/l	1.0						
1,2-Dichloropropane	BRL	µg/l	1.0						
cis-1,3-Dichloropropene	BRL	μg/l	1.0						
trans-1,3-Dichloropropene	BRL	µg/l	1.0						
Ethylbenzene	BRL	µg/l	1.0						
2-Hexanone (MBK)	BRL	µg/l	10.0						
Methyl tert-butyl ether	BRL	µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	µg/l	10.0						
Methylene chloride	BRL	µg/l	10.0						
Styrene	BRL	µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL	µg/l	1.0						
Tetrachloroethene	BRL	µg/l	1.0						
Toluene	BRL	µq/l	1.0						
1,1,1-Trichloroethane	BRL	µg/l	1.0						
1,1,2-Trichloroethane	BRL	µq/l	1.0						
Trichloroethene	BRL	ua/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	µa/l	1.0						
Vinvl chloride	BRI	ua/l	1.0						
m,p-Xylene	BRL	ua/l	2.0						
o-Xvlene	BRL	ua/l	1.0						
Surrogate: 4-Bromofluorobenzene	30.9	ua/l		30.0		10.3	70-130		
Surrogate: Toluene-d8	29.7	μg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.9	μg/l		30.0		103	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 SW846 5030 Water MS										
Blank (8111077-BLK1)										
Prepared & Analyzed: 14-Nov-08	20.5				20.0		100	70 400		
Surrogate: Dibromotiuorometnane	30.5		μg/i		30.0		102	70-130		
<u>LCS (8111077-BS1)</u>										
Prepared & Analyzed: 14-Nov-08										
Acetone	19.6		µg/l		20.0		98	70-130		
Benzene	21.7		µg/l		20.0		108	70-130		
Bromodichloromethane	19.9		µg/l		20.0		99	35-155		
Bromoform	18.7		µg/l		20.0		94	45-169		
Bromomethane	10.7		µg/l		20.0		54	1-242		
2-Butanone (MEK)	18.7		µg/l		20.0		93	70-130		
Carbon tetrachloride	20.3		µg/l		20.0		102	70-140		
Chlorobenzene	21.8		µg/l		20.0		109	70-130		
Chloroethane	24.6		µg/l		20.0		123	14-230		
Chloroform	22.2		µg/l		20.0		111	51-138		
Chloromethane	19.5		µg/l		20.0		98	1-273		
Dibromochloromethane	20.1		µg/l		20.0		101	53-149		
1,2-Dichlorobenzene	22.0		µg/l		20.0		110	18-190		
1,3-Dichlorobenzene	21.7		µg/l		20.0		108	59-156		
1,4-Dichlorobenzene	21.3		µg/l		20.0		106	18-190		
1,1-Dichloroethane	21.9		µg/l		20.0		109	59-155		
1,2-Dichloroethane	21.6		µg/l		20.0		108	49-155		
1,1-Dichloroethene	21.1		µg/l		20.0		105	70-130		
cis-1,2-Dichloroethene	20.5		µg/l		20.0		103	70-130		
trans-1,2-Dichloroethene	22.4		µg/l		20.0		112	54-156		
1,2-Dichloropropane	21.5		µg/l		20.0		108	1-210		
cis-1,3-Dichloropropene	20.4		µg/l		20.0		102	1-227		
trans-1,3-Dichloropropene	20.0		µg/l		20.0		100	17-183		
Ethylbenzene	21.2		µg/l		20.0		106	37-162		
2-Hexanone (MBK)	20.0		µg/l		20.0		100	70-130		
Methyl tert-butyl ether	21.9		µg/l		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	18.7		µg/l		20.0		94	70-130		
Methylene chloride	22.2		µg/l		20.0		111	1-221		
Styrene	20.6		µg/l		20.0		103	70-130		
1,1,2,2-Tetrachloroethane	20.9		µg/l		20.0		104	46-157		
Tetrachloroethene	21.0		µg/l		20.0		105	64-148		
Toluene	21.1		µg/l		20.0		106	70-130		
1,1,1-Trichloroethane	21.3		µg/l		20.0		107	52-162		
1,1,2-Trichloroethane	20.2		µg/l		20.0		101	52-150		
Trichloroethene	21.0		µg/l		20.0		105	71-157		
Trichlorofluoromethane (Freon 11)	23.3		µg/l		20.0		116	17-181		
Vinyl chloride	21.4		µg/l		20.0		107	1-251		
m,p-Xylene	42.5		µg/l		40.0		106	70-130		
o-Xylene	20.7		µg/l		20.0		103	70-130		
Surrogate: 4-Bromofluorobenzene	30.2		µg/l		30.0		101	70-130		
Surrogate: Toluene-d8	30.2		µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.1 31.4		µg/I ug/I		30.0 30.0		104 105	70-130 70-130		
	01.4		۳ ۵ ′′		00.0		,00			
LCS Dup (8111077-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	23.2		µg/I		20.0		116	70-130	17	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water M	1 S									
LCS Dup (8111077-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Benzene	23.9		µq/l		20.0		119	70-130	10	30
Bromodichloromethane	21.8		ua/l		20.0		109	35-155	9	30
Bromoform	20.7		ua/l		20.0		103	45-169	10	30
Bromomethane	13.2		ua/l		20.0		66	1-242	21	30
2-Butanone (MEK)	23.9		ua/l		20.0		119	70-130	24	30
Carbon tetrachloride	21.6		ua/l		20.0		108	70-140	6	30
Chlorobenzene	23.3		µg/l		20.0		116	70-130	7	30
Chloroethane	25.0		µg/l		20.0		125	14-230	2	30
Chloroform	24.0		µg/l		20.0		120	51-138	8	30
Chloromethane	24.0		µg/i		20.0		102	1-273	4	30
Dibromochloromethane	20.5		µg/i		20.0		1102	53 1/0	4	30
	22.1		µg/i		20.0		115	10 100	5	20
	23.1 23.0		µg/i		20.0		115	50_150	5	30
	23.0		µg/i		20.0		110	19-100	5	30
	22.3		µg/i		20.0		112	10-190 E0 1EE	5	30
1, I-Dichloroethane	23.2		µg/i		20.0		110	59-155	0	30
1,2-Dichloroethane	24.0		µg/i		20.0		120	49-155	11	30
i, i-d o Disklassethere	22.8		µg/i		20.0		114	70-130	8	30
cis-1,2-Dichloroethene	22.5		µg/I		20.0		113	70-130	9	30
trans-1,2-Dichloroethene	24.3		µg/I		20.0		122	54-156	8	30
1,2-Dichloropropane	23.3		µg/l		20.0		117	1-210	8	30
cis-1,3-Dichloropropene	21.9		µg/l		20.0		109	1-227	7	30
trans-1,3-Dichloropropene	22.2		µg/l		20.0		111	17-183	11	30
Ethylbenzene	22.2		µg/l		20.0		111	37-162	5	30
2-Hexanone (MBK)	22.8		µg/l		20.0		114	70-130	13	30
Methyl tert-butyl ether	24.8		µg/l		20.0		124	70-130	12	30
4-Methyl-2-pentanone (MIBK)	22.3		µg/l		20.0		111	70-130	17	30
Methylene chloride	24.4		µg/l		20.0		122	1-221	9	30
Styrene	21.9		µg/l		20.0		109	70-130	6	30
1,1,2,2-Tetrachloroethane	23.2		µg/l		20.0		116	46-157	11	30
Tetrachloroethene	22.4		µg/l		20.0		112	64-148	6	30
Toluene	22.8		µg/l		20.0		114	70-130	8	30
1,1,1-Trichloroethane	22.7		µg/l		20.0		113	52-162	6	30
1,1,2-Trichloroethane	23.0		µg/l		20.0		115	52-150	13	30
Trichloroethene	22.8		µg/l		20.0		114	71-157	8	30
Trichlorofluoromethane (Freon 11)	24.1		µg/l		20.0		120	17-181	4	30
Vinyl chloride	22.6		µg/l		20.0		113	1-251	5	30
m,p-Xylene	45.4		µg/l		40.0		113	70-130	7	30
o-Xylene	22.2		µg/l		20.0		111	70-130	7	30
Surrogate: 4-Bromofluorobenzene	30.6		µg/l		30.0		102	70-130		
Surrogate: Toluene-d8	29.8		µg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.4 31.7		µg/i ua/l		30.0 30.0		105 106	70-130 70-130		
	0	F 04	r-3''							
matrix Spike (81110//-MS1)	Source: SA8/31	5-01								
Prepareo & Analyze0: 14-NOV-U8	47.0				00.0		00	70 400		
	17.9		µg/i		20.0	BKL	89	70-130		
Bromodicnioromethane	19.6		µg/I		20.0	BKL	98	35-155		
Bromotorm	17.9		µg/I		20.0	BRL	89	45-169		
Bromomethane	7.3		µg/l		20.0	BRL	37	1-242		
Carbon tetrachloride	18.8		µg/l		20.0	BRL	94	70-140		
Chlorobenzene	20.5		µg/l		20.0	BRL	103	70-130		

					Snike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water	r MS									
Matrix Spike (8111077-MS1)	Source: SA8731	5-01								
Prepared & Analyzed: 14-Nov-08										
Chloroethane	14.6		ua/l		20.0	BRL	73	14-230		
Chloroform	21.3		ua/l		20.0	BRL	106	51-138		
Chloromethane	9.6		ug/l		20.0	BRI	48	1-273		
Dibromochloromethane	19.5		ua/l		20.0	BRL	97	53-149		
1 2-Dichlorobenzene	21.3		ua/l		20.0	BRI	106	18-190		
1.3-Dichlorobenzene	22.0		µg/1		20.0	BRI	110	59-156		
1 4-Dichlorobenzene	20.8		µg/1		20.0	BRI	104	18-190		
1 1-Dichloroethane	20.0		µg/1		20.0	BRI	104	59-155		
1.2 Dichloroethane	19.9		µg/1		20.0	BDI	04	40 155		
	15.0		µg/1		20.0		3 4 76	70 120		
trans 1.2 Dichleraethans	15.3		µg/i		20.0		70	70-130 E4 160		
	15.5		µg/i		20.0	DRL	100	54-150		
1,2-Dichloropropane	20.0		µg/i		20.0	BRL	100	1-210		
cis-1,3-Dichloropropene	18.6		µg/i		20.0	BRL	93	1-227		
trans-1,3-Dichloropropene	18.4		µg/l		20.0	BRL	92	17-183		
Ethylbenzene	19.7		µg/l		20.0	BRL	99	37-162		
Methylene chloride	17.8		µg/l		20.0	BRL	89	1-221		
1,1,2,2-Tetrachloroethane	20.3		µg/l		20.0	BRL	102	46-157		
Tetrachloroethene	18.1		µg/l		20.0	BRL	91	64-148		
Toluene	18.2		µg/l		20.0	BRL	91	70-130		
1,1,1-Trichloroethane	20.7		µg/l		20.0	BRL	104	52-162		
1,1,2-Trichloroethane	19.7		µg/l		20.0	BRL	98	52-150		
Trichloroethene	18.2		µg/l		20.0	BRL	91	71-157		
Trichlorofluoromethane (Freon 11)	18.2		µg/l		20.0	BRL	91	17-181		
Vinyl chloride	12.7		µg/l		20.0	BRL	63	1-251		
Surrogate: 4-Bromofluorobenzene	30.6		µg/l		30.0		102	70-130		
Surrogate: Toluene-d8	29.6		µg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.0		µg/i ua/l		30.0		103	70-130		
			P9/1		00.0		100	10 100		
Matrix Spike Dup (8111077-MSD1) Prepared & Analyzed: 14-Nov-08	Source: SA8731	5-01								
Benzene	18.6		µg/l		20.0	BRL	93	70-130	4	30
Bromodichloromethane	20.7		µg/l		20.0	BRL	104	35-155	6	30
Bromoform	19.6		µg/l		20.0	BRL	98	45-169	9	30
Bromomethane	7.1		µg/l		20.0	BRL	36	1-242	3	30
Carbon tetrachloride	19.1		µg/l		20.0	BRL	96	70-140	2	30
Chlorobenzene	21.0		µg/l		20.0	BRL	105	70-130	3	30
Chloroethane	14.5		µg/l		20.0	BRL	72	14-230	0.6	30
Chloroform	21.9		µg/l		20.0	BRL	110	51-138	3	30
Chloromethane	10.0		µg/l		20.0	BRL	50	1-273	4	30
Dibromochloromethane	20.4		µg/l		20.0	BRL	102	53-149	5	30
1,2-Dichlorobenzene	22.0		µg/l		20.0	BRL	110	18-190	3	30
1,3-Dichlorobenzene	22.8		µg/l		20.0	BRL	114	59-156	4	30
1,4-Dichlorobenzene	21.4		μg/l		20.0	BRL	107	18-190	3	30
1,1-Dichloroethane	21.0		µg/l		20.0	BRL	105	59-155	4	30
1,2-Dichloroethane	19.8		μg/l		20.0	BRL	99	49-155	5	30
1,1-Dichloroethene	15.6		µg/l		20.0	BRL	78	70-130	2	30
trans-1.2-Dichloroethene	15.9		ua/l		20.0	BRI	79	54-156	4	30
1.2-Dichloropropane	21.0		r.a.,		20.0	BRI	105	1-210	5	30
cis-1 3-Dichloropropene	19.4		ra,, nu∖l		20.0	RRI	97	1-227	4	30
trans-1 3-Dichloropropene	10.4		₩9′' 110/		20.0	RDI	02	17_183	-	30
	19.0		P9/1		20.0	DINE	90	17-100	0	50

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water	· MS									
<u>Matrix Spike Dup (8111077-MSD1)</u>	Source: SA8731	5-01								
Prepared & Analyzed: 14-Nov-08										
Ethylbenzene	20.3		µg/l		20.0	BRL	102	37-162	3	30
Methylene chloride	18.5		µg/l		20.0	BRL	92	1-221	4	30
1,1,2,2-Tetrachloroethane	21.4		µg/l		20.0	BRL	107	46-157	5	30
Tetrachloroethene	19.0		µg/l		20.0	BRL	95	64-148	4	30
Toluene	18.7		µg/l		20.0	BRL	93	70-130	2	30
1,1,1-Trichloroethane	21.5		µg/l		20.0	BRL	108	52-162	4	30
1,1,2-Trichloroethane	21.3		µg/l		20.0	BRL	106	52-150	8	30
Trichloroethene	18.4		µg/l		20.0	BRL	92	71-157	1	30
Trichlorofluoromethane (Freon 11)	18.5		µg/l		20.0	BRL	92	17-181	2	30
Vinyl chloride	12.5		µg/l		20.0	BRL	63	1-251	1	30
Surrogate: 4-Bromofluorobenzene	30.4		µg/l		30.0		101	70-130		
Surrogate: Toluene-d8	30.2		µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.5		µg/l		30.0		105	70-130		
Surrogate: Dibromonuorometriane	37.0		μg/i		30.0		105	70-130		
Batch 8111194 - SW846 5030 Water	r MS									
<u>Blank (8111194-BLK1)</u>										
Prepared & Analyzed: 17-Nov-08										
Acetone	BRL		µg/l	20.0						
Benzene	BRL		µg/l	1.0						
Bromodichloromethane	BRL		µg/l	1.0						
Bromoform	BRL		µg/l	1.0						
Bromomethane	BRL		µg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
Carbon tetrachloride	BRL		µg/l	1.0						
Chlorobenzene	BRL		µg/l	1.0						
Chloroethane	BRL		µg/l	2.0						
Chloroform	BRL		µg/l	1.0						
Chloromethane	BRL		µg/l	2.0						
Dibromochloromethane	BRL		µg/l	1.0						
1,2-Dichlorobenzene	BRL		µg/l	1.0						
1,3-Dichlorobenzene	BRL		µg/l	1.0						
1,4-Dichlorobenzene	BRL		µg/l	1.0						
1,1-Dichloroethane	BRL		µg/l	1.0						
1,2-Dichloroethane	BRL		µg/l	1.0						
1,1-Dichloroethene	BRL		µg/l	1.0						
cis-1,2-Dichloroethene	BRL		µg/l	1.0						
trans-1,2-Dichloroethene	BRL		µg/l	1.0						
1,2-Dichloropropane	BRL		µg/l	1.0						
cis-1,3-Dichloropropene	BRL		µg/l	1.0						
trans-1,3-Dichloropropene	BRL		µg/l	1.0						
Ethylbenzene	BRL		µg/l	1.0						
2-Hexanone (MBK)	BRL		µg/l	10.0						
Methyl tert-butyl ether	BRL		µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0						
Methylene chloride	BRL		µg/l	10.0						
Styrene	BRL		µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0						
Tetrachloroethene	BRL		µg/l	1.0						
Toluene	BRL		µg/l	1.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - Sw840 5030 water MS										
<u>Blank (8111194-BLK1)</u>										
Prepared & Analyzed: 17-Nov-08										
1,1,1-Trichloroethane	BRL		µg/l	1.0						
1,1,2-Trichloroethane	BRL		µg/l	1.0						
Trichloroethene	BRL		µg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0						
Vinyl chloride	BRL		µg/l	1.0						
m,p-Xylene	BRL		µg/l	2.0						
o-Xylene	BRL		µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.9		µg/l		30.0		86	70-130		
Surrogate: 1.2-Dichloroethane-d4	29.0 33.2		µg/i ua/l		30.0		99 111	70-130		
Surrogate: Dibromofluoromethane	34.4		μg/l		30.0		115	70-130		
LCS (8111194-BS1)										
Prepared & Analyzed: 17-Nov-08										
Acetone	18.5		µg/l		20.0		92	70-130		
Benzene	20.2		µg/l		20.0		101	70-130		
Bromodichloromethane	24.1		µg/l		20.0		121	35-155		
Bromoform	18.7		µg/l		20.0		93	45-169		
Bromomethane	19.8		µg/l		20.0		99	1-242		
2-Butanone (MEK)	20.0		µg/l		20.0		100	70-130		
Carbon tetrachloride	20.7		µg/l		20.0		103	70-140		
Chlorobenzene	20.3		µg/l		20.0		102	70-130		
Chloroethane	20.6		µg/l		20.0		103	14-230		
Chloroform	22.8		µg/l		20.0		114	51-138		
Chloromethane	18.6		µg/l		20.0		93	1-273		
Dibromochloromethane	20.0		µg/l		20.0		100	53-149		
1,2-Dichlorobenzene	18.8		µg/l		20.0		94	18-190		
1,3-Dichlorobenzene	22.0		µg/l		20.0		110	59-156		
1,4-Dichlorobenzene	18.9		µg/l		20.0		94	18-190		
1,1-Dichloroethane	20.4		µg/l		20.0		102	59-155		
1,2-Dichloroethane	20.4		µg/l		20.0		102	49-155		
1,1-Dichloroethene	17.5		µg/l		20.0		87	70-130		
cis-1,2-Dichloroethene	19.2		µg/l		20.0		96	70-130		
trans-1,2-Dichloroethene	19.6		µg/l		20.0		98	54-156		
1,2-Dichloropropane	20.7		µg/l		20.0		103	1-210		
cis-1,3-Dichloropropene	18.4		µg/l		20.0		92	1-227		
trans-1,3-Dichloropropene	19.0		µg/l		20.0		95	17-183		
Ethylbenzene	20.1		µg/l		20.0		100	37-162		
2-Hexanone (MBK)	14.5		µg/l		20.0		73	70-130		
Methyl tert-butyl ether	21.2		µg/l		20.0		106	70-130		
4-Methyl-2-pentanone (MIBK)	19.4		µg/l		20.0		97	70-130		
Methylene chloride	21.6		µg/l		20.0		108	1-221		
Styrene	18.3		µg/l		20.0		92	70-130		
1,1,2,2-Tetrachloroethane	21.3		µg/l		20.0		106	46-157		
Tetrachloroethene	16.8		µg/l		20.0		84	64-148		
Toluene	19.8		µg/l		20.0		99	70-130		
1,1,1-Trichloroethane	18.7		µg/l		20.0		94	52-162		
1,1,2-Trichloroethane	21.4		µg/l		20.0		107	52-150		
Trichloroethene	19.6		µg/l		20.0		98	71-157		
Trichlorofluoromethane (Freon 11)	17.0		µg/l		20.0		85	17-181		
Vinyl chloride	19.7		µg/l		20.0		99	1-251		

Analyte(s) Result Flag Unix *RDL Level Result %RCL Linits RPD Linit Bach 811194 - SW846 5030 Water MS <
Batch 8111194 - SW846 5030 Water MS LCS (8111194-BS1) Prepared & Analyzed: 17-Nov-08 m, x-Yylene 21.1 µg1 20.0 105 70-130 Surrogate: -Oligner-GB 31.9 µg1 30.0 106 70-130 Surrogate: -Oligner-GB 30.2 µg1 30.0 107 70-130 Surrogate: -Oligner-GB 30.2 µg1 30.0 103 70-130 Surrogate: -Dichonothemethane 31.8 µg1 30.0 106 70-130 Surrogate: Dichonothuconberzene 31.8 µg1 30.0 106 70-130 Surrogate: Dichonothuconberzene 19.0 µg1 20.0 95 70-130 3 30 Bromotichloromethane 26.3 µg1 20.0 111 70-130 3 30 Bromotichloromethane 24.0 µg1 20.0 12 12 13 30 Bromotichloromethane 24.0 µg1 20.0 12 24 19
LSC 911194-BS1) Prepared & Analyzed: 17-Nov-08 m,p-Xylene 41.8 µg1 40.0 105 70-130 Surrogate: -Bromofunobenzene 31.9 µg1 30.0 106 70-130 Surrogate: -Diromofunobenzene 30.2 µg1 30.0 103 70-130 Surrogate: -Diromofunomethane-04 30.8 µg1 30.0 103 70-130 Surrogate: Diromofunomethane-04 30.8 µg1 30.0 106 70-130 Surrogate: Diromofunomethane-04 30.8 µg1 20.0 105 70-130 Surrogate: Diromofunomethane 21.0 µg1 20.0 101 70-130 3 30 Bromodichloromethane 26.3 µg1 20.0 111 35-155 9 30 Bromodichloromethane 26.3 µg1 20.0 126 70-130 2 30 Bromodichloromethane 26.3 µg1 20.0 127 70.40 20 30 Bromodichloromethane
Description functions Prepared & Analyzed: 17-Nov-08 m, >-Vylene 41.8 µg/l 40.0 105 70-130 o-Xylene 21.1 µg/l 20.0 105 70-130 Surrogate: ABronofluorobenzene 31.9 µg/l 30.0 106 70-130 Surrogate: Dibronofluoromethane-04 30.8 µg/l 30.0 106 70-130 Surrogate: Dibronofluoromethane 31.8 µg/l 30.0 106 70-130 LCS Dup (811194-BSD1 Prepared & Analyzed: 17-Nov-08 -
Apple in Problem 41.8 µg/l 40.0 105 70-130 o-Xylene 21.1 µg/l 20.0 105 70-130 Surrogate: Tolkone-dB 30.2 µg/l 30.0 106 70-130 Surrogate: Tolkone-dB 30.2 µg/l 30.0 103 70-130 Surrogate: Tolkone-dB 30.8 µg/l 30.0 106 70-130 Surrogate: TolkoneB 31.8 µg/l 20.0 95 70-130 3 30 ECS Due (Bit1194-BSD1) Prepared & Analyze: 17-Nov-08 - - 31.8 µg/l 20.0 95 70-130 3 30 Benzene 22.1 µg/l 20.0 96 45-169 3 30 Bromotichloromethane 26.3 µg/l 20.0 96 45-169 3 30 Bromotichloromethane 26.3 µg/l 20.0 122 1242 19 30 Bromotichloromethane 24.0 µg/l 20.0
In-projection 21.1 µg/l 20.0 105 70-130 Surrogate: -1-bromolucorbenzene 31.9 µg/l 30.0 106 70-130 Surrogate: -1-bromolucorbenzene 30.2 µg/l 30.0 103 70-130 Surrogate: -1-bromolucorbentane 31.8 µg/l 30.0 103 70-130 Surrogate: -1-bromolucorbentane 31.8 µg/l 30.0 106 70-130 Surrogate: -1-bromolucorbentane 31.8 µg/l 20.0 105 70-130 3 30 CSD Dup (8111194-BSD1) Prepared & Analyzed: 17.Nov-08 Acetone 19.0 µg/l 20.0 111 70-130 9 30.0 Bromodichiromethane 26.3 µg/l 20.0 111 70-130 2 30 Bromodichiromethane 24.0 µg/l 20.0 120 1-242 19 30 Bromodichiromethane 24.0 µg/l 20.0 127 70-140 20 30 Chorobenzene
Dr.Nielle 21.1 pg/l 20.0 103 <t< td=""></t<>
Cathogea: Foldmondentation Constrained Solid Point Solid Point P
Surrogate: 1.2-Dickinorenthane-44 30.8 µg/l 30.0 103 70-30 Surrogate: Dibromofluoromethane 31.8 µg/l 30.0 106 70-130 LCS Dug (8111194-BSD1) Prepared & Analyzed: 17-Nov-08 3 3 30 Acetone 19.0 µg/l 20.0 111 70-130 3 30 Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromoform 19.2 µg/l 20.0 131 35-155 9 30 Bromoform 19.2 µg/l 20.0 166 45-169 3 30 Bromoform 19.7 µg/l 20.0 128 70-130 2 30 Carbon tetracholdred 25.3 µg/l 20.0 122 70-130 30 30 Chloroberzene 22.4 µg/l 20.0 112 70-130 10 30 Chlorodorm 25.1 µg/l
Surrogate: Diaromafluoromethane 31.8 µg/l 30.0 106 70-130 LCS bug (8111194-BSD1) Prepared & Analyzed: 17-Nov-08 Acetone 19.0 µg/l 20.0 95 70-130 3 30 Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromodichloromethane 26.3 µg/l 20.0 131 35-155 9 30 Bromodichloromethane 24.0 µg/l 20.0 164 45-169 3 30 Bromodichloromethane 24.0 µg/l 20.0 120 1.422 19 30 Chorobenzene 24.4 µg/l 20.0 127 70-140 20 30 Chlorobenzene 23.7 µg/l 20.0 112 70-130 10 30 Chlorobenzene 21.0 µg/l 20.0 105 51-43 30 Chlorobenzene 21.0 µg/l 20.0 105 51-49
LSS Dur (#111194-BSD1) Prepared & Analyzet: 17.Nov-08 19.0 µg/l 20.0 95 70-130 3 30 Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromodichloromethane 26.3 µg/l 20.0 131 35-155 9 30 Bromodichloromethane 26.3 µg/l 20.0 66 45-169 3 30 Bromodichloromethane 26.3 µg/l 20.0 160 12.2 19 30 Chronomethane 26.4 µg/l 20.0 120 12.2 30 30 Chronomethane 25.3 µg/l 20.0 127 70-140 20 30 Chronomethane 21.0 µg/l 20.0 112 70-130 10 30 Chronomethane 21.0 µg/l 20.0 115 53-149 5 30 30 Chronomethane 21.0 µg/l 20.0 105 </td
Prepared & Analyzed: 17-Nov-08 Acetone 19.0 µg/l 20.0 95 70-130 3 30 Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromocibiloromethane 26.3 µg/l 20.0 131 35-155 9 30 Bromocibiloromethane 24.0 µg/l 20.0 96 45-169 3 30 Carbon tetrachloride 25.3 µg/l 20.0 98 70-130 2 30 Chiorobenzene 25.3 µg/l 20.0 127 70-140 20 30 Chiorobenzene 23.7 µg/l 20.0 112 70-130 10 30 Chiorobenzene 21.0 µg/l 20.0 119 14-230 14 30 Dibromochloromethane 21.0 µg/l 20.0 158 51.49 5 30 Liohorothane 21.0 µg/l 20.0 104 18.190
Acetone 19.0 µg/l 20.0 95 70-130 3 30 Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromodichlormethane 26.3 µg/l 20.0 131 35-155 9 30 Bromoform 19.2 µg/l 20.0 120 1-242 19 30 Bromoform 19.7 µg/l 20.0 98 70-130 2 30 Carbon tetrachloride 25.3 µg/l 20.0 127 70-140 20 30 Chiorobenzene 22.4 µg/l 20.0 112 70-30 10 30 Chioroform 25.3 µg/l 20.0 112 14-230 14 30 Chioromethane 22.4 µg/l 20.0 119 14-230 14 30 Dibromochloromethane 21.0 µg/l 20.0 105 53-149 5 30 1,4-Dichlorobenzene
Benzene 22.1 µg/l 20.0 111 70-130 9 30 Bromodichloromethane 26.3 µg/l 20.0 131 35-155 9 30 Bromodichloromethane 26.0 µg/l 20.0 121 31-155 9 30 Bromotethane 24.0 µg/l 20.0 120 1-242 19 30 2-Butanone (MEK) 19.7 µg/l 20.0 127 70-140 20 30 Carbon tetrachloride 25.3 µg/l 20.0 112 70-130 10 30 Chlorobenzene 22.4 µg/l 20.0 112 70-130 10 30 Chloroform 25.1 µg/l 20.0 105 51-138 10 30 Dibromochloromethane 21.0 µg/l 20.0 105 51-49 5 30 1.4-Dichlorobenzene 21.0 µg/l 20.0 104 18-190 10 30
Bromodichloromethane 26.3 μg/l 20.0 131 35-155 9 30 Bromodrm 19.2 μg/l 20.0 96 45-169 3 30 Bromomethane 24.0 µg/l 20.0 120 1-242 19 30 2-Butanone (MEK) 19.7 µg/l 20.0 127 70-140 20 30 Carbon tetrachloride 25.3 µg/l 20.0 127 70-140 20 30 Chlorobenzene 22.4 µg/l 20.0 119 14-230 14 30 Chlorobenzene 23.7 µg/l 20.0 126 51-138 10 30 Chloromethane 21.0 µg/l 20.0 126 51-138 10 30 J.2-Dichlorobenzene 21.0 µg/l 20.0 105 18-190 11 30 1,3-Dichlorobenzene 21.4 µg/l 20.0 105 18-190 30 30
Bromoform 19.2 µg/l 20.0 96 45-169 3 30 Bromomethane 24.0 µg/l 20.0 120 1-242 19 30 2-Butanone (MEK) 19.7 µg/l 20.0 98 70-130 2 30 Carbon tetrachloride 25.3 µg/l 20.0 112 70-140 20 30 Chlorobenzene 25.3 µg/l 20.0 112 70-130 10 30 Chlorobenzene 23.7 µg/l 20.0 126 51-138 10 30 Chloromethane 21.0 µg/l 20.0 105 53-149 5 30 J.2-Dichlorobenzene 21.0 µg/l 20.0 104 18-190 11 30 1,3-Dichlorobenzene 20.8 µg/l 20.0 105 58-156 10 30 1,4-Dichlorobenzene 21.1 µg/l 20.0 104 18-190 11 30
Bromomethane 24.0 µg/l 20.0 120 1-242 19 30 2-Butanone (MEK) 19.7 µg/l 20.0 98 70-130 2 30 Carbon tetrachloride 25.3 µg/l 20.0 127 70-140 20 30 Chlorobenzene 22.4 µg/l 20.0 112 70-130 10 30 Chlorobenzene 23.7 µg/l 20.0 112 70-130 14 30 Chlorothane 23.7 µg/l 20.0 195 1-273 12 30 Chlorothane 21.0 µg/l 20.0 105 1-273 12 30 1,2-Dichlorobenzene 20.8 µg/l 20.0 104 18-190 10 30 1,3-Dichlorobenzene 21.1 µg/l 20.0 105 18-190 11 30 1,4-Dichlorobenzene 21.1 µg/l 20.0 102 70-130 15 30
2-Butanone (MEK) 19.7 µg/l 20.0 98 70-130 2 30 Carbon tetrachloride 25.3 µg/l 20.0 127 70-140 20 30 Chlorobenzene 22.4 µg/l 20.0 112 70-130 10 30 Chloroethane 23.7 µg/l 20.0 126 51-138 10 30 Chloroethane 21.0 µg/l 20.0 126 51-138 10 30 Chloromethane 21.0 µg/l 20.0 105 53-149 5 30 1/2-Dichlorobenzene 20.8 µg/l 20.0 104 18-190 10 30 1,2-Dichlorobenzene 24.3 µg/l 20.0 105 18-190 11 30 1,4-Dichlorobenzene 21.1 µg/l 20.0 109 49-155 6 30 1,2-Dichloroethane 21.7 µg/l 20.0 109 49-155 6 30
Carbon tetrachloride25.3µg/l20.012770-1402030Chlorobenzene22.4µg/l20.011270-1301030Chloroethane23.7µg/l20.011914-2301430Chloroform25.1µg/l20.012651-1381030Chloromethane21.0µg/l20.01051-2731230Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.011359-15510301,4-Dichlorobenzene22.6µg/l20.011359-15510301,1-Dichloroethane20.4µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010270-13015301,2-Dichloroethane21.1µg/l20.011154-15612301,2-Dichloroethane21.1µg/l20.011154-15612301,2-Dichloroethane21.1µg/l20.01101-2107301,2-Dichloroethane21.1µg/l20.01101-2107301,2-Dichloroethane21.1µg/l20.010
Chlorobenzene22.4µg/l20.011270-1301030Chloroethane23.7µg/l20.011914-2301430Chloroform25.1µg/l20.012651-1381030Chloromethane21.0µg/l20.01051-2731230Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,4-Dichlorobenzene22.6µg/l20.010518-19011301,2-Dichloroethane21.7µg/l20.010949-1556301,2-Dichloroethane21.1µg/l20.010270-13015301,2-Dichloroethane22.6µg/l20.010270-13015301,2-Dichloroethane21.1µg/l20.010270-13015301,2-Dichloroethene21.1µg/l20.010670-1309301,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloroethene22.1µg/l20.01101-2107301,2-Dichloroethene19.1µg/l20.095 </td
Chloroethane23.7µg/l20.011914-2301430Chloroform25.1µg/l20.012651-1381030Chloromethane21.0µg/l20.01051-2731230Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichloroethane22.6µg/l20.010518-19011301,2-Dichloroethane21.7µg/l20.010949-1556301,2-Dichloroethane21.1µg/l20.010270-13015301,2-Dichloroethane21.7µg/l20.010270-13015301,2-Dichloroethane21.1µg/l20.010670-1309301,2-Dichloroethene21.1µg/l20.011154-15612301,2-Dichloroethene21.1µg/l20.011154-15612301,2-Dichloroethene21.1µg/l20.01101-2107301,2-Dichloropropene19.1µg/l20.010670-1309301,2-Dichloropropene19.1µg/l20.0 <td< td=""></td<>
Chloroform25.1µg/l20.012651-1381030Chloromethane21.0µg/l20.01051-2731230Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichlorothane22.6µg/l20.010359-15510301,2-Dichlorothane21.7µg/l20.010949-1556301,2-Dichlorothane20.4µg/l20.010270-13015301,2-Dichlorothane21.1µg/l20.010670-1309301,2-Dichlorothene21.1µg/l20.011154-15612301,2-Dichlorothene22.2µg/l20.011154-15612301,2-Dichloroptopane22.1µg/l20.01101-2107301,2-Dichloroptopane19.1µg/l20.0951-2274301,2-Dichloropropene19.1µg/l20.09617-1830.8301,2-Dichloropropene19.1µg/l20.011537-16213301,2-Dichloropropene19.1µg/l20.0 <t< td=""></t<>
Chloromethane21.0µg/l20.01051-2731230Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichlorobenzene22.6µg/l20.010359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010670-13015301,2-Dichloroethene21.1µg/l20.010670-1309301,1-Dichloroethene20.4µg/l20.010670-1309301,2-Dichloroethene21.1µg/l20.011154-15612301,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloropropane22.1µg/l20.01101-2107301,2-Dichloropropene19.1µg/l20.09617-1830.8301,3-Dichloropropene19.1µg/l20.09617-1830.8301,1-Dichloropropene23.0µg/l20.011513-16213141,2-Dichloropropene19.1µg/l
Dibromochloromethane21.0µg/l20.010553-1495301,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichloroethane22.6µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010270-13015301,2-Dichloroethene21.1µg/l20.010670-1309301,2-Dichloroethene21.1µg/l20.010670-1309301,2-Dichloroethene21.1µg/l20.01101-2107301,2-Dichloroethene22.2µg/l20.01101-2107301,2-Dichloropropane22.1µg/l20.01101-2107301,2-Dichloropropene19.1µg/l20.09617-1830.8301,3-Dichloropropene19.1µg/l20.011537-1621330Ethylbenzene23.0µg/l20.011537-1621330
1,2-Dichlorobenzene20.8µg/l20.010418-19010301,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichloroethane22.6µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010270-13015301,1-Dichloroethene20.4µg/l20.010670-130930cis-1,2-Dichloroethene21.1µg/l20.011154-1561230cis-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloroptopene22.1µg/l20.01101-210730cis-1,3-Dichloropropene19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.01537-1621330
1,3-Dichlorobenzene24.3µg/l20.012159-15610301,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichloroethane22.6µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010270-1301530cis-1,2-Dichloroethene21.1µg/l20.010670-130930trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloroptopane22.1µg/l20.01101-210730cis-1,3-Dichloropropene19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
1,4-Dichlorobenzene21.1µg/l20.010518-19011301,1-Dichloroethane22.6µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010270-1301530cis-1,2-Dichloroethene21.1µg/l20.010670-130930trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloropropane22.1µg/l20.01101-210730cis-1,3-Dichloropropene19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
1,1-Dichloroethane22.6µg/l20.011359-15510301,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethane20.4µg/l20.010270-1301530cis-1,2-Dichloroethane21.1µg/l20.010670-130930trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloroptopane22.1µg/l20.01101-210730cis-1,3-Dichloropropane19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
1,2-Dichloroethane21.7µg/l20.010949-1556301,1-Dichloroethene20.4µg/l20.010270-1301530cis-1,2-Dichloroethene21.1µg/l20.010670-130930trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloroethene22.1µg/l20.01101-210730cis-1,3-Dichloropropane22.1µg/l20.0951-227430cis-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
1,1-Dichloroethene20.4µg/l20.010270-1301530cis-1,2-Dichloroethene21.1µg/l20.010670-130930trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloropropane22.1µg/l20.01101-210730cis-1,3-Dichloropropene19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
cis-1,2-Dichloroethene 21.1 µg/l 20.0 106 70-130 9 30 trans-1,2-Dichloroethene 22.2 µg/l 20.0 111 54-156 12 30 1,2-Dichloropropane 22.1 µg/l 20.0 110 1-210 7 30 cis-1,3-Dichloropropene 19.1 µg/l 20.0 95 1-227 4 30 trans-1,3-Dichloropropene 19.1 µg/l 20.0 96 17-183 0.8 30 Ethylbenzene 23.0 µg/l 20.0 115 37-162 13 30
trans-1,2-Dichloroethene22.2µg/l20.011154-15612301,2-Dichloropropane22.1µg/l20.01101-210730cis-1,3-Dichloropropene19.1µg/l20.0951-227430trans-1,3-Dichloropropene19.1µg/l20.09617-1830.830Ethylbenzene23.0µg/l20.011537-1621330
1,2-Dichloropropane 22.1 µg/l 20.0 110 1-210 7 30 cis-1,3-Dichloropropene 19.1 µg/l 20.0 95 1-227 4 30 trans-1,3-Dichloropropene 19.1 µg/l 20.0 96 17-183 0.8 30 Ethylbenzene 23.0 µg/l 20.0 115 37-162 13 30
cis-1,3-Dichloropropene 19.1 µg/l 20.0 95 1-227 4 30 trans-1,3-Dichloropropene 19.1 µg/l 20.0 96 17-183 0.8 30 Ethylbenzene 23.0 µg/l 20.0 115 37-162 13 30
trans-1,3-Dichloropropene 19.1 µg/l 20.0 96 17-183 0.8 30 Ethylbenzene 23.0 µg/l 20.0 115 37-162 13 30
Ethylbenzene 23.0 µg/l 20.0 115 37-162 13 30
2-Hexanone (MBK) 13.6 QC1 μg/l 20.0 68 70-130 6 30
Methyl tert-butyl ether 21.1 μg/l 20.0 106 70-130 0.5 30
4-Methyl-2-pentanone (MIBK) 18.0 μg/l 20.0 90 /0-130 8 30
Methylene chloride 23.9 µg/l 20.0 119 1-221 10 30
Styrene 19.5 µg/l 20.0 97 70-130 6 30
1,1,2,2- I etrachloroethane 22.0 μg/l 20.0 110 46-157 3 30
l etrachioroethene 19.9 μg/l 20.0 100 64-148 17 30
Foluene 22.1 μg/l 20.0 111 /0-130 11 30 4.4.4 Tricklase theory 24.7 μg/l 20.0 111 /0-130 11 30
1, 1, 1-1 incritoroetnane 21.7 μg/l 20.0 108 52-162 15 30 4.4.0 Tricklargethang 24.0 108 52-162 15 30
T, T, 2- Finchioroethane 21.8 µg/l 20.0 109 52-150 2 30 Triphloroethane 22.0 109 52-150 2 30
Interioroeutene 22.0 μg/l 20.0 110 /1-15/ 12 30 Trichlorofluoromethano (Econ 11) 21.7 110 110 12 30
Inchioronuoromethane (Freon 11) 21.7 μg/l 20.0 108 17-181 24 30 Visual ableside 20.2 00.1 107.4 20.0 108 17-181 24 30
Viring chloride 29.3 QCT µg/l 20.0 147 1-251 39 30 min Viring 40.0 44.0 70.400 40.0 147 1-251 39 30
III,p-Ayrene 47.7 μg/l 40.0 119 70-130 13 30 a Xulona 23.0 100 20.0 440 70.420 40 00
<u>υ-λγιειτε</u> 23.3 μg/ι 20.0 119 / U-130 12 30
Surrogate: 4-bromonuorobenzene 52.4 µgn 30.0 108 70-130 Surrogate: Toluene-d8 30.2 µa/l 30.0 101 70-130
Surrogate: 1,2-Dichloroethane-d4 30.4 µg/l 30.0 101 70-130

					Snike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
D-4-b 0111104 SW046 5020 W-4	MC									
Batch 8111194 - 5 w 840 5050 w ater	r WIS									
LCS Dup (8111194-BSD1) Prepared & Analyzed: 17-Nov-08										
Surrogate: Dibromofluoromethane	32.1		μα/Ι		30.0		107	70-130		
	0		P9/1		00.0		101	10 100		
Matrix Spike (8111194-MS1)	Source: 5A8/19	1-03								
Benzene	12.8	OM7	uo/l		20.0	BRI	64	70-130		
Bromodichloromethane	24.2	QIVIT	µg/i		20.0	BRI	121	35-155		
Bromoform	19.6		ug/l		20.0	BRI	98	45-169		
Bromomethane	6.1		μg/l		20.0	BRI	30	1-242		
	17.9		μg/l		20.0	BRI	89	70-140		
Chlorobenzene	18.4		ug/l		20.0	BRI	92	70-130		
Chloroethane	86		μg/l		20.0	BRI	43	14-230		
Chloroform	21.9		μg/l		20.0	BRI	109	51-138		
Chloromethane	4 4		µ9/		20.0	BRI	22	1-273		
Dibromochloromethane	20.3		μg/l		20.0	BRI	101	53-149		
1 2-Dichlorobenzene	21.9		µ9/		20.0	BRI	109	18-190		
1 3-Dichlorobenzene	24.4		μg/l		20.0	BRI	122	59-156		
1 4-Dichlorobenzene	19.8		µ9/		20.0	BRI	99	18-190		
1.1-Dichloroethane	17.6		ua/l		20.0	BRL	88	59-155		
1 2-Dichloroethane	18.4		µ9/		20.0	BRI	92	49-155		
1.1-Dichloroethene	9.2	QM7	ua/l		20.0	BRL	46	70-130		
trans-1.2-Dichloroethene	9.2	QM7	ua/l		20.0	BRL	46	54-156		
1.2-Dichloropropane	18.0		ua/l		20.0	BRL	90	1-210		
cis-1.3-Dichloropropene	15.2		ua/l		20.0	BRL	76	1-227		
trans-1.3-Dichloropropene	16.9		ua/l		20.0	BRL	84	17-183		
Ethylbenzene	17.1		µg/l		20.0	BRL	86	37-162		
Methylene chloride	14.4		µq/l		20.0	BRL	72	1-221		
1,1,2,2-Tetrachloroethane	23.7		µg/l		20.0	BRL	118	46-157		
Tetrachloroethene	12.6	QM7	µq/l		20.0	BRL	63	64-148		
Toluene	15.3		µg/l		20.0	BRL	76	70-130		
1,1,1-Trichloroethane	20.2		μg/l		20.0	1.3	95	52-162		
1,1,2-Trichloroethane	22.3		µg/l		20.0	BRL	111	52-150		
Trichloroethene	14.1	QM7	µg/l		20.0	BRL	70	71-157		
Trichlorofluoromethane (Freon 11)	12.4		µg/l		20.0	BRL	62	17-181		
Vinyl chloride	5.9		µg/l		20.0	BRL	29	1-251		
Surrogate: 4-Bromofluorobenzene	33.5		µg/l		30.0		112	70-130		
Surrogate: Toluene-d8	31.0		µg/l		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	34.5		µg/l		30.0		115	70-130		
Surroyate. Distomonuorometriane	55.0		μg/i		50.0		112	70-730		
Matrix Spike Dup (8111194-MSD1)	Source: SA8719	1-03								
Prepared & Analyzed: 17-Nov-08	10.1	0.117			00.0	DDI	04	70.400	0	00
Benzene	12.1	QIVI7	µg/i		20.0	BRL	61	70-130	6	30
Bromoform	21.7		μg/i		20.0	BKL	109	30-100	11	30
Bromomothana	17.6		μg/i		20.0	BKL	00 24	40-109	11	30
	0.3		μg/i		20.0	DKL	১ । 70	1-242	ی ۱4	30 20
	15.0		µg/i		20.0	DKL	(ð	70-140	14	30
	17.1		μg/i		20.0	BRL	85 44	14 000	1	30
Chloroform	ŏ.1		µg/i		20.0	DKL	41	14-23U	0	20
Chloromethana	19.8		μg/i		20.0	BRL	99 24	01-130 1 070	70	30
Dibromochloromethana	4.1		μg/i		20.0	DKL	21	1-213	10	30 20
Dibromocnioromethane	18.4		μg/i		20.0	DKL	92	55-149	10	30

					Snike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - SW846 5030 Wate	r MS									
Matrix Spike Dup (8111194-MSD1)	Source: SA8719	1-03								
Prepared & Analyzed: 17-Nov-08										
1,2-Dichlorobenzene	20.2		µg/l		20.0	BRL	101	18-190	8	30
1.3-Dichlorobenzene	22.1		ua/l		20.0	BRL	111	59-156	10	30
1.4-Dichlorobenzene	18.6		ua/l		20.0	BRL	93	18-190	6	30
1.1-Dichloroethane	16.2		ua/l		20.0	BRL	81	59-155	9	30
1.2-Dichloroethane	16.5		ua/l		20.0	BRL	82	49-155	11	30
1.1-Dichloroethene	8.4	QM7	ua/l		20.0	BRL	42	70-130	8	30
trans-1.2-Dichloroethene	8.7	QM7	ua/l		20.0	BRL	44	54-156	5	30
1.2-Dichloropropane	16.9		ua/l		20.0	BRL	84	1-210	7	30
cis-1.3-Dichloropropene	14.3		ua/l		20.0	BRL	72	1-227	6	30
trans-1 3-Dichloropropene	15.5		ua/l		20.0	BRI	77	17-183	9	30
Ethylbenzene	15.9		ua/l		20.0	BRI	80	37-162	7	30
Methylene chloride	13.1		µg/l		20.0	BRI	65	1-221	10	30
1 1 2 2-Tetrachloroethane	21.8		μg/l		20.0	BRI	109	46-157	8	30
Tetrachloroethene	11.8	QM7	µg/l		20.0	BRI	59	64-148	7	30
	13.0	001	µg/l		20.0	BRI	60	70-130	10	30
1 1 1 Trichloroethane	18.1	QUI	µg/l		20.0	13	84	52 162	10	30
1,1,2 Trichloroethane	20.2		µg/l		20.0	I.J RDI	101	52-102	12	30
	20.2	OM7	µg/i		20.0		66	71 157	6	20
Triphlorofluoromothana (Eroon 11)	13.2	QIVIT	µg/i		20.0		55	17 101	12	20
	F 0		µg/i		20.0	DRL	55	17-101	12	30
	5.2		µg/i		20.0	BRL	20	7-251	13	30
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	32.2 30.2		μg/i μα/l		30.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.8		μg/l		30.0		109	70-130		
Surrogate: Dibromofluoromethane	32.8		µg/l		30.0		109	70-130		
Batch 8111291 - SW846 5030 Water	r MS									
Blank (8111291-BLK1)										
Prepared & Analyzed: 18-Nov-08										
Acetone	BRL		µg/l	20.0						
Benzene	BRL		µg/l	1.0						
Bromodichloromethane	BRL		µg/l	1.0						
Bromoform	BRL		µg/l	1.0						
Bromomethane	BRL		µg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
Carbon tetrachloride	BRL		µg/l	1.0						
Chlorobenzene	BRL		µg/l	1.0						
Chloroethane	BRL		µg/l	2.0						
Chloroform	BRL		µg/l	1.0						
Chloromethane	BRL		µg/l	2.0						
Dibromochloromethane	BRL		µg/l	1.0						
1,2-Dichlorobenzene	BRL		µg/l	1.0						
1,3-Dichlorobenzene	BRL		µg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethane	BRL		µg/l	1.0						
1,2-Dichloroethane	BRL		μα/Ι	1.0						
1.1-Dichloroethene	BRI		ua/l	1.0						
cis-1.2-Dichloroethene	BRI		µa/l	1.0						
trans-1.2-Dichloroethene	BRI		ua/l	1.0						
1 2-Dichloropropage	RRI		r-9′' ⊔a/l	1.0						
cis-1.3-Dichloropropene	RRI		r-∋′' ⊔a/l	1.0						
	DINE		P9''	1.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
D-4-1 0111201 CW04/ 5020 W-4 MC										
Batch 8111291 - Sw840 5030 water MS										
<u>Blank (8111291-BLK1)</u>										
Prepared & Analyzed: 18-Nov-08										
trans-1,3-Dichloropropene	BRL		µg/l	1.0						
Ethylbenzene	BRL		µg/l	1.0						
2-Hexanone (MBK)	BRL		µg/l	10.0						
Methyl tert-butyl ether	BRL		µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0						
Methylene chloride	BRL		µg/l	10.0						
Styrene	BRL		µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0						
Tetrachloroethene	BRL		µg/l	1.0						
Toluene	BRL		µg/l	1.0						
1,1,1-Trichloroethane	BRL		µg/l	1.0						
1,1,2-Trichloroethane	BRL		µg/l	1.0						
Trichloroethene	BRL		µg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0						
Vinyl chloride	BRL		µg/l	1.0						
m,p-Xylene	BRL		µg/l	2.0						
o-Xylene	BRL		µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.1		µg/l		30.0		84	70-130		
Surrogate: 1 oluene-d8 Surrogate: 1 2-Dichloroethane-d4	29.7 33.8		µg/l		30.0 30.0		99 113	70-130 70-130		
Surrogate: Dibromofluoromethane	36.4		µg/l		30.0		121	70-130		
L CS (8111201 BS1)										
Prenared & Analyzed: 18-Nov-08										
	20.6		ug/l		20.0		103	70 130		
Renzene	20.0		µg/l		20.0		103	70-130		
Bromodichloromethane	20.0		µg/l		20.0		103	35 155		
Bromotorm	10.2		µg/i		20.0		02	45 160		
Bromomethane	10.3		µg/i		20.0		92	40-109		
2 Putenono (MEK)	23.3		µg/i		20.0		05	70 120		
	19.0		µg/i		20.0		95	70-130		
	22.0		µg/i		20.0		104	70-140		
Chloroothana	20.0		µg/i		20.0		104	14 020		
Chloroferme	22.1		µg/i		20.0		110	14-230		
Chloremethene	23.2		µg/i		20.0		00	51-130		
Dibremechleremethene	19.7		µg/i		20.0		99	1-273		
	19.7		µg/i		20.0		90	55-149		
1,2-Dichlorobenzene	19.2		µg/i		20.0		90	18-190		
	22.7		µg/i		20.0		113	59-156		
	19.3		µg/i		20.0		96	18-190		
	21.0		µg/i		20.0		105	59-155		
1,2-Dichloroethane	20.6		µg/I		20.0		103	49-155		
	19.1		µg/i		20.0		96	70-130		
	19.7		µg/I		20.0		99	70-130		
	20.7		µg/I		20.0		103	54-156		
	20.8		µg/i		20.0		104	1-210		
	17.8		µg/I		20.0		89	1-227		
trans-1,3-Dichloropropene	17.9		µg/l		20.0		89	17-183		
	21.1		µg/l		20.0		106	37-162		
2-Hexanone (MBK)	14.0		µg/l		20.0		70	70-130		
Methyl tert-butyl ether	21.0		µg/l		20.0		105	70-130		
4-Methyl-2-pentanone (MIBK)	18.0		µg/l		20.0		90	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water MS										
LCS (8111291-BS1)										
Prepared & Analyzed: 18-Nov-08	00.5				00.0		440	4 004		
Methylene chloride	22.5		µg/I		20.0		113	1-221		
Styrene	18.0		µg/I		20.0		90	70-130		
1,1,2,2- I etrachloroethane	21.1		µg/I		20.0		106	46-157		
	18.1		µg/I		20.0		90	64-148		
	20.4		µg/I		20.0		102	70-130		
	19.9		µg/I		20.0		100	52-162		
1,1,2-I richloroethane	21.0		µg/I		20.0		105	52-150		
	20.1		µg/i		20.0		101	/1-15/		
I richlorofluoromethane (Freon 11)	19.6		µg/I		20.0		98	17-181		
Vinyl chloride	23.2		µg/l		20.0		116	1-251		
m,p-Xylene	43.9		µg/I		40.0		110	70-130		
o-Xylene	22.1		µg/I		20.0		111	70-130		
Surrogate: 4-Bromofluorobenzene	32.0 30.3		µg/l		30.0 30.0		107 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	31.3		µg/l		30.0		104	70-130		
Surrogate: Dibromofluoromethane	32.1		µg/l		30.0		107	70-130		
LCS Dup (8111291-BSD1)										
Prepared & Analyzed: 18-Nov-08										
Acetone	21.4		ua/l		20.0		107	70-130	4	30
Benzene	20.1		ua/l		20.0		100	70-130	3	30
Bromodichloromethane	23.8		ua/l		20.0		119	35-155	1	30
Bromoform	18.8		ua/l		20.0		94	45-169	2	30
Bromomethane	22.6		ua/l		20.0		113	1-242	3	30
2-Butanone (MEK)	20.9		ua/l		20.0		104	70-130	10	30
Carbon tetrachloride	21.8		ua/l		20.0		109	70-140	4	30
Chlorobenzene	20.5		µg/l		20.0		103	70-130	1	30
Chloroethane	21.0		ua/l		20.0		105	14-230	5	30
Chloroform	23.3		µg/l		20.0		117	51-138	0.6	30
Chloromethane	18.6		µg/l		20.0		93	1-273	6	30
Dibromochloromethane	19.6		ua/l		20.0		98	53-149	01	30
1 2-Dichlorobenzene	19.6		µg/l		20.0		98	18-190	2	30
1.3-Dichlorobenzene	22.9		µg/l		20.0		114	59-156	07	30
1 4-Dichlorobenzene	20.0		μg/i		20.0		100	18-190	4	30
1 1-Dichloroethane	20.6		µg/l		20.0		103	59-155	2	30
1.2-Dichloroethane	20.0		μg/i		20.0		105	49-155	2	30
1 1-Dichloroethene	18.3		µg/i		20.0		92	70-130	4	30
cis-1 2-Dichloroethene	10.0		µg/i		20.0		96	70-130	2	30
trans-1 2-Dichloroethene	10.0		µg/i		20.0		99	54-156	4	30
1 2-Dichloropropane	20.4		µg/i µg/l		20.0		102	1_210	- 2	30
cis-1 3-Dichloropropene	17.7		µg/1		20.0		88	1_277	0.4	30
trans_1 3_Dichloronronene	17.7		µg/i		20.0		00	17-183	0.4	30
Ethylbenzene	20.1		µg/i		20.0		100	37 162	5	30
2-Hexanone (MBK)	15.4		на/I		20.0		77	70-130	a	30
Methyl tert-butyl ether	21 6		м9/1 Ца/I		20.0		108	70-130	3	30
4-Methyl-2-pentanone (MIRK)	21.0 10.2		μg/i		20.0		06	70-130	7	30
- metry-z-penanone (miDR) Methylene chloride	10.2 22.2		μg/i		20.0		50 111	1_221	1	30
	17 6		µg/i		20.0		111 QQ	70 120	י ס	30
1 1 2 2-Tetrachloroethane	0.11		μg/i		20.0		00	10-130	2	30 30
	<u>۲۲</u> ۵		μg/i		20.0		80	64-149	5	30
Toluono	17.0		μg/i		20.0		100	70 120	2	20
TOILLETIE	20.0		μg/i		20.0		100	70-130	2	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water	r MS									
LCS Dup (8111291-BSD1)										
Prepared & Analyzed: 18-Nov-08										
1,1,1-Trichloroethane	19.3		µg/l		20.0		97	52-162	3	30
1,1,2-Trichloroethane	21.9		µg/l		20.0		109	52-150	4	30
Trichloroethene	19.8		µg/l		20.0		99	71-157	2	30
Trichlorofluoromethane (Freon 11)	19.2		µg/l		20.0		96	17-181	2	30
Vinyl chloride	22.6		µg/l		20.0		113	1-251	3	30
m,p-Xylene	42.8		μg/l		40.0		107	70-130	3	30
o-Xylene	22.0		µg/l		20.0		110	70-130	0.7	30
Surrogate: 4-Bromofluorobenzene	32.0		µg/l		30.0		106	70-130		
Surrogate: Toluene-d8	30.0		µg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.1		µg/l		30.0 30.0		104 107	70-130		
Sundyate. Distomoniononnetnane	52.0		μμη		30.0		107	70-130		
Matrix Spike (8111291-MS1)	Source: SA8750	1-01								
riepareu & Analyzeu: 18-Nov-08	00.0				20.0	ופס	445	70 400		
Benzene	23.0		µg/i		20.0	BRL	115	70-130		
Bromodichioromethane	29.2		µg/i		20.0	BRL	140	35-155		
Bromotorm	22.7		µg/i		20.0	BRL	113	45-169		
Bromometnane	24.8	0117	µg/i		20.0	BRL	124	1-242		
Carbon tetrachionide	28.8	QIVI7	µg/i		20.0	BRL	144	70-140		
Chlorobenzene	23.8		µg/i		20.0	BRL	119	70-130		
Chloroethane	25.0		µg/i		20.0	BRL	125	14-230		
Chlorotorm	27.4		µg/i		20.0	BRL	137	51-138		
Chloromethane	20.8		µg/i		20.0	BRL	104	1-2/3		
	23.8		µg/i		20.0	BRL	119	10 100		
1,2-Dichlorobenzene	21.4		µg/i		20.0	BRL	107	18-190		
	20.0		µg/i		20.0		140	19-100		
	21.9		µg/i		20.0		109	FO 155		
	24.1		µg/i		20.0		121	09-100 40 155		
	25.0		µg/i		20.0		129	49-100		
trans 1.2 Disblaracthons	21.9		µg/i		20.0		110	70-130 54 156		
	23.0		µg/i		20.0		119	1 210		
	23.4		µg/i		20.0		07	1-210		
trans 1.2 Disblaranrapana	19.3		µg/i		20.0		97	17 102		
	20.0		µg/i		20.0		110	27 162		
Methylene chloride	23.0		µg/l		20.0	BDI	120	1 221		
1 1 2 2 Tetrachloroethane	20.0		µg/l		20.0	BDI	129	1-221		
	22.8		µg/l		20.0	BRI	114	40-137 64-148		
Toluene	22.0		µg/l		20.0	BRI	122	70-130		
1 1 1-Trichloroethane	24.5		µg/l		20.0	BRI	122	52-162		
1 1 2-Trichloroethane	24.2		µg/l		20.0	BRI	134	52-150		
Trichloroethene	20.7		µg/l		20.0	BRI	120	71-157		
Trichlorofluoromethane (Freon 11)	20.0		µg/l		20.0	BRI	123	17-181		
Vinvl chloride	19.4		rs, ua∕l		20.0	BRL	97	1-251		
Surrogate: 4-Bromofluorobenzene	34.6		ua/l		30.0	5.12	115	70-130		
Surrogate: Toluene-d8	31.1		μg/l		30.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	37.6		µg/l		30.0		125	70-130		
Surrogate: Dibromofluoromethane	35.0		µg/l		30.0		117	70-130		
Matrix Spike Dup (8111291-MSD1)	Source: SA8750	1-01								
Prepared & Analyzed: 18-Nov-08										
Benzene	26.5	QC1	µg/l		20.0	BRL	132	70-130	14	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water	MS									
Matrix Spike Dup (8111291-MSD1) Prepared & Analyzed: 18-Nov-08	Source: SA8750	1-01								
Bromodichloromethane	40.1	QC1	µg/l		20.0	BRL	201	35-155	32	30
Bromoform	35.2	QC1	µg/l		20.0	BRL	176	45-169	43	30
Bromomethane	24.8		µg/l		20.0	BRL	124	1-242	0.2	30
Carbon tetrachloride	31.1	QM7	µg/l		20.0	BRL	156	70-140	8	30
Chlorobenzene	34.5	QC1	µg/l		20.0	BRL	172	70-130	37	30
Chloroethane	24.4		µg/l		20.0	BRL	122	14-230	3	30
Chloroform	31.7	QC1	µg/l		20.0	BRL	158	51-138	15	30
Chloromethane	20.6		µg/l		20.0	BRL	103	1-273	0.9	30
Dibromochloromethane	35.7	QC1	µg/l		20.0	BRL	179	53-149	40	30
1,2-Dichlorobenzene	36.5	QC1	µg/l		20.0	BRL	182	18-190	52	30
1,3-Dichlorobenzene	41.8	QC1	µg/l		20.0	BRL	209	59-156	40	30
1,4-Dichlorobenzene	35.2	QC1	µg/l		20.0	BRL	176	18-190	47	30
1,1-Dichloroethane	25.4		µg/l		20.0	BRL	127	59-155	5	30
1,2-Dichloroethane	30.3		µg/l		20.0	BRL	152	49-155	16	30
1,1-Dichloroethene	21.8		µg/l		20.0	BRL	109	70-130	0.7	30
trans-1,2-Dichloroethene	23.9		µg/l		20.0	BRL	120	54-156	0.6	30
1,2-Dichloropropane	30.2		µg/l		20.0	BRL	151	1-210	25	30
cis-1,3-Dichloropropene	28.3	QC1	µg/l		20.0	BRL	141	1-227	38	30
trans-1,3-Dichloropropene	32.1	QC1	µg/l		20.0	BRL	161	17-183	43	30
Ethylbenzene	37.0	QC1	µg/l		20.0	BRL	185	37-162	43	30
Methylene chloride	26.3		µg/l		20.0	BRL	131	1-221	2	30
1,1,2,2-Tetrachloroethane	45.6	QC1	µg/l		20.0	BRL	228	46-157	40	30
Tetrachloroethene	29.1		µg/l		20.0	BRL	146	64-148	24	30
Toluene	31.4	QC1	µg/l		20.0	BRL	157	70-130	25	30
1,1,1-Trichloroethane	28.8		µg/l		20.0	BRL	144	52-162	18	30
1,1,2-Trichloroethane	38.9	QC1	µg/l		20.0	BRL	195	52-150	37	30
Trichloroethene	28.8		µg/l		20.0	BRL	144	71-157	18	30
Trichlorofluoromethane (Freon 11)	23.0		µg/l		20.0	BRL	115	17-181	7	30
Vinyl chloride	17.8		µg/l		20.0	BRL	89	1-251	9	30
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	33.2 30.7 33.3 32.0		hð\I hð\I hð\I		30.0 30.0 30.0 30.0		111 102 111 107	70-130 70-130 70-130 70-130		

Soluble Metals by EPA	6000/7000 Series Methods -	Ouality Control
Soluble filetais by Liff	oooo series meenous	Quanty Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Blank (8111042-BLK1)										
Prepared & Analyzed: 21-Nov-08										
Thallium	BRL		µg/l	5.00						
Zinc	BRL		µg/l	7.50						
Antimony	BRL		µg/l	6.00						
Lead	BRL		µg/l	7.50						
Nickel	BRL		µg/l	5.00						
Selenium	BRL		µg/l	15.0						
Beryllium	BRL		µg/l	2.00						
Cadmium	BRL		µg/l	2.50						
Chromium	BRL		µg/l	5.00						
Arsenic	BRL		µg/l	4.00						
Vanadium	BRL		µg/l	5.00						
Silver	BRL		µg/l	5.00						
Barium	BRL		µg/l	5.00						
LCS (8111042-BS1)										
Prepared & Analyzed: 21-Nov-08										
Zinc	1320		µg/l	7.50	1250		105	85-115		
Nickel	1250		µg/l	5.00	1250		100	85-115		
Lead	1260		μg/l	7.50	1250		100	85-115		
Thallium	1210		µg/l	5.00	1250		97	85-115		
Selenium	1230		µg/l	15.0	1250		99	85-115		
Antimony	1310		µg/l	6.00	1250		105	85-115		
Barium	1230		µg/l	5.00	1250		99	85-115		
Cadmium	1330		µg/l	2.50	1250		106	85-115		
Chromium	1250		µg/l	5.00	1250		100	85-115		
Arsenic	1240		µg/l	4.00	1250		99	85-115		
Beryllium	1230		µg/l	2.00	1250		99	85-115		
Vanadium	1220		µg/l	5.00	1250		98	85-115		
Silver	1250		µg/l	5.00	1250		100	85-115		
LCS Dup (8111042-BSD1)										
Prepared & Analyzed: 21-Nov-08										
Lead	1200		µg/l	7.50	1250		96	85-115	4	20
Thallium	1170		µg/l	5.00	1250		94	85-115	3	20
Antimony	1270		μg/l	6.00	1250		102	85-115	3	20
Selenium	1200		μg/l	15.0	1250		96	85-115	3	20
Nickel	1220		µg/l	5.00	1250		97	85-115	3	20
Zinc	1280		µg/l	7.50	1250		102	85-115	3	20
Barium	1200		µg/l	5.00	1250		96	85-115	3	20
Silver	1210		µg/l	5.00	1250		97	85-115	3	20
Chromium	1210		µg/l	5.00	1250		97	85-115	3	20
Vanadium	1180		µg/l	5.00	1250		95	85-115	4	20
Beryllium	1190		µg/l	2.00	1250		95	85-115	3	20
Cadmium	1290		µg/l	2.50	1250		103	85-115	3	20
Arsenic	1200		µg/l	4.00	1250		96	85-115	3	20
Duplicate (8111042-DUP1)	Source: SA87401	-01								
Prepared & Analyzed: 21-Nov-08										
Thallium	3.80	J	µg/l	5.00		BRL				20
Zinc	22.6		µg/l	7.50		23.7			5	20
Selenium	BRL		µg/l	15.0		BRL				20

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Duplicate (8111042-DUP1)	Source: SA8740	1-01								
Prepared & Analyzed: 21-Nov-08										
Antimony	BRL		µg/l	6.00		BRL				20
Nickel	BRL		µg/l	5.00		BRL				20
Lead	12.6	QR8	µg/l	7.50		6.00			71	20
Barium	8.20		µg/l	5.00		7.90			3	20
Silver	BRL		µg/l	5.00		BRL				20
Beryllium	BRL		µg/l	2.00		BRL				20
Chromium	BRL		µg/l	5.00		BRL				20
Arsenic	BRL		µg/I	4.00		BRL				20
	0.500	J	µg/I	2.50		BRL				20
Vanadium	BRL		μg/I	5.00		BKL				20
Matrix Spike (8111042-MS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Antimony	1300		µg/l	6.00	1250	BRL	104	75-125		
Zinc	1310		µg/l	7.50	1250	16.9	103	75-125		
Thallium	1190		µg/l	5.00	1250	BRL	95	75-125		
Selenium	1220		µg/l	15.0	1250	BRL	97	75-125		
Lead	1230		µg/l	7.50	1250	5.35	98	75-125		
Nickel	1230		µg/l	5.00	1250	4.50	98	75-125		
Beryllium	1210		µg/l	2.00	1250	BRL	97	75-125		
Chromium	1220		µg/I	5.00	1250	BRL	97	75-125		
Vanadium	1200		µg/I	5.00	1250	BRL	96	70-130		
Silver	1230		µg/I	5.00	1250	BRL	98	75-125		
Arsenic	1210		µg/i	4.00	1250	BRL	97	75-125		
Barlum	1260		µg/i	5.00	1250	69.4 DDI	95	75-125		
Cadmium	1300		μg/i	2.50	1250	BKL	104	75-125		
Matrix Spike Dup (8111042-MSD1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Nickel	1230		µg/l	5.00	1250	4.50	98	75-125	0.3	20
Zinc	1310		µg/l	7.50	1250	16.9	103	75-125	0.3	20
Thallium	1180		µg/l	5.00	1250	BRL	95	75-125	0.5	20
Selenium	1220		µg/l	15.0	1250	BRL	97	75-125	0.04	20
Lead	1220		µg/I	7.50	1250	5.35	97	75-125	0.6	20
Antimony	1290		µg/I	6.00	1250	BRL	103	75-125	0.4	20
Arsenic	1210		µg/i	4.00	1250	BRL	97	75-125	0	20
Silver	1230		µg/i	5.00	1250		90	75-125	0	20
Barium	1300		µg/i	2.50	1250	BRL 60.4	05	75-125	0.5	20
Chromium	1200		µg/i	5.00	1250	09.4	90	75-125	0.04	20
Vapadium	1220		µg/i	5.00	1250	BDI	90	70 130	0.0	20
Republium	1200		µg/i	2.00	1250	BDI	90	70-130	0.5	20
	1200		P9/1	2.00	1200	DILL	50	10 120	0.0	20
Prenared & Analyzed: 21 Nov 08	Source: SA8740	1-02								
Thallium	1250		uc/l	5 00	1250	RDI	100	80-120		
Nickel	1230		HQ\1	5.00	1250	4 50	100	80-120		
l ead	1280		və,. ۱۵۷	7.50	1250	5.35	102	80-120		
Zinc	1350		м9/1 Ца/I	7.50	1250	16.9	107	80-120		
Antimony	1320		r-9/1	6.00	1250	BRI	106	80-120		
Selenium	1260		μg/l	15.0	1250	BRL	101	80-120		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Post Spike (8111042-PS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Barium	1320		µg/l	5.00	1250	69.4	100	80-120		
Chromium	1260		µg/l	5.00	1250	BRL	101	80-120		
Cadmium	1350		µg/l	2.50	1250	BRL	108	80-120		
Arsenic	1250		µg/l	4.00	1250	BRL	100	80-120		
Beryllium	1260		µg/l	2.00	1250	BRL	100	80-120		
Vanadium	1240		µg/l	5.00	1250	BRL	99	80-120		
Silver	1270		µg/l	5.00	1250	BRL	102	80-120		
	Soluble Me	tals by	EPA 200 \$	Series Meth	ods - Qual	ity Contr	ol			

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111043 - EPA200/SW7000 Se	eries									
Blank (8111043-BLK1)										
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	BRL		µg/l	0.200						
LCS (8111043-BS1)										
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	4.48		µg/l	0.200	5.00		90	85-115		
Duplicate (8111043-DUP1)	Source: SA8737	1-01								
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	BRL		µg/l	0.200		BRL				20
Matrix Spike (8111043-MS1)	Source: SA8737	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	4.99		µg/l	0.200	5.00	BRL	100	75-125		
Matrix Spike Dup (8111043-MSD1)	Source: SA8737	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	4.61		µg/l	0.200	5.00	BRL	92	75-125	8	20
Post Spike (8111043-PS1)	Source: SA8737	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	4.35		µg/l	0.200	5.00	BRL	87	85-115		

Notes and Definitions

- QC1 Analyte out of acceptance range.
- QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Rebecca Merz

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

Labo	Laboratory Name: Spectrum Analytical, Inc Agawam, MA Project #: 12700058											
Proje	et Location: W	alpole Park South-W	alpole, MA		MADEP RTN ¹ :							
This SA87	This form provides certifications for the following data set: SA87371-01 through SA87371-09											
Samp	ole matrices:	Aqueous Groun	d Water									
		□ 8260B	🗆 8151A	□ 8330	☑ 6010B	☑ 7470A/1A						
MCP Meth	9 SW-846 oods Used	□ 8270C	□ 8081A	□ VPH	□ 6020	□ 9014M ²						
	ious Oscu	8082	□ 8021B	D EPH	□ 7000S ³	🗖 7196A						
1 List 2 M - 3 S - S	Image:											
		An affirmative resp	onse to questions A	l, B, C and D is requ	uired for "Presumpt	ive Certainty" statu	<i>s</i>					
A	A Were all samples received by the laboratory in a condition consistent with that described on the Chain of Custody documentation for the data set? Image: Chain of Custody documentation for the data set?											
В	B Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines? ✓ Yes □ No											
С	Does the da Certainty", "Quality As Analytical	ata included in this rep as described in Section ssurance and Quality Data"?	oort meet all the an on 2.0 (a), (b), (c) a Control Guidelines	alytical requirements nd (d) of the MADE for the Acquisition	s for "Presumptive P document CAM V and Reporting of	/II A,	🗹 Yes	□ No				
D	<u>VPH and E</u> modificatio	EPH methods only: Wons (see Section 11.3 of	as the VPH or EPH of respective method	H method conducted ods)?	without significant		□ Yes	□ No				
		A response to	questions E and F	below is required fo	or "Presumptive Ce	rtainty" status						
Е	Were all an achieved?	alytical QC performa	nce standards and i	recommendations for	r the specified metho	ods	🗹 Yes	□ No				
F	Were result	ts for all analyte-list c	ompounds/element	s for the specified m	ethod(s) reported?		🗹 Yes	🛛 No				
		All negative res	sponses are addres	sed in a case narrati	ive on the cover pag	e of this report.						
I, the respo know	e undersigned, onsible for obt	attest under the pair aining the information ief, accurate and con	ns and penalties of on, the material co aplete.	perjury that, based	l upon my personal ytical report is, to t H P	inquiry of those he best of my anibal C. Tayeh, Ph resident/Laboratory	a.D. Director					

apon receipt: Effect Ambient Effect g g	nor raymond: phoson@ telestech.com	alts when available to ()	JA TripBlank IIIOR	UE GHC-6-GW 9:20 VV	07 MW. 3- GW 8:35	06 R12-9-GW 11:00	02 MW- 2- GW 9:50	W MW.9.GW 11:50	13 RIZ-3-GW 11/11/08 15:40	12 RIZ-8-GW 4 13:50 1 1	1/ 1212-10-GW 11/11/08 14:35 4 GW3	Sample Id: Date: Type Matrix	G=Grab C=Composite	king Water GW=Groundwater WW=Wastewater W=Surface Water SO-Soil SL=Sludge A=Air X2= X3=) ₃ 2=HCI 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 8= NaHSO ₄ 9=10=10=	gr.: Ray Johnson P.O. No .:	Amingham, MA 01701	A ALLA KAZZO	Invoice To: A	SPECTRUM AMALYTICAL INC. Ferming IANUAL TECHNOLOGY
allow	Indianal	Relinquished by:		5							V4 2 1	Prese # of V # of A # of C # of P	rvati OA mbe lear	ve Vials r Glass Glass	Containers:	RQN:			ccountine	¹ age 1 of 1
All .	Dergeron	Received by:	×		××	×	××	××	××	×	XX	VOL: MCP	; 6 14 m	vetals	Analyses:	Sampler(s): Kirsten	Location: Walpole	Site Name: Wolpoke	Project No.: 1270005	Min. Sam
1 0012111	11/12/08 16	Date: Tim								Reld othered	* Metals have be	State specific reporting stand	Standard No Q	Provide MA DEP MCP CAA Provide CT DEP RCP Report QA/QC Reporting Lev	QA Reporting Note (check if needed)	ibravist	State: MA	Park South	7 0	TATs subject to laboratory ap 24-hour notification needed for ru ples disposed of after 60 days unle rwise instructed.

ANALYTICAL REPORT

Lab Number:	L0818397
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	lan Cannan
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058
Report Date:	12/23/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Alpha Sample ID L0818397-01 Client ID RIZ-10 Sample Location WALPOLE, MA

12230812:22

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status								
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES							
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES							
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	NO							
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A							
A res	A response to questions E and F is required for "Presumptive Certainty" status								
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES							
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700058 Lab Number: L0818397 Report Date: 12/23/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

Sample Receipt

In reference to question C:

The samples were received at the laboratory requiring filtration for Dissolved Metals; however, the samples were received beyond the 24 hour holding time recommended for filtration. The samples were filtered and preserved appropriately.

Dissolved Metals

L0818397-01 has an elevated detection limit for Thallium due to the dilution required by the high concentrations of non-target analytes. The requested reporting limit was achieved.

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Case Narrative (continued)

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Upibeth & Simmon

Title: Technical Director/Representative

Date: 12/23/08

12230812:22

METALS

									12230812:2	22	
Project Name:	WALPO		OUTH			La	b Number:		L0818397		
Project Number:	1270005	8				Re	port Date:		12/23/08		
			SA		RESULT	S					
Lab ID:	L081839	7-01				Da	te Collected:		12/11/08 09:	30	
Client ID:	RIZ-10					Da	te Received:		12/15/08		
Sample Location:	WALPO	E, MA				Fie	eld Prep:		Not Specified		
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals by	/ MCP 600)0/7000 ser	ies								
Thallium, Dissolved	ND		mg/l	0.0020	4	12/16/08 11:1	5 12/17/08 00:50	0 EPA 3005	A 64,6020A	BM	

12230812:22

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01	Batch:	WG347338-1			
Thallium, Dissolved	ND	mg/l	0.0005	1	12/16/08 11:15	12/16/08 23:33	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L0818397
Project Number:	12700058		Report Date:	12/23/08

Parameter	LCS %Recovery		LCSD %Recovery	%	6Recovery Limits	RPD	RPD Limits	
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01	Batch: WG3	47338-2	WG347338-3			
Thallium, Dissolved	95		96		80-120	1	20	

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0818397-01A	Plastic 500ml unpreserved	А	7	2C	Y	Absent	-
L0818397-01B	Plastic 500ml HNO3 preserved spl	А	<2	2C	Y	Absent	MCP-TL-6020S(180)

Project Number: 12700058

Lab Number: L0818397 Report Date: 12/23/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

REFERENCES

64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

	-		400	106	21년 - 1	1190	5.55	1000	<u></u>	23.2.9	120.5												12	<u>23081</u>	<u>2:22</u>	
	IS VOUR BEO IECT	PLEASE ANSWER QUESTIONS ABOVE									1001 / · · · RIZ-10		ALPHA Lab ID Sample ID	DLs <rcgw-1< td=""><td>Other Project Specific Requirements/Comme</td><td>These samples have been Previously analyzed by Alpha</td><td>Email: ian.cannan@tetratech.com</td><td>Fax: 508-903-2001</td><td>Phone: 508-903-2039</td><td>Framingham, MA</td><td>Address: One Grant Street</td><td>Client: Tetra Tech Rizzo</td><td>Client Information</td><td>wesuorougn, MA manstinin, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288</td><td>ANALYTICA.</td><td>CHAIN OF</td></rcgw-1<>	Other Project Specific Requirements/Comme	These samples have been Previously analyzed by Alpha	Email: ian.cannan@tetratech.com	Fax: 508-903-2001	Phone: 508-903-2039	Framingham, MA	Address: One Grant Street	Client: Tetra Tech Rizzo	Client Information	wesuorougn, MA manstinin, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	ANALYTICA.	CHAIN OF
timper mat											12-11-08 0930	Date Time	Collection		nts/Detection Limits:	Due Date: 17/77 WTime:	-	🛛 Standard 🛛 🗆 Rush (Turn-Around Time	ALPHA Quote #:	Project Manager: Ray Johnson	Project #: 12700058	Project Location: Walpole, MA	Project Name: Walpole Park Sc	Project Information	
12 12	Preservative	Container Type									GW ISC	Matrix Initials	Sample Sampler's					(ONLY IF PRE-APPROVED)						outh		PAGE OF
-15-08 165 B		-										Disso	lved	I Thallium					ANALYSIS		MCP PRESUMPTI	MA MCP CAM	Kegulatory Kegul State/Fed Program	ADEx	Report Informatio	Date Rec'd in Lab
2 Arthurt		· · ·																· ·		Are MCP Analytic	VE CERTAINTY-CT R		rements/Report Limit	Add'I Deliverables	n Data Deliverables ⊠ EMAIL	12-115/08
DateTime 7 12/508 14:3 7 12/5168 1655																<u> </u>			מיסו ופטופי ריטוווועפו ועפ ד וטוטט	cal Methods Required?	EASONABLE CONFI	RCGW-1	S Criteria		Billing Information	ALPHA Job #: 2
Start until any ambiguities and start until any ambiguities and submitted are subject to Alphas Payment Terms	Please print clearly, legibly and completely Samples can not be logged in and										Lab to filter 1	Sampte Specific Comments		121 Lab to do (Please specify below) S	Preservation 0	Not Needed #	Fitration				DENCE PROTOCOLS				PO #	0818397
La : : : : : : : : : : : : : : : : : : :	811 S :																									16965

ANALYTICAL REPORT

Lab Number:	L0907670
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ray Johnson
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700053
Report Date:	06/17/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0907670
Project Number:	12700053	Report Date:	06/17/09

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L0907670-01	RIZ-10	WALPOLE, MA	06/10/09 13:00
L0907670-02	RIZ-8	WALPOLE, MA	06/10/09 13:28
L0907670-03	RIZ-8S	WALPOLE, MA	06/10/09 13:18
L0907670-04	MW-9	WALPOLE, MA	06/10/09 13:45
L0907670-05	GHC-6	WALPOLE, MA	06/10/09 14:05
L0907670-06	RIZ-3	WALPOLE, MA	06/10/09 14:12
L0907670-07	MW-2	WALPOLE, MA	06/10/09 14:26
L0907670-08	RIZ-9	WALPOLE, MA	06/10/09 14:41

06170918:25

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status								
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES							
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES							
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES							
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A							
A res	A response to questions E and F is required for "Presumptive Certainty" status								
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES							
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHProject Number:12700053

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives Sample Receipt The samples were Field Filtered for Dissolved Metals only. Metals L0907670-01 through -08 have elevated detection limits for Antimony and Thallium due to the dilutions

required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Elepheth & Simmons

Title: Technical Director/Representative

Date: 06/17/09

06170918:25

ORGANICS

06170918:25

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-01 06/10/09 13:00 Client ID: Date Received: 06/11/09 **RIZ-10** Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 14:10 Analytical Date: Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-01 RIZ-10 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	06/10/09 13:00 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-02 06/10/09 13:28 Client ID: Date Received: 06/11/09 RIZ-8 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 14:47 Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-02 RIZ-8 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	06/10/09 13:28 06/11/09 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	0.50	1	
1,4-Dichlorobenzene		ND		ug/l	0.50	1	
Styrene		ND		ug/l	0.50	1	
o-Xylene		ND		ug/l	0.50	1	
1,1-Dichloropropene		ND		ug/l	0.50	1	
2,2-Dichloropropane		ND		ug/l	0.50	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1	
1,2,3-Trichloropropane		ND		ug/l	0.50	1	
Bromochloromethane		ND		ug/l	0.50	1	
n-Butylbenzene		ND		ug/l	0.50	1	
Dichlorodifluoromethane		ND		ug/l	0.50	1	
Hexachlorobutadiene		ND		ug/l	0.50	1	
Isopropylbenzene		ND		ug/l	0.50	1	
p-lsopropyltoluene		ND		ug/l	0.50	1	
Naphthalene		ND		ug/l	0.50	1	
n-Propylbenzene		ND		ug/l	0.50	1	
sec-Butylbenzene		ND		ug/l	0.50	1	
tert-Butylbenzene		ND		ug/l	0.50	1	
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1	
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1	
Bromobenzene		ND		ug/l	0.50	1	
o-Chlorotoluene		ND		ug/l	0.50	1	
p-Chlorotoluene		ND		ug/l	0.50	1	
Dibromomethane		ND		ug/l	0.50	1	
1,2-Dibromoethane		ND		ug/l	0.50	1	
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1	
1,3-Dichloropropane		ND		ug/l	0.50	1	
Methyl tert butyl ether		ND		ug/l	0.50	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-03 06/10/09 13:18 Client ID: Date Received: 06/11/09 RIZ-8S Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 15:24 Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	0.71		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-03 RIZ-8S WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	06/10/09 13:18 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-04 06/10/09 13:45 Client ID: MW-9 Date Received: 06/11/09 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 16:01 Analytical Date: Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	0.75		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-04 MW-9 WALPOLE, MA			Date Date Field	e Collected: e Received: d Prep:	06/10/09 13:45 06/11/09 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	0.50	1	
1,4-Dichlorobenzene		ND		ug/l	0.50	1	
Styrene		ND		ug/l	0.50	1	
o-Xylene		ND		ug/l	0.50	1	
1,1-Dichloropropene		ND		ug/l	0.50	1	
2,2-Dichloropropane		ND		ug/l	0.50	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1	
1,2,3-Trichloropropane		ND		ug/l	0.50	1	
Bromochloromethane		ND		ug/l	0.50	1	
n-Butylbenzene		ND		ug/l	0.50	1	
Dichlorodifluoromethane		ND		ug/l	0.50	1	
Hexachlorobutadiene		ND		ug/l	0.50	1	
Isopropylbenzene		ND		ug/l	0.50	1	
p-Isopropyltoluene		ND		ug/l	0.50	1	
Naphthalene		ND		ug/l	0.50	1	
n-Propylbenzene		ND		ug/l	0.50	1	
sec-Butylbenzene		ND		ug/l	0.50	1	
tert-Butylbenzene		ND		ug/l	0.50	1	
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1	
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1	
Bromobenzene		ND		ug/l	0.50	1	
o-Chlorotoluene		ND		ug/l	0.50	1	
p-Chlorotoluene		ND		ug/l	0.50	1	
Dibromomethane		ND		ug/l	0.50	1	
1,2-Dibromoethane		ND		ug/l	0.50	1	
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1	
1,3-Dichloropropane		ND		ug/l	0.50	1	
Methyl tert butyl ether		ND		ug/l	0.50	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-05 06/10/09 14:05 Client ID: Date Received: 06/11/09 GHC-6 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 16:38 Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-05 GHC-6 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	06/10/09 14:05 06/11/09 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	GC/MS - Westborough L	.ab					
1,3-Dichlorobenzene		ND		ug/l	0.50	1	
1,4-Dichlorobenzene		ND		ug/l	0.50	1	
Styrene		ND		ug/l	0.50	1	
o-Xylene		ND		ug/l	0.50	1	
1,1-Dichloropropene		ND		ug/l	0.50	1	
2,2-Dichloropropane		ND		ug/l	0.50	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1	
1,2,3-Trichloropropane		ND		ug/l	0.50	1	
Bromochloromethane		ND		ug/l	0.50	1	
n-Butylbenzene		ND		ug/l	0.50	1	
Dichlorodifluoromethane		ND		ug/l	0.50	1	
Hexachlorobutadiene		ND		ug/l	0.50	1	
Isopropylbenzene		ND		ug/l	0.50	1	
p-lsopropyltoluene		ND		ug/l	0.50	1	
Naphthalene		ND		ug/l	0.50	1	
n-Propylbenzene		ND		ug/l	0.50	1	
sec-Butylbenzene		ND		ug/l	0.50	1	
tert-Butylbenzene		ND		ug/l	0.50	1	
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1	
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1	
Bromobenzene		ND		ug/l	0.50	1	
o-Chlorotoluene		ND		ug/l	0.50	1	
p-Chlorotoluene		ND		ug/l	0.50	1	
Dibromomethane		ND		ug/l	0.50	1	
1,2-Dibromoethane		ND		ug/l	0.50	1	
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1	
1,3-Dichloropropane		ND		ug/l	0.50	1	
Methyl tert butyl ether		ND		ug/l	0.50	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-06 06/10/09 14:12 Client ID: Date Received: 06/11/09 RIZ-3 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 17:15 Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-06 RIZ-3 WALPOLE, MA			Date Collected: Date Received: Field Prep:		06/10/09 14:12 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-07 06/10/09 14:26 Client ID: Date Received: 06/11/09 MW-2 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 17:52 Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	1.0		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-07 MW-2 WALPOLE, MA			Dat Dat Fiel	e Collected: e Received: d Prep:	06/10/09 14:26 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough I	_ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-lsopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	108		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-08 06/10/09 14:41 Client ID: Date Received: 06/11/09 RIZ-9 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 18:29 Analytical Date: Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab)				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-08 RIZ-9 WALPOLE, MA			Date Collected: Date Received: Field Prep:		06/10/09 14:41 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	84		80-120	

Project Number: 12700053

Lab Number: L09 Report Date: 06/

L0907670 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS	- Westborough La	b for sample(s)	: 01-08	Batch:	WG366434-4
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

Project Number: 12700053

Lab Number: Report Date: L0907670

06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS ·	- Westborough La	b for sample(s):	01-08	Batch:	WG366434-4
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
lsopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0907670		
Project Number:	12700053	Report Date:	06/17/09		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - Westh	orough Lab	o for sample(s):	01-08	Batch:	WG366434-4

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/l

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	87		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated sample(s):	01-08 Batch:	WG366434-3		
Methylene chloride	101	-	70-130	-	
1,1-Dichloroethane	96	-	70-130	-	
Chloroform	99	-	70-130	-	
Carbon tetrachloride	91	-	70-130	-	
1,2-Dichloropropane	97	-	70-130	-	
Dibromochloromethane	91	-	70-130	-	
1,1,2-Trichloroethane	97	-	70-130	-	
Tetrachloroethene	94	-	70-130	-	
Chlorobenzene	97	-	70-130	-	
Trichlorofluoromethane	100	-	70-130	-	
1,2-Dichloroethane	93	-	70-130	-	
1,1,1-Trichloroethane	91	-	70-130	-	
Bromodichloromethane	94	-	70-130	-	
trans-1,3-Dichloropropene	85	-	70-130	-	
cis-1,3-Dichloropropene	85	-	70-130	-	
Bromoform	92	-	70-130	-	
1,1,2,2-Tetrachloroethane	106	-	70-130	-	
Benzene	98	-	70-130	-	
Toluene	91	-	70-130	-	
Ethylbenzene	96	-	70-130	-	
p/m-Xylene	98	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated sample(s):	01-08 Batch:	WG366434-3		
Chloromethane	112	-	70-130	-	
Bromomethane	114	-	70-130	-	
Vinyl chloride	104	-	70-130	-	
Chloroethane	104	-	70-130	-	
1,1-Dichloroethene	98	-	70-130	-	
trans-1,2-Dichloroethene	95	-	70-130	-	
cis-1,2-Dichloroethene	92	-	70-130	-	
Trichloroethene	86	-	70-130	-	
1,2-Dichlorobenzene	97	-	70-130	-	
1,3-Dichlorobenzene	96	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	96	-	70-130	-	
o-Xylene	91	-	70-130	-	
1,1-Dichloropropene	92	-	70-130	-	
2,2-Dichloropropane	94	-	70-130	-	
1,1,1,2-Tetrachloroethane	95	-	70-130	-	
1,2,3-Trichloropropane	97	-	70-130	-	
Bromochloromethane	100	-	70-130	-	
n-Butylbenzene	94	-	70-130	-	
Dichlorodifluoromethane	105	-	70-130	-	
Hexachlorobutadiene	100	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery		%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough La	b Associated sample(s):	01-08	Batch:	WG366434-3		
Isopropylbenzene	96	-		70-130	-	
p-Isopropyltoluene	93	-		70-130	-	
Naphthalene	75	-		70-130	-	
n-Propylbenzene	96	-		70-130	-	
sec-Butylbenzene	96	-		70-130	-	
tert-Butylbenzene	94	-		70-130	-	
1,2,3-Trichlorobenzene	89	-		70-130	-	
1,2,4-Trichlorobenzene	90	-		70-130	-	
1,2,4-Trimethylbenzene	89	-		70-130	-	
1,3,5-Trimethylbenzene	87	-		70-130	-	
Bromobenzene	102	-		70-130	-	
o-Chlorotoluene	98	-		70-130	-	
p-Chlorotoluene	93	-		70-130	-	
Dibromomethane	94	-		70-130	-	
1,2-Dibromoethane	94	-		70-130	-	
1,2-Dibromo-3-chloropropane	103	-		70-130	-	
1,3-Dichloropropane	92	-		70-130	-	
Methyl tert butyl ether	88	-		70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - W	/estborough Lab Associated sample(s):	01-08 Batch:	WG366434-3		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	102		80-120
4-Bromofluorobenzene	97		80-120

Matrix Spike Analysis Batch Quality Control

		Batch Qu
Project Name:	WALPOLE PARK SOUTH	

Project Number: 12700053

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	6 - Westborough La	ab Associated	sample(s): 01	-08 QC Batcl	h ID: WG36643	34-5 QC Sar	mple: L090764 ⁻	1-01	Client ID: MS
Methylene chloride	ND	4	4.1	103	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.2	106	-	-	70-130	-	20
Chloroform	ND	4	4.0	101	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.1	102	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.0	100	-	-	70-130	-	20
Dibromochloromethane	ND	4	3.6	90	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	3.8	95	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.0	101	-	-	70-130	-	20
Chlorobenzene	ND	4	4.1	102	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.4	109	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.0	100	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.0	101	-	-	70-130	-	20
Bromodichloromethane	ND	4	3.8	95	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.0	75	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.7	93	-	-	70-130	-	20
Bromoform	ND	4	3.5	88	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.1	103	•	-	70-130	-	20
Benzene	ND	4	4.2	105	•	-	70-130	-	20
Toluene	ND	4	3.8	96	-	-	70-130	-	20
Ethylbenzene	ND	4	4.0	100	-	-	70-130	-	20
p/m-Xylene	ND	8	7.9	99	-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

		Batch Quality Con
Project Name:	WALPOLE PARK SOUTH	•

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	O RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01	-08 QC Bate	ch ID: WG36643	34-5 QC Sar	mple: L090764 ⁻	1-01	Client ID: MS
Chloromethane	ND	4	4.2	104	-	-	70-130	-	20
Bromomethane	ND	4	4.7	117	-	-	70-130	-	20
Vinyl chloride	ND	4	5.2	131	-	-	70-130	-	20
Chloroethane	ND	4	4.6	115	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.4	111	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2	105	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	3.9	99	-	-	70-130	-	20
Trichloroethene	ND	4	3.8	96	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.8	95	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	3.8	96	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.7	93	-	-	70-130	-	20
Styrene	ND	4	3.8	94	-	-	70-130	-	20
o-Xylene	ND	4	3.7	94	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	3.8	96	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.1	103	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	3.7	92	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.8	94	-	-	70-130	-	20
Bromochloromethane	ND	4	4.0	101	-	-	70-130	-	20
n-Butylbenzene	ND	4	3.9	98	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	3.8	96		-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1	102	-	-	70-130	-	20

Project Number:

12700053

Matrix Spike Analysis Batch Quality Control

		Batch Quality Con
Project Name:	WALPOLE PARK SOUTH	

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01-	08 QC Batc	h ID: WG36643	34-5 QC Sar	mple: L0907641	I-01 (Client ID: MS
Isopropylbenzene	ND	4	3.5	88	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	3.7	92	-	-	70-130	-	20
Naphthalene	ND	4	3.0	76	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.0	100	-	-	70-130	-	20
sec-Butylbenzene	ND	4	3.9	98	-	-	70-130	-	20
tert-Butylbenzene	ND	4	3.9	97	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.4	86	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.6	89	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	3.6	91	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	3.5	87	-	-	70-130	-	20
Bromobenzene	ND	4	4.0	100	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.0	100	-	-	70-130	-	20
p-Chlorotoluene	ND	4	3.7	92	-	-	70-130	-	20
Dibromomethane	ND	4	3.9	98	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.7	92	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.4	86	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	3.6	90	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	3.5	88	-	-	70-130	-	20

Project Number:

12700053

Project Name:WALPOLE PARK SOUTHMatrix Spike Analysis
Batch Quality ControlLab Number:L0907670Project Number:12700053Report Date:06/17/09

				MS		MSD	Recovery		
Parameter	Native Sample	MS Added	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01	-08 QC Batc	h ID: WG36643	34-5 QC San	nple: L0907641	I-01 (Client ID: MS

	MS	5	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101				80-120	
4-Bromofluorobenzene	96				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG366434-	6 QC Sample	: L0907641-02	Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG366434	-6 QC Sample	: L0907641-02	Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab A Sample	associated sample(s): 01-08	QC Batch ID: WG366434	-6 QC Samp	le: L0907641-02	Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name: Project Number:	WALPOLE PARK SOUTH 12700053	La	ab Duplicate Analy Batch Quality Control	SIS	Lab Num Report D	ber: L0907670 ate: 06/17/09
Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/ Sample	MS - Westborough Lab Assoc	ated sample(s): 01-08	QC Batch ID: WG366434	4-6 QC Sam	ple: L0907641-02	2 Client ID: DUP
1,2-Dibromo-3-chloropropa	ne	ND	ND	ug/l	NC	20
1,3-Dichloropropane		ND	ND	ug/l	NC	20
Methyl tert butyl ether		ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	104		106		80-120	
4-Bromofluorobenzene	85		85		80-120	

METALS

06170918:25 WALPOLE PARK SOUTH Lab Number: L0907670 12700053 **Report Date:** 06/17/09 SAMPLE RESULTS L0907670-01 Date Collected: 06/10/09 13:00 **RIZ-10** Date Received: 06/11/09 WALPOLE, MA Field Prep: See Narrative Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Result Qualifier Units RDL

Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.148		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:55	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI

Project Name:

Lab ID:

Matrix:

Client ID:

Project Number:

Sample Location:

06170918:25 **Project Name:** WALPOLE PARK SOUTH Lab Number: L0907670 **Project Number: Report Date:** 12700053 06/17/09 SAMPLE RESULTS Lab ID: L0907670-02 Date Collected: 06/10/09 13:28 Client ID: RIZ-8 Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Dilution Date Date Prep Analytical Factor Prepared Analyzed Method Method Parameter Result Qualifier Units RDL Analyst MCP Dissolved Metals - Westborough Lab 64,6020A Antimony, Dissolved ND mg/l 0.0020 4 06/12/09 11:00 06/17/09 01:34 EPA 3005A ΒM Arsenic, Dissolved ND 0.005 1 06/15/09 16:24 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00 0.026 0.010 1 60,6010B Barium, Dissolved 06/15/09 16:24 EPA 3005A AI mg/l 06/12/09 11:00

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 17:15

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 16:24

06/15/09 16:24

06/15/09 16:24

06/16/09 10:56

06/15/09 16:24

06/15/09 16:24

06/17/09 01:34

06/15/09 16:24

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

 Διρήα

4

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

ΒM

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc. Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Project Name:	WALPC	LE PARK S	SOUTH			La	b Number:	L0	907670	
Project Number:	127000	53				Re	port Date:	06	/17/09	
			S		RESULT	ſS				
Lab ID:	L090767	70-03				Da	te Collected:	06	/10/09 13:1	8
Client ID:	RIZ-8S					Da	te Received:	06	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
MCP Dissolved Me	tals - Wes	stborough L	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:40	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.051		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/15/09 17:15 06/16/09 10:58

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/17/09 01:40

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

Project Name:	WALPO	LE PARK S	SOUTH			La	b Number:	LO	907670	
Project Number:	127000	53				Re	port Date:	06/	/17/09	
			SA		RESULT	S				
Lab ID:	L090767	70-04				Da	te Collected:	06/	/10/09 13:4	5
Client ID:	MW-9					Da	te Received:	06/	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	tborough L	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:46	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.029		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/15/09 17:15 06/16/09 11:00

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/17/09 01:46

06/12/09 11:00 06/15/09 16:29

06/15/09 16:29

06/12/09 11:00

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPC	LE PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	127000	53				Re	port Date:	06/	/17/09	
			S		RESULT	ſS				
Lab ID:	L090767	70-05				Da	te Collected:	06	/10/09 14:0)5
Client ID:	GHC-6					Da	te Received:	06/	/11/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:52	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.066		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/15/09 17:15 06/16/09 11:02

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/17/09 01:52

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32 EPA 3005A

06/12/09 11:00 06/15/09 16:32 EPA 3005A

06/12/09 11:00 06/15/09 16:32 EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ANALYTICAL

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPO	LE PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	1270005	53				Re	port Date:	06	6/17/09	
			SA		RESULT	S				
Lab ID:	L090767	0-06				Da	te Collected:	06	/10/09 14:1	2
Client ID:	RIZ-3					Da	te Received:	06	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
MCP Dissolved Met	als - Wes	tborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:57	EPA 3005A	64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/15/09 17:15 06/16/09 11:04

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/17/09 01:57

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42 EPA 3005A

06/12/09 11:00 06/15/09 16:42 EPA 3005A

06/12/09 11:00 06/15/09 16:42 EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

mg/l

0.005

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

		1			
	h		5	ь.	2
4	N		×\7		<u>.</u>

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.013

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 **Project Number: Report Date:** 12700053 06/17/09 SAMPLE RESULTS Lab ID: L0907670-07 Date Collected: 06/10/09 14:26 Client ID: MW-2 Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Dilution Date Date Prep Analytical Factor Prepared Analyzed Method Method Parameter Result Qualifier Units RDL Analyst MCP Dissolved Metals - Westborough Lab 64,6020A Antimony, Dissolved ND mg/l 0.0020 4 06/12/09 11:00 06/17/09 02:03 EPA 3005A ΒM Arsenic, Dissolved ND 0.005 1 06/15/09 16:45 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00 0.070 0.010 1 60,6010B Barium, Dissolved 06/15/09 16:45 EPA 3005A AI mg/l 06/12/09 11:00 60,6010B Beryllium, Dissolved ND mg/l 0.004 1 06/12/09 11:00 06/15/09 16:45 EPA 3005A AI Cadmium, Dissolved ND 0.004 1 06/15/09 16:45 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00

1

1

1

1

1

1

4

1

1

06/12/09 11:00

06/12/09 11:00

06/15/09 17:15

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 16:45

06/15/09 16:45

06/16/09 11:05

06/15/09 16:45

06/15/09 16:45

06/15/09 16:45

06/17/09 02:03

06/15/09 16:45

06/12/09 11:00 06/15/09 16:45

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

ΕZ

AI

AI

AI

ΒM

AI

AI

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

06170918:25

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc. Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

ND

ND

ND

ND

ND

ND

ND

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPOI	_E PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	1270005	3				Re	port Date:	06	/17/09	
			SA		RESULT	S				
Lab ID:	L090767	0-08				Da	te Collected:	06	/10/09 14:4	1
Client ID:	RIZ-9					Da	te Received:	06	/11/09	
Sample Location:	WALPOL	E, MA				Fie	ld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - West	borough La	ıb							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:09	EPA 3005A	64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/15/09 17:15 06/16/09 11:11

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/17/09 02:09

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

mg/l

0.005

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

ANALYTICAL

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.015

Project Name: WALPOLE PARK SOUTH Project Number: 12700053 Lab Number: L0907670 Report Date: 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Dilution Date Date Method Analyst Factor Prepared Analyzed Parameter **Result Qualifier** Units RDL MCP Dissolved Metals - Westborough Lab for sample(s): 01-08 Batch: WG366599-1 ND 0.005 Arsenic, Dissolved mg/l 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI ND 0.010 Barium, Dissolved mg/l 1 06/15/09 16:07 60,6010B AI 06/12/09 11:00 Beryllium, Dissolved ND 0.004 1 60,6010B mg/l 06/12/09 11:00 06/15/09 16:07 AI Cadmium, Dissolved ND mg/l 0.004 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI Chromium, Dissolved ND mg/l 0.01 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI Lead, Dissolved ND 0.010 1 mg/l 06/12/09 11:00 06/15/09 16:07 60,6010B AI Nickel, Dissolved ND mg/l 0.025 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI ND 0.010 1 AI Selenium, Dissolved mg/l 06/15/09 16:07 60,6010B 06/12/09 11:00 ND 1 0.007 60,6010B AI Silver, Dissolved mg/l 06/12/09 11:00 06/15/09 16:07 ND 1 AI Vanadium, Dissolved mg/l 0.010 06/12/09 11:00 06/15/09 16:07 60,6010B Zinc, Dissolved ND 0.050 1 60,6010B AI mg/l 06/12/09 11:00 06/15/09 16:07

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab	or sample	(s): 01-	08 Batch:	WG366913-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:49	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
MCP Dissolved Metals -	Westborough Lab fo	r sample	(s): 01-0	08 Batch:	WG367081-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	64,6020A	BM

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: Report Date: L0907670 06/17/09

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recove	%Recovery ry Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough Lab A	Associated sample(s):	01-08 Batch:	WG366599-2 WG366599-3		
Arsenic, Dissolved	113	114	80-120	1	20
Barium, Dissolved	106	106	80-120	0	20
Beryllium, Dissolved	107	106	80-120	1	20
Cadmium, Dissolved	116	115	80-120	1	20
Chromium, Dissolved	105	105	80-120	0	20
Lead, Dissolved	110	111	80-120	1	20
Nickel, Dissolved	105	105	80-120	0	20
Selenium, Dissolved	113	117	80-120	3	20
Silver, Dissolved	110	109	80-120	1	20
Vanadium, Dissolved	106	105	80-120	1	20
Zinc, Dissolved	110	111	80-120	1	20
MCP Dissolved Metals - Westborough Lab A	Associated sample(s):	01-08 Batch:	WG366913-2 WG366913-3		
Mercury, Dissolved	98	93	80-120	5	20
MCP Dissolved Metals - Westborough Lab A	Associated sample(s):	01-08 Batch:	WG367081-2 WG367081-3		
Antimony, Dissolved	106	106	80-120	2	20
Thallium, Dissolved	96	96	80-120	1	20

Project Name: WALPOLE PARK SOUTH Project Number: 12700053

Lab Number: L0907670 Report Date: 06/17/09

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Container Information

Cooler	Custody Seal
A	Absent

Container ID **Container Type** Cooler pН Temp Pres Seal Analysis L0907670-01A Vial Ascorbic Acid/HCI preserved A N/A 3 Υ Absent 524.2(14) L0907670-01B Vial Ascorbic Acid/HCI preserved A N/A 3 Y Absent 524.2(14) L0907670-01C Plastic 500ml HNO3 preserved 3 MCP-AG-6010S(180), MCP-BA-A <2 Υ Absent 6010S(180), MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180), MCP-NI-6010S(180), MCP-CD-6010S(180), MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180), MCP-V-6010S(180) L0907670-02A Vial Ascorbic Acid/HCI preserved А N/A 3 Absent 524.2(14) Υ L0907670-02B Vial Ascorbic Acid/HCI preserved A N/A 3 Υ Absent 524.2(14) L0907670-02C Plastic 500ml HNO3 preserved A <2 3 Absent MCP-AG-6010S(180), MCP-BA-Y 6010S(180),MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180), MCP-NI-6010S(180), MCP-CD-6010S(180), MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180), MCP-V-6010S(180) L0907670-03A Vial Ascorbic Acid/HCl preserved N/A A 3 Υ Absent 524.2(14) L0907670-03B Vial Ascorbic Acid/HCI preserved А N/A 3 Υ Absent 524.2(14) L0907670-03C Plastic 500ml HNO3 preserved A <2 3 Absent MCP-AG-6010S(180), MCP-BA-Υ 6010S(180),MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180),MCP-NI-6010S(180), MCP-CD-6010S(180), MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180),MCP-V-6010S(180) L0907670-04A Vial Ascorbic Acid/HCl preserved А N/A 3 Absent 524.2(14) Υ L0907670-04B Vial Ascorbic Acid/HCl preserved А N/A 3 Y Absent 524.2(14)

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0907670-04C	Plastic 500ml HNO3 preserved	A	<2	3	Υ	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-05A	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-05B	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-05C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-06A	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-06B	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-06C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-BE- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-07A	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-07B	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-07C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-08A	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-08B	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0907670-08C	Plastic 500ml HNO3 preserved	A	<2	3	Υ	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670 **Report Date:**

06/17/09

GLOSSARY

Acronyms

- · Environmental Protection Agency. EPA
- LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS · Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND · Not detected at the reported detection limit for the sample.
- NI · Not Ignitable.
- RDL · Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * - The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- Spectra identified as "Aldol Condensation Product". A
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- Ν - The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 Lab Number:
 L0907670

 Report Date:
 06/17/09

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) *Solid Waste/Soil* (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Currosivity, TCI P, Leach (1311) Peartivity, Organic Parameters: PCBs

Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil **Massachusetts Department of Environmental Protection** <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

<u>Microbiology Parameters</u>: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited. Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.) *Solid & Chemical Materials* (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 10010B, 10010B,

9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health Certificate/Lab ID: LAO00065. NELAP Accredited via NY-DOH.

Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water. Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 625, 608, 8081A, 8082, 8151A, 8270C, 8330) *Solid & Hazardous Waste* (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

					F				-		((rev. 2)-APR-09)	
Alpha's Payment Terms.	11:12	tom	61	k	\uparrow	2		ÿ	Į.	11-05	Q. 6.	har	T Ros	N			
resolved. All samples submitted are subject to	1000	50-11-	6	2	D'a	R)		50	1 4	6-11-0			16-2				
turnaround time clock will rot start until any ambiguities are	te/Time	D ²		×	eived B	Rec			te/Time	Da		ished By:	Belinqu				
and completely. Samples can		<u> </u>	ľ				,	'	X	Ż	reservative						
Plassa print clearly. legibly		·	•			 -			Ż	ſ	tainer Type	Cont					
													,				
									Ģ		\checkmark	\mathbb{V}	1441/4rd	V	12-9	1 2	
												<u>\</u> //	1426/1422	-	MW-2	4	
									X	V			1412/1416		R12 - 3	6	
							ענ 			F			Nos/1424		546-6	5 2	
				İ						E			145/1240		MW- 9	Ŷ	
				İC						K			1318/1370		R12 825		
									R	Ē		-	1329/1340	-	R12-22	. 2 1	
									R	Ø	R	12W	4 (300/1302	6-10.0	R12-10	1 1 4 2 0	
Comments					 				1							- 1 - 1 - 1 -	
Sample Specific									10	Mc	Initials	Matrix	Time	Date		(Lab Use Only)	
							.		Ľ۶	P	Sampler's	Sample	ollection	0	Sample ID	LPHA Lab ID	≥
									5	14			-				
(Please specify below)									21	M				xel	Klivense in L	(no data .	ž
Treservation Act T										et.			IIIS		ic Requirements/Comments	her Project Specifi	ζĞ
					·•					1,			18/04 Time:	Due Date: (0)	Previously analyzed by Alpha	These samples have been	
Done W +				· · · ·									-	40 6 101	nan prelately. con	mail: /an.can	Ē
Filtration Martals											(PPROVED)	(ONLY IF PRE-A	Rush	X Standard	2001	ax: Jor 973	Fa
	-								LYSIS	ANA			d Time	Turn-Aroun	7037	hone: 508 905	Ph
								-+-					#	ALPHA Quote	have what	Faming	
												io-	1er: Ning Jur.	Project Manag	rat St	ddress: One G	Ad
		100	RL					W C F	MA.				12700053	Project #:	. Ron -	lient Tetra Teck	
		·	Criteria					Iram	-ed Prog	State/F		mt	on: Wilper,	Project Locatic		lient Information	Cli
				imits	port l	ints/Re	ireme	Requ	latory	Regu			Vale Jours	Wintpoke	508-822-3288	X: 503-898-9193 FAX: 5	FAX
				vies	シー Veliverat	🕻 Add'i É	א ,		υEx	ב ∕ג` ≥				Project Name:	iieid, MA i08-822-9300	estborough, MA Mansfi	Wes
PO #	lient info	me as C	X sa	C. Net	\$	EMAIL	м		×					Froject Into		AAACATICAC	
	rmation	g Infor	Billin	les	iverat	ta Del	on Da	ormatio	rt Infc	Repo			mation	Designet Infor			
9676B-	* L	Alog	ALPH		B		ଚ	as	ec'd in L	Date R		AGE 1 OF 1	, Y Q	CUSTO	CHAIN OF (
24-94-94	7																

ANALYTICAL REPORT

Lab Number:	L1003740
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ray Johnson
Project Name:	WALPOLE PK SOUTH
Project Number:	12700058
Report Date:	03/19/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PK SOUTH	Lab Number:	L1003740
Project Number:	12700058	Report Date:	03/19/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1003740-01	MW-9	WALPOLE, MA	12/21/09 10:12
L1003740-02	RIZ-8	WALPOLE, MA	12/21/09 11:05
L1003740-03	GHC-6	WALPOLE, MA	12/28/09 08:25
L1003740-04	RIZ-3	WALPOLE, MA	12/28/09 09:03
L1003740-05	RIZ-9	WALPOLE, MA	12/28/09 10:00
L1003740-06	RIZ-10	WALPOLE, MA	12/28/09 10:43
L1003740-07	MW-3	WALPOLE, MA	12/28/09 11:50

Project Name: WALPOLE PK SOUTH Project Number: 12700058
 Lab Number:
 L1003740

 Report Date:
 03/19/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status				
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES		
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES		
с	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES		
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A		
A response to questions E and F is required for "Presumptive Certainty" status				
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES		
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO		

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PK SOUTHProject Number:12700058

 Lab Number:
 L1003740

 Report Date:
 03/19/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives Sample Receipt The samples were Field Filtered.

Metals

L1003740-01 through -07 have elevated detection limits due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Elepibeth & Simurs

Title: Technical Director/Representative

Date: 03/19/10

METALS

								0	3191012:41	l
Project Name:	WALPO	LE PK SOU	TH			La	b Number:	L1	003740	
Project Number:	1270005	58				Re	port Date:	03	8/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	0-01				Da	ate Collected:	12	2/21/09 10:1	2
Client ID:	MW-9	V-9					ate Received:	12	12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 18:56	EPA 3005A	64,6020A	TD

								0	3191012:41	l
Project Name:	WALPO	LE PK SOU	ITH			La	b Number:	L1	003740	
Project Number:	1270005	58				Re	port Date:	03	8/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	10-02				Da	te Collected:	12	2/21/09 11:0	5
Client ID:	RIZ-8	Ζ-8					Date Received:		12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:20	EPA 3005A	64,6020A	TD

								0	3191012:41	1
Project Name:	WALPO	LE PK SOU	ITH			La	b Number:	L1	003740	
Project Number:	1270005	58				Re	port Date:	03	8/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	40-03				Da	te Collected:	12	2/28/09 08:2	5
Client ID:	GHC-6					Da	te Received:	12	2/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:26	EPA 3005A	64,6020A	TD

								C	03191012:41	
Project Name:	WALPO	LE PK SOU	TH			La	b Number:	L1	1003740	
Project Number:	1270005	58				Re	port Date:	03	3/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	0-04				Da	te Collected:	12	2/28/09 09:0	3
Client ID:	RIZ-3	Z-3					Date Received:		12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	ee Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:32	EPA 3005A	64,6020A	TD

								C	03191012:41	l
Project Name:	WALPO	LE PK SOU	TH			La	b Number:	L1	1003740	
Project Number:	1270005	58				Re	port Date:	03	3/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	0-05				Da	te Collected:	12	2/28/09 10:0	0
Client ID:	RIZ-9	IZ-9					te Received:	12	12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	ee Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:38	EPA 3005A	64,6020A	TD

								0	3191012:41	
Project Name:	WALPO	LE PK SOU	ITH			La	b Number:	L1	003740	
Project Number:	1270005	58				Re	port Date:	03	8/19/10	
			SA	AMPLE	RESULT	S				
Lab ID:	L100374	10-06				Da	te Collected:	12	2/28/09 10:4	3
Client ID:	RIZ-10	Z-10					te Received:	12	12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	ee Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:44	EPA 3005A	64,6020A	TD

								0	3191012:41	l
Project Name:	WALPO	LE PK SOU	TH			La	b Number:	L1	003740	
Project Number:	1270005	58				Re	port Date:	03	8/19/10	
			SA	AMPLE I	RESULT	S				
Lab ID:	L100374	40-07				Da	te Collected:	12	2/28/09 11:5	0
Client ID:	MW-3	V-3					te Received:	12	12/29/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough La	ab							
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:50	EPA 3005A	64,6020A	TD

Project Name:WALPOLE PK SOUTHProject Number:12700058

 Lab Number:
 L1003740

 Report Date:
 03/19/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	· Westborough Lab f	for sample((s): 01-0	7 Batch:	WG404525-1			
Lead, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

 Lab Number:
 L1003740

 Report Date:
 03/19/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-07	7 Batch:	WG404525-2	WG404525-3			
Lead, Dissolved	103		101		80-120	2		20

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L1003740 **Report Date:**

03/19/10

GLOSSARY

Acronyms

- · Environmental Protection Agency. EPA
- LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS · Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

- NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- · Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific RDL concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD · Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- Spectra identified as "Aldol Condensation Product". A
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument. Е
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix Q spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- Analytical results are from sample re-analysis. R
- RE - Analytical results are from sample re-extraction.
- Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs). J
- · Not detected at the reported detection limit (RDL) for the sample. ND

Project Name: WALPOLE PK SOUTH Project Number: 12700058
 Lab Number:
 L1003740

 Report Date:
 03/19/10

REFERENCES

64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised March 16, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-TP (Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. <u>Organic Parameters</u>: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Ti,Tl, V,Zn,Ca,Mg,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N,

SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B,

5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-06-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters:SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010,9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A.Organic Parameters:SW-846 3540C, 3545,3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500CI-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Non-Potable Water* (<u>Organic Parameters</u>: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. <u>Organic Parameters</u>: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnaphthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

` 	03191012:41	
MC		
	Space To The Space Spa	
	TERROR DAN W SERVICE AND A CARE	
RC	2-2-2-1-2- Require 6-22 Room	ה
	The second secon	I
		Ì
R		5
		ñ
	roject Stanget Stanget	2
		ภ
		5
		כ
	H 100 20 20 20 20 100 100 100 100 100 100	
		~
e Eserv		
ative ative	ha lititation in the second se	~
DE EC		
G 5 1 2	AD EX C C P C P C P C P C P C P C P C P C P	
175 m		
	Contraction of the second seco	
	es Sonab	3
C D Date		
		r
	BLE Sa	6
	S) Ree	ŏ
	o p P Specification Cone Calibration Calibration Cali	, CH
LLV 6		N.
gibly clock clock dibly clock diffessal diffessal diffessal diffessal diffessal		Ç
logg Press Press Seress		
5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Dama 20 at 20	the second second second second second second second second second second second second second second second se	<u>)</u>

ANALYTICAL REPORT

Lab Number:	L0918777
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	lan Cannan
Project Name:	WALPOLE PK SOUTH
Project Number:	12700058
Report Date:	01/05/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PK SOUTH	Lab Number:	L0918777
Project Number:	12700058	Report Date:	01/05/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L0918777-01	MW-9	WALPOLE, MA	12/21/09 10:12
L0918777-02	RIZ-8	WALPOLE, MA	12/21/09 11:05
L0918777-03	GHC-6	WALPOLE, MA	12/28/09 08:25
L0918777-04	RIZ-3	WALPOLE, MA	12/28/09 09:03
L0918777-05	RIZ-9	WALPOLE, MA	12/28/09 10:00
L0918777-06	RIZ-10	WALPOLE, MA	12/28/09 10:43
L0918777-07	MW-3	WALPOLE, MA	12/28/09 11:50
L0918777-08	TRIP BLANK	WALPOLE, MA	12/21/09 00:00

Project Name: WALPOLE PK SOUTH Project Number: 12700058
 Lab Number:
 L0918777

 Report Date:
 01/05/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status					
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES				
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES				
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES				
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A				
A res	ponse to questions E and F is required for "Presumptive Certainty" status					
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES				
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PK SOUTHProject Number:12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Metals

L0918777-01 through -07 have elevated detection limits for Antimony and Thallium due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Norhollo M. Morris

Title: Technical Director/Representative

Date: 01/05/10

ORGANICS

VOLATILES

01051013:50 Lab Number: L0918777

01/05/10

Report Date:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab ID:	L0918777-01	Date Collected:	12/21/09 10:12
Client ID:	MW-9	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 11:35		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date: 01/05/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-01 MW-9 WALPOLE, MA		Date Collected: Date Received: Field Prep:		12/21/09 10:12 12/29/09 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		0.77		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

1,2-[Dichlorobenzene-d4	102		80-120)	
Surr	ogate	% Recovery	Qualifier	Acceptance Criteria	9	
Volatile Organic	s by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location	n: WALPOLE, MA			Field	Prep:	See Narrative
Client ID:	MW-9			Date	Received:	12/29/09
Lab ID:	L0918777-01			Date	Collected:	12/21/09 10:12
		SAMPLE R	ESULTS			
Project Numbe	r: 12700058			Re	port Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			La	b Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

L0918777

01/05/10

Lab Number: Report Date:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab ID:	L0918777-02	Date Collected:	12/21/09 11:05
Client ID:	RIZ-8	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 12:12		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date: 01/05/10

Lab ID: Client ID: Sample Location:	L0918777-02 RIZ-8 WALPOLE, MA			Date Collected: Date Received: Field Prep:		12/21/09 11:05 12/29/09 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by	GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	0.50	1	
1,4-Dichlorobenzene		ND		ug/l	0.50	1	
Styrene		ND		ug/l	0.50	1	
o-Xylene		ND		ug/l	0.50	1	
1,1-Dichloropropene		ND		ug/l	0.50	1	
2,2-Dichloropropane		ND		ug/l	0.50	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1	
1,2,3-Trichloropropane		ND		ug/l	0.50	1	
Bromochloromethane		ND		ug/l	0.50	1	
n-Butylbenzene		ND		ug/l	0.50	1	
Dichlorodifluoromethane		ND		ug/l	0.50	1	
Hexachlorobutadiene		ND		ug/l	0.50	1	
Isopropylbenzene		ND		ug/l	0.50	1	
p-Isopropyltoluene		ND		ug/l	0.50	1	
Naphthalene		ND		ug/l	0.50	1	
n-Propylbenzene		ND		ug/l	0.50	1	
sec-Butylbenzene		ND		ug/l	0.50	1	
tert-Butylbenzene		ND		ug/l	0.50	1	
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1	
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1	
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1	
Bromobenzene		ND		ug/l	0.50	1	
o-Chlorotoluene		ND		ug/l	0.50	1	
p-Chlorotoluene		ND		ug/l	0.50	1	
Dibromomethane		ND		ug/l	0.50	1	
1,2-Dibromoethane		ND		ug/l	0.50	1	
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1	
1,3-Dichloropropane		ND		ug/l	0.50	1	
Methyl tert butyl ether		ND		ug/l	0.50	1	

No Tentatively Identified Compounds	ND	ug/l	1

1,2-D	ichlorobenzene-d4	102		80-120		
Surro	ogate	% Recovery	Qualifier	Acceptance Criteria		_
Volatile Organics	s by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location	L0918777-02 RIZ-8 n: WALPOLE, MA			Date Date Field	Collected: Received: Prep:	12/21/09 11:05 12/29/09 See Narrative
		SAMPLE R	ESULTS			
Project Number	: 12700058			Rep	oort Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			Lab	Number:	L0918777
						01051013:50

93

80-120

4-Bromofluorobenzene

L0918777

01/05/10

Lab Number:

Report Date:

Project Name:	WALPOLE PK SOUTH

Project Number: 12700058

Lab ID:	L0918777-03	Date Collected:	12/28/09 08:25
Client ID:	GHC-6	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 12:49		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

01/05/10

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date:

Lab ID: Client ID: Sample Location:	L0918777-03 GHC-6 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/28/09 08:25 12/29/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

No Tentatively Identified Compounds	ND	ug/l	1

1,2-	-Dichlorobenzene-d4	103		80-120		
Sur	rrogate	% Recovery	Qualifier	Acceptance Criteria		
Volatile Organi	cs by GC/MS - Westboroug	h Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Locatio	on: WALPOLE, MA			Field	Prep:	See Narrative
Client ID:	GHC-6			Date	Received:	12/29/09
Lab ID:	L0918777-03			Date	Collected:	12/28/09 08:25
		SAMPLE R	ESULTS			
Project Numbe	er: 12700058			Rej	port Date:	01/05/10
Project Name:	WALPOLE PK SOUT	Н		Lat	o Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

L0918777

01/05/10

Lab Number:

Report Date:

Project Name:	WALPOLE PK SOUTH

Project Number: 12700058

Lab ID:	L0918777-04	Date Collected:	12/28/09 09:03
Client ID:	RIZ-3	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 13:26		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	lh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

01/05/10

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-04 RIZ-3 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/28/09 09:03 12/29/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

1,2-Di	chlorobenzene-d4	102		80-120	D	
Surro	gate	% Recovery	Qualifier	Acceptanc Criteria	e	_
Volatile Organics	by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location:	L0918777-04 RIZ-3 : WALPOLE, MA			Date Date Field	e Collected: e Received: d Prep:	12/28/09 09:03 12/29/09 See Narrative
		SAMPLE R	ESULTS			
Project Number:	12700058			Re	eport Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			La	b Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

L0918777

01/05/10

Lab Number: Report Date:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab ID:	L0918777-05	Date Collected:	12/28/09 10:00
Client ID:	RIZ-9	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 14:02		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	0.50	1		
1,1-Dichloroethane	ND		ug/l	0.50	1		
Chloroform	ND		ug/l	0.50	1		
Carbon tetrachloride	ND		ug/l	0.50	1		
1,2-Dichloropropane	ND		ug/l	0.50	1		
Dibromochloromethane	ND		ug/l	0.50	1		
1,1,2-Trichloroethane	ND		ug/l	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	1		
Chlorobenzene	ND		ug/l	0.50	1		
Trichlorofluoromethane	ND		ug/l	0.50	1		
1,2-Dichloroethane	ND		ug/l	0.50	1		
1,1,1-Trichloroethane	ND		ug/l	0.50	1		
Bromodichloromethane	ND		ug/l	0.50	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	1		
Bromoform	ND		ug/l	0.50	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1		
Benzene	ND		ug/l	0.50	1		
Toluene	ND		ug/l	0.50	1		
Ethylbenzene	ND		ug/l	0.50	1		
p/m-Xylene	ND		ug/l	0.50	1		
Chloromethane	ND		ug/l	0.50	1		
Bromomethane	ND		ug/l	0.50	1		
Vinyl chloride	ND		ug/l	0.50	1		
Chloroethane	ND		ug/l	0.50	1		
1,1-Dichloroethene	ND		ug/l	0.50	1		
trans-1,2-Dichloroethene	ND		ug/l	0.50	1		
cis-1,2-Dichloroethene	ND		ug/l	0.50	1		
Trichloroethene	ND		ug/l	0.50	1		
1,2-Dichlorobenzene	ND		ug/l	0.50	1		

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date: 01/05/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-05 RIZ-9 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/28/09 10:00 12/29/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

1,2-Dic	hlorobenzene-d4	107		80-120)	
Surrog	jate	% Recovery	Qualifier	Acceptance Criteria	9	_
Volatile Organics	by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Sample Location:	WALPOLE, MA			Field	Prep:	See Narrative
Client ID:	RIZ-9			Date	Received:	12/29/09
Lab ID:	L0918777-05			Date	Collected:	12/28/09 10:00
		SAMPLE R	ESULTS			
Project Number:	12700058			Re	port Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			La	b Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

L0918777

01/05/10

Lab Number: Report Date:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID:	L0918777-06	Date Collected:	12/28/09 10:43
Client ID:	RIZ-10	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 14:39		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date: 01/05/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-06 RIZ-10 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/28/09 10:43 12/29/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

1,2-Di	chlorobenzene-d4	104		80-120	D	
Surro	gate	% Recovery	Qualifier	Acceptanc Criteria	e	
Volatile Organics	by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location	L0918777-06 RIZ-10 : WALPOLE, MA			Date Date Field	e Collected: e Received: d Prep:	12/28/09 10:43 12/29/09 See Narrative
		SAMPLE R	ESULTS			
Project Number:	12700058			Re	eport Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			La	b Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

01051013:50 Lab Number: L0918777

01/05/10

Report Date:

Project Number: 12700058

SAMPLE RESULTS

Lab ID:	L0918777-07	Date Collected:	12/28/09 11:50
Client ID:	MW-3	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 15:16		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Report Date: 01/05/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-07 MW-3 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/28/09 11:50 12/29/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

1,2-Di	chlorobenzene-d4	101		80-120)	
Surro	gate	% Recovery	Qualifier	Acceptance Criteria	9	_
Volatile Organics	by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location:	L0918777-07 MW-3 : WALPOLE, MA			Date Date Field	e Collected: e Received: l Prep:	12/28/09 11:50 12/29/09 See Narrative
		SAMPLE R	ESULTS			
Project Number:	12700058			Re	port Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			La	b Number:	L0918777
						01051013:50

92

4-Bromofluorobenzene

80-120

L0918777

01/05/10

Lab Number:

Report Date:

Project Name:	WALPOLE PK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID:	L0918777-08	Date Collected:	12/21/09 00:00
Client ID:	TRIP BLANK	Date Received:	12/29/09
Sample Location:	WALPOLE, MA	Field Prep:	None
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	12/30/09 15:53		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH

12700058

Project Number:

01051013:50

01/05/10

Lab Number: L0918777

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0918777-08 TRIP BLANK WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	12/21/09 00:00 12/29/09 None
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1
	=		

1,2-Dio	chlorobenzene-d4	106		80-120		
Surrog	gate	% Recovery	Qualifier	Acceptance Criteria		_
Volatile Organics	by GC/MS - Westborough	Lab				
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Lab ID: Client ID: Sample Location:	L0918777-08 TRIP BLANK WALPOLE, MA			Date 0 Date I Field I	Collected: Received: Prep:	12/21/09 00:00 12/29/09 None
		SAMPLE R	ESULTS			
Project Number:	12700058			Rep	ort Date:	01/05/10
Project Name:	WALPOLE PK SOUTH			Lab	Number:	L0918777
						01051013:50

93

4-Bromofluorobenzene

80-120

Project Name: WALPOLE PK SOUTH

Project Number: 127

12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	12/30/09 07:18
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - Wes	stborough La	ab for sample(s)	: 01-08	Batch: WG3	95058-2
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

Project Name: WALPOLE PK SOUTH

Project Number: 127

12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	12/30/09 07:18
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS	- Westborough La	b for sample(s)	: 01-08	Batch: WG3	95058-2
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Name:	WALPOLE PK SOUTH	Lab Number:	L0918777
Project Number:	12700058	Report Date:	01/05/10
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	12/30/09 07:18
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - West	orough Lab	o for sample(s):	01-08	Batch:	WG395058-2

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/l

Surrogate	%Recovery	/ Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	102		80-120
4-Bromofluorobenzene	95		80-120

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG395058-1 Methylene chloride 96 70-130 --1,1-Dichloroethane 103 70-130 _ -Chloroform 108 70-130 --Carbon tetrachloride 115 70-130 --1,2-Dichloropropane 106 70-130 --Dibromochloromethane 70-130 111 --1,1,2-Trichloroethane 107 70-130 --Tetrachloroethene 111 70-130 --Chlorobenzene 70-130 106 --Trichlorofluoromethane 115 70-130 --118 70-130 1.2-Dichloroethane --1,1,1-Trichloroethane 116 70-130 -70-130 Bromodichloromethane 111 -trans-1,3-Dichloropropene 110 70-130 -cis-1,3-Dichloropropene 112 70-130 --Bromoform 119 70-130 --1,1,2,2-Tetrachloroethane 105 70-130 --Benzene 104 70-130 --Toluene 70-130 104 _ -Ethylbenzene 70-130 105 -p/m-Xylene 106 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG395058-1 Chloromethane 104 70-130 --Bromomethane 91 70-130 _ -Vinyl chloride 101 70-130 --102 70-130 Chloroethane --1,1-Dichloroethene 100 70-130 --70-130 trans-1.2-Dichloroethene 101 -cis-1,2-Dichloroethene 103 70-130 --Trichloroethene 110 70-130 --1.2-Dichlorobenzene 104 70-130 --1,3-Dichlorobenzene 107 70-130 --1.4-Dichlorobenzene 105 70-130 --Styrene 104 70-130 o-Xylene 104 70-130 --107 70-130 1,1-Dichloropropene --114 70-130 2,2-Dichloropropane --1.1.1.2-Tetrachloroethane 117 70-130 --1,2,3-Trichloropropane 115 70-130 --Bromochloromethane 106 70-130 --70-130 n-Butylbenzene 99 _ -Dichlorodifluoromethane 70-130 115 --Hexachlorobutadiene 110 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777 Report Date: 01/05/10

LCSD LCS %Recovery %Recovery Limits %Recovery Qual RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG395058-1 Isopropylbenzene 107 70-130 -p-Isopropyltoluene 109 70-130 _ -Naphthalene 72 70-130 -n-Propylbenzene 103 70-130 -sec-Butylbenzene 104 70-130 -tert-Butylbenzene 70-130 109 _ -70-130 1,2,3-Trichlorobenzene 89 --1,2,4-Trichlorobenzene 91 70-130 --1,2,4-Trimethylbenzene 110 70-130 --1,3,5-Trimethylbenzene 110 70-130 --Bromobenzene 109 70-130 -o-Chlorotoluene 111 70-130 -p-Chlorotoluene 107 70-130 --Dibromomethane 101 70-130 --1,2-Dibromoethane 111 70-130 --1,2-Dibromo-3-chloropropane 99 70-130 --1,3-Dichloropropane 103 70-130 --Methyl tert butyl ether 114 70-130 --

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058 Lab Number: L0918777 Report Date: 01/05/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-08 Batch:	WG395058-	·1			

Surrogate	LCS %Recovery	LCS LCSD covery Qual %Recovery		Qual	Acceptance Criteria
1,2-Dichlorobenzene-d4	100				80-120
4-Bromofluorobenzene	101				80-120

Project Name:	WALPOLE PK SOUTH	Batch Quality Control	Lab Number:	L0918777
Project Number:	12700058		Report Date:	01/05/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	6 - Westborough	h Lab Assoc	iated sample	e(s): 01-08 (QC Batch	ID: WG39	5058-3 QC	Sample: L0918740	-01	Client ID	: MS
Methylene chloride	ND	4	4.0	101		-	-	70-130	-		20
1,1-Dichloroethane	ND	4	4.4	110		-	-	70-130	-		20
Chloroform	ND	4	4.5	112		-	-	70-130	-		20
Carbon tetrachloride	ND	4	4.9	123		-	-	70-130	-		20
1,2-Dichloropropane	ND	4	4.4	110		-	-	70-130	-		20
Dibromochloromethane	ND	4	4.0	101		-	-	70-130	-		20
1,1,2-Trichloroethane	ND	4	4.2	104		-	-	70-130	-		20
Tetrachloroethene	ND	4	4.6	114		-	-	70-130	-		20
Chlorobenzene	ND	4	4.4	110		-	-	70-130	-		20
Trichlorofluoromethane	ND	4	5.0	124		-	-	70-130	-		20
1,2-Dichloroethane	ND	4	4.7	117		-	-	70-130	-		20
1,1,1-Trichloroethane	ND	4	5.2	130		-	-	70-130	-		20
Bromodichloromethane	ND	4	4.3	108		-	-	70-130	-		20
trans-1,3-Dichloropropene	ND	4	4.0	99		-	-	70-130	-		20
cis-1,3-Dichloropropene	ND	4	4.6	115		-	-	70-130	-		20
Bromoform	ND	4	4.0	101		-	-	70-130	-		20
1,1,2,2-Tetrachloroethane	ND	4	4.0	99		-	-	70-130	-		20
Benzene	ND	4	4.2	106		-	-	70-130	-		20
Toluene	ND	4	4.4	109		-	-	70-130	-		20
Ethylbenzene	ND	4	4.3	107		-	-	70-130	-		20
p/m-Xylene	ND	8	8.6	108		-	-	70-130	-		20

Project Name:	WALPOLE PK SOUTH	Batch Quality Control	Lab Number:	L0918777
Project Number:	12700058		Report Date:	01/05/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M Sample	S - Westborough	h Lab Assoc	iated sample	e(s): 01-08 (QC Batch	ID: WG39	5058-3 QC	Sample: L0918740	0-01	Client ID	MS
Chloromethane	ND	4	3.6	91		-	-	70-130	-		20
Bromomethane	ND	4	4.0	101		-	-	70-130	-		20
Vinyl chloride	ND	4	5.0	125		-	-	70-130	-		20
Chloroethane	ND	4	4.4	111		-	-	70-130	-		20
1,1-Dichloroethene	ND	4	4.5	114		-	-	70-130	-		20
trans-1,2-Dichloroethene	ND	4	4.2	106		-	-	70-130	-		20
cis-1,2-Dichloroethene	ND	4	4.2	105		-	-	70-130	-		20
Trichloroethene	ND	4	4.5	113		-	-	70-130	-		20
1,2-Dichlorobenzene	ND	4	4.0	99		-	-	70-130	-		20
1,3-Dichlorobenzene	ND	4	4.1	102		-	-	70-130	-		20
1,4-Dichlorobenzene	ND	4	4.0	100		-	-	70-130	-		20
Styrene	ND	4	3.9	97		-	-	70-130	-		20
o-Xylene	ND	4	4.1	104		-	-	70-130	-		20
1,1-Dichloropropene	ND	4	4.4	111		-	-	70-130	-		20
2,2-Dichloropropane	ND	4	4.8	120		-	-	70-130	-		20
1,1,1,2-Tetrachloroethane	ND	4	4.6	115		-	-	70-130	-		20
1,2,3-Trichloropropane	ND	4	4.1	102		-	-	70-130	-		20
Bromochloromethane	ND	4	4.2	104		-	-	70-130	-		20
n-Butylbenzene	ND	4	4.0	99		-	-	70-130	-		20
Dichlorodifluoromethane	ND	4	3.9	98		-	-	70-130	-		20
Hexachlorobutadiene	ND	4	4.3	108		-	-	70-130	-		20

Project Name:	WALPOLE PK SOUTH	Batch Quality Control	Lab Number:	L0918777
Project Number:	12700058		Report Date:	01/05/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	/ RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Sample	- Westborougł	n Lab Assoc	iated sample	e(s): 01-08 C	QC Batch	ID: WG39	5058-3 QC	Sample: L091874	40-01	Client ID	: MS
Isopropylbenzene	ND	4	3.8	96		-	-	70-130	-		20
p-Isopropyltoluene	ND	4	4.3	107		-	-	70-130	-		20
Naphthalene	ND	4	2.6	65	Q	-	-	70-130	-		20
n-Propylbenzene	ND	4	4.2	106		-	-	70-130	-		20
sec-Butylbenzene	ND	4	4.3	108		-	-	70-130	-		20
tert-Butylbenzene	ND	4	4.5	112		-	-	70-130	-		20
1,2,3-Trichlorobenzene	ND	4	3.3	82		-	-	70-130	-		20
1,2,4-Trichlorobenzene	ND	4	3.2	81		-	-	70-130	-		20
1,2,4-Trimethylbenzene	ND	4	4.4	110		-	-	70-130	-		20
1,3,5-Trimethylbenzene	ND	4	4.4	111		-	-	70-130	-		20
Bromobenzene	ND	4	4.3	108		-	-	70-130	-		20
o-Chlorotoluene	ND	4	4.4	110		-	-	70-130	-		20
p-Chlorotoluene	ND	4	4.2	105		-	-	70-130	-		20
Dibromomethane	ND	4	4.2	106		-	-	70-130	-		20
1,2-Dibromoethane	ND	4	4.4	109		-	-	70-130	-		20
1,2-Dibromo-3-chloropropane	ND	4	3.7	93		-	-	70-130	-		20
1,3-Dichloropropane	ND	4	4.1	104		-	-	70-130	-		20
Methyl tert butyl ether	ND	4	4.4	109		-	-	70-130	-		20

		Batch Quality Control		
Project Name:	WALPOLE PK SOUTH		Lab Number:	L0918777
Project Number:	12700058		Report Date:	01/05/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recover	y Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Sample	· Westborough	Lab Assoc	iated sample	e(s): 01-08 C	C Batch	ID: WG39	5058-3 Q	C Sampl	e: L091874(0-01	Client ID	: MS

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	98				80-120	
4-Bromofluorobenzene	102				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name:WALPOLE PK SOUTHProject Number:12700058

Lab Number: Report Date:

 ber:
 L0918777

 Date:
 01/05/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG395058-4	QC Sample	e: L09187	783-02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PK SOUTH Project Number: 12700058

Lab Number:

L0918777 01/05/10 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG395058-4	4 QC Sample	: L0918783	-02 Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PK SOUTH Project Number: 12700058

Lab Number: Report Date:

L0918777 01/05/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG395058-	4 QC Sample	: L0918783-02	Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:	WALPOLE PK SOUTH
Project Number:	12700058

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough La Sample	b Associated sample(s): 01-08	QC Batch ID: WG395058	3-4 QC Sam	ple: L09187	'83-02 Client ID: DUP
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	1.4	1.4	ug/l	0	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	102		101		80-120	
4-Bromofluorobenzene	93		94		80-120	

METALS

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

AI

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

Project Name:	WALPO	LE PK SOU	ITH			La	b Number:	LO	918777			
Project Number:	127000	58				Re	port Date:	01	/05/10			
			S	AMPLE I	RESULT	S						
Lab ID:	L091877	77-01				Da	te Collected:	12	2/21/09 10:1	2		
Client ID:	MW-9					Da	Date Received:			12/29/09		
Sample Location:	WALPOLE, MA					Fie	ld Prep:	Se	See Narrative			
Matrix:	Water											
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
MCP Dissolved Met	als - Wes	tborough La	ab									
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 18:56	EPA 3005A	64,6020A	TD		
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI		

1

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 17:57 EPA 3005A

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

12/30/09 13:20 12/31/09 11:09

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

12/30/09 09:40 12/30/09 18:56

01/04/10 11:15 01/04/10 17:57

01/04/10 11:15 01/04/10 17:57

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

0.056

ND

0.052

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

Project Name:	WALPC	LE PK SOL	ITH			La	b Number:	L0	918777		
Project Number:	127000	58				Re	port Date:	01	/05/10		
			SA	AMPLE I	RESULT	S					
Lab ID:	L09187	77-02				Da	te Collected:	12/21/09 11:05			
Client ID:	RIZ-8					Da	te Received:	12	12/29/09		
Sample Location:	WALPO	WALPOLE, MA				Fie	ld Prep:	See Narrative		•	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys	
MCP Dissolved Me	etals - Wes	stborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:20	EPA 3005A	64,6020A	TD	
Arsenic, Dissolved	0.005		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	AI	
Barium, Dissolved	0.031		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	AI	

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

12/30/09 13:20 12/31/09 11:11

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

12/30/09 09:40 12/30/09 19:20

01/04/10 11:15 01/04/10 18:00

01/04/10 11:15 01/04/10 18:00

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

Project Name:	WALPC	DLE PK SOU	TΗ			Lal	b Number:	L0	918777		
Project Number:	127000	58				Re	port Date:	01	/05/10		
			SA		RESULT	S					
Lab ID:	L09187	77-03				Da	te Collected:	12	12/28/09 08:25		
Client ID:	GHC-6					Da	te Received:	12	12/29/09		
Sample Location:	WALPO	WALPOLE, MA					ld Prep:	Se	See Narrative		
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
MCP Dissolved Met	als - Wes	stborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:26	EPA 3005A	64,6020A	TD	
Arsenic, Dissolved	ND		ma/l	0.005	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI	
			iiig/i	0.000	•	01/01/10/11:10		=			

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

12/30/09 13:20 12/31/09 11:13

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

12/30/09 09:40 12/30/09 19:26

01/04/10 11:15 01/04/10 18:04

01/04/10 11:15 01/04/10 18:04

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Project Name:	WALPC	WALPOLE PK SOUTH					b Number:	L0	L0918777		
Project Number:	127000	58				Re	port Date:	01	/05/10		
			S		RESUL	rs					
Lab ID:	L09187	77-04				Da	te Collected:	12	/28/09 09:0)3	
Client ID:	RIZ-3				Da	te Received:	12	12/29/09			
Sample Location:	WALPC	WALPOLE, MA					eld Prep:	See Narrative			
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys	
MCP Dissolved Me	etals - We	stborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:32	EPA 3005A	64,6020A	TD	
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	AI	
Barium, Dissolved	0.177		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	AI	

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

12/30/09 13:20 12/31/09 11:15

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

01/04/10 11:15 01/04/10 18:07

12/30/09 09:40 12/30/09 19:32 EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

Project Name:	WALPC	WALPOLE PK SOUTH					b Number:	L0	L0918777			
Project Number:	127000	58			Re	port Date:	01	01/05/10				
			S		RESULT	rs						
Lab ID:	L09187 ⁻	77-05				Da	te Collected:	12	12/28/09 10:00			
Client ID:	RIZ-9	RIZ-9					te Received:	12	12/29/09			
Sample Location:	WALPC	WALPOLE, MA				Fie	Field Prep:			See Narrative		
Matrix:	Water											
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
MCP Dissolved Me	etals - Wes	stborough La	ab									
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:38	EPA 3005A	64,6020A	TD		
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	AI		
Barium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	AI		

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:10 EPA 3005A

12/30/09 13:20 12/31/09 11:16

01/04/10 11:15 01/04/10 18:10

12/30/09 09:40 12/30/09 19:38

01/04/10 11:15 01/04/10 18:10

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Project Name:	WALPC	WALPOLE PK SOUTH					b Number:	L0	L0918777		
Project Number:	127000	58				Re	port Date:	01	/05/10		
			S		RESULT	ſS					
Lab ID:	L09187	77-06				Da	te Collected:	12	12/28/09 10:43		
Client ID:	RIZ-10	RIZ-10					te Received:	12	12/29/09		
Sample Location:	WALPC	WALPOLE, MA				Fie	ld Prep:	Se	See Narrative		
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
MCP Dissolved Me	tals - We	stborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:44	EPA 3005A	64,6020A	TD	
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI	
Barium, Dissolved	0.099		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI	

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14

12/30/09 13:20 12/31/09 11:55

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14

12/30/09 09:40 12/30/09 19:44

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14

01/04/10 11:15 01/04/10 18:14 EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

AI

AI

AI

AI

ΕZ

AI

AI

AI

TD

AI

AI

Project Name:	WALPOLE PK SOUTH					La	b Number:	LO	L0918777		
Project Number:	127000	58				Re	port Date:	01,	/05/10		
			S		RESULT	S					
Lab ID:	L09187	77-07				Da	te Collected:	12	12/28/09 11:50		
Client ID:	MW-3	MW-3					te Received:	12	12/29/09		
Sample Location:	WALPO	WALPOLE, MA				Fie	ld Prep:	Se	See Narrative		
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
MCP Dissolved Me	tals - Wes	stborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:50	EPA 3005A	64,6020A	TD	
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	AI	
Barium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	AI	

1

1

1

1

1

1

1

1

4

1

1

01/04/10 11:15 01/04/10 18:17 EPA 3005A

01/04/10 11:15 01/04/10 18:17 EPA 3005A

01/04/10 11:15 01/04/10 18:17 EPA 3005A

01/04/10 11:15 01/04/10 18:17

01/04/10 11:15 01/04/10 18:17

12/30/09 13:20 12/31/09 11:56

01/04/10 11:15 01/04/10 18:17

01/04/10 11:15 01/04/10 18:17

12/30/09 09:40 12/30/09 19:50

01/04/10 11:15 01/04/10 18:17

01/04/10 11:15 01/04/10 18:17

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

ND

Project Name:WALPOLE PK SOUTHProject Number:12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab fo	r sample	(s): 01-0	07 Batch:	WG395110-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD
Thallium, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - V	Vestborough Lab fo	r sample(s): 01-0	7 Batch:	WG395135-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	12/30/09 13:20	12/31/09 10:53	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab for	or sample	e(s): 01-	07 Batch:	WG395350-1			
Arsenic, Dissolved	ND	mg/l	0.005	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Nickel, Dissolved	ND	mg/l	0.025	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Vanadium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	01/04/10 11:15	01/04/10 17:15	60,6010B	AI

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: Report Date: L0918777 01/05/10

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

 Lab Number:
 L0918777

 Report Date:
 01/05/10

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-0)7 Batch:	WG395110-2	WG395110-3				
Antimony, Dissolved	97		94		80-120	3		20	
Thallium, Dissolved	97		96		80-120	1		20	
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-0	7 Batch:	WG395135-2	WG395135-3				
Mercury, Dissolved	98		106		80-120	8		20	
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-0)7 Batch:	WG395350-2	WG395350-3				
Arsenic, Dissolved	110		109		80-120	1		20	
Barium, Dissolved	100		98		80-120	2		20	
Beryllium, Dissolved	105		101		80-120	4		20	
Cadmium, Dissolved	108		108		80-120	0		20	
Chromium, Dissolved	100		105		80-120	5		20	
Lead, Dissolved	106		106		80-120	0		20	
Nickel, Dissolved	101		101		80-120	0		20	
Selenium, Dissolved	110		112		80-120	2		20	
Silver, Dissolved	103		105		80-120	2		20	
Vanadium, Dissolved	102		104		80-120	2		20	
Zinc, Dissolved	109		108		80-120	1		20	

Project Name:WALPOLE PK SOUTHProject Number:12700058

Lab Number: L0918777 Report Date: 01/05/10

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis
L0918777-01A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-01C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-02A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-02B	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-02C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-SE- 6010S(180),MCP-NI- 6010S(180),MCP-NI- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-78- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-03A	Vial Ascorbic Acid/HCI preserved	A	N/A	5	Y	Absent	524.2(14)
L0918777-03B	Vial Ascorbic Acid/HCl preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-03C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-NI- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-04A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-04B	Vial Ascorbic Acid/HCl preserved	А	N/A	5	Y	Absent	524.2(14)

Project Name:WALPOLE PK SOUTHProject Number:12700058

Lab Number: L0918777 Report Date: 01/05/10

Container Info			Temp				
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis
L0918777-04C	Plastic 500ml HNO3 preserved	A	<2	5	Υ	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-05A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-05B	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-05C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-06A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-06B	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-06C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-07A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-07B	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)
L0918777-07C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0918777-08A	Vial Ascorbic Acid/HCI preserved	А	N/A	5	Y	Absent	524.2(14)

Project Number: 12700058

Lab Number: L0918777 **Report Date:**

01/05/10

GLOSSARY

Acronyms

- · Environmental Protection Agency. EPA
- LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS · Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND · Not detected at the reported detection limit for the sample.
- NI · Not Ignitable.
- RDL · Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable D concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of Н sample collection.
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q - The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 Lab Number:
 L0918777

 Report Date:
 01/05/10

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised December 1, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-TP (Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. <u>Organic Parameters</u>: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N,

SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B,

5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-06-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters:SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010,9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A.Organic Parameters:SW-846 3540C, 3545,3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500CI-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Non-Potable Water* (<u>Organic Parameters</u>: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. <u>Organic Parameters</u>: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnaphthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

IS YOUR PROJECT MA MCP or CT RCP?	6 K12-10 8 Trinhlink	4 R1Z-3	2 R1Z-8	18777.1 MW-9	Other Project Specific Requiremen Dレノ ビ 化し ALPHA Lab ID (Lab Use Only) Sample	Phone: 568 903 - 2039 Fax: 578 705 - 2001 Email: 10.11. CO.11.11.00 These samples have been previously analyzed	Address: Dave Level Mizzo Francing han, MA	CHAI
Relinquished By:	1043 12/16/3	0503	5011 A 1102	12/21/9 1012	ts/Comments/Detection Limits:	Turn-Around Time	Project # 1270058 Project Manager: Ray Shar	N OF CUSTODY PAC Project Information Project Name: Location: La pole Me
Container Type V P Preservative HLI N Date Time HJ TION I LON LANS Volume	Slaw Aloha X			K XX M	Sample Sampler's ANAL Matrix Initials	nnfirmed ^H pre-approved)	on / In- Carver / MA MCP PRE	$ \begin{array}{c c} \mathbf{c} & \mathbf{L} & \mathbf{Date Recrir in} \\ \hline \mathbf{c} & \mathbf{L} & \mathbf{Report Info} \\ \hline \mathbf{c} & \mathbf{S}_{\mathbf{f}} \cdot \mathbf{L}_{\mathbf{f}} & \mathbf{C} \\ \hline \mathbf{c} & \mathbf{FAX} \\ \hline \mathbf{MA} & \mathbf{ADEx} \\ \hline \mathbf{Regulatory F} \end{array} $
Ideived By: J. J. J. Dater						o Are MCP Analytical Methods Re o Are CT RCP (Reasonable Confi	gram Criteria CAVC SUMPTIVE CERTAINTY - CT RE	Lab: () () () () () () () () () (
Please print clearly, legibly and pietely. Samples can not be log in and turnaround time clock will start until any ambiguities are re All samples submitted are subje tubbas Terms and Conditions See reverse side			Using O. YSum Pitter	Metal hell - Citter	Filtration Done Not needed Lab to do Preservation Lab to do (Please specify below) Sample Specific Comments	iquired? dence Protocols) Required?	ァレー】 ASONABLE CONFIDENCE PROTOC	ALPHA Job #: しの名しのフィ Billing Information Same as Client info PO #:

ANALYTICAL REPORT

Lab Number:	L1004931
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN: Phone:	lan Cannan (508) 903-2039
Project Name: Project Number: Report Date:	WALPOLE PARK SOUTH 12700058 04/15/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1004931-01	GHC-5	WALPOLE, MA	04/07/10 12:32
L1004931-02	GHC-5-A	WALPOLE, MA	04/07/10 12:56
L1004931-03	GHC-5-B	WALPOLE, MA	04/07/10 12:57
L1004931-04	GHC-5-C	WALPOLE, MA	04/07/10 12:58
L1004931-05	RIZ-2	WALPOLE, MA	04/07/10 13:39
L1004931-06	RIZ-2-A	WALPOLE, MA	04/07/10 13:55
L1004931-07	RIZ-2-B	WALPOLE, MA	04/07/10 13:56
L1004931-08	RIZ-2-C	WALPOLE, MA	04/07/10 13:57
L1004931-09	RIZ-10	WALPOLE, MA	04/07/10 14:19
L1004931-10	RIZ-10-A	WALPOLE, MA	04/07/10 14:32
L1004931-11	RIZ-10-B	WALPOLE, MA	04/07/10 14:33
L1004931-12	RIZ-10-C	WALPOLE, MA	04/07/10 14:34

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status								
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES							
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES							
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES							
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A							
A res	A response to questions E and F is required for "Presumptive Certainty" status								
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES							
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700058
 Lab Number:
 L1004931

 Report Date:
 04/15/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

The date collected for L1004931-01 through -04 was obtained from the sample labels.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Case Narrative (continued)

Non-MCP Related Narratives

Phenolics, Total

L1004931-01 and -09 have elevated detection limits due to the dilutions required by the sample matrices.

Coliform, Fecal (MF)

L1004931-02, -03, -04, -10, -11 and -12 have elevated detection limits due to the dilutions required by the sample matrices.

L1004931-06, -07 and -08 have elevated detection limits due to the dilutions required by the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

tichelle M. Unonia

Title: Technical Director/Representative

Date: 04/15/10

ORGANICS

VOLATILES

Project Name:	WALPOLE PARK SOUTH		Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1004931-01 GHC-5 WALPOLE, MA Water 16,524.2 04/09/10 17:33 TT		Date Collected: Date Received: Field Prep:	04/07/10 12:32 04/07/10 See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

Project Number: 12700058

04151012:21 Lab Number: L1004931

Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1004931-01 GHC-5 WALPOLE, MA		Date Collected: Date Received: Field Prep:		04/07/10 12:32 04/07/10 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	89		80-120	

Project Name:	WALPOLE PARK SOUTH		Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10
	S	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1004931-05 RIZ-2 WALPOLE, MA Water 16,524.2 04/09/10 18:05 TT		Date Collected: Date Received: Field Prep:	04/07/10 13:39 04/07/10 See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1.2-Dichlorobenzene	ND		ua/l	0.50	1

Project Number: 12700058

04151012:21 Lab Number: L1004931

Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1004931-05 RIZ-2 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	04/07/10 13:39 04/07/10 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name:	WALPOLE PARK SOUTH		Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1004931-09 RIZ-10 WALPOLE, MA Water 16,524.2 04/09/10 18:38 TT		Date Collected: Date Received: Field Prep:	04/07/10 14:19 04/07/10 See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Number: 12700058

04151012:21 Lab Number: L1004931

Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1004931-09 RIZ-10 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	04/07/10 14:19 04/07/10 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	89		80-120	

Project Number: 12700058

00050

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	04/09/10 13:54
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS -	Westborough La	b for sample(s):	: 01,05,09	Batch:	WG407461-2
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

Project Number: 12700058

00050

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	04/09/10 13:54
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS -	Westborough Lal	b for sample(s)	: 01,05,09	Batch:	WG407461-2
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L1004931
Project Number:	12700058	Report Date:	04/15/10
	Method Blank Analysis	5	

Batch Quality Control

Analytical Method:16,524.2Analytical Date:04/09/10 13:54Analyst:TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - Westh	orough Lab	for sample(s):	01,05,09	Batch:	WG407461-2

Tentatively Identified Compounds
No Tentatively Identified Compounds Ug/I

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	93		80-120	

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931 Report Date: 04/15/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 Batch: WG407461-1 Methylene chloride 97 70-130 --1,1-Dichloroethane 101 70-130 _ -Chloroform 104 70-130 --Carbon tetrachloride 70-130 98 --1,2-Dichloropropane 102 70-130 --Dibromochloromethane 70-130 113 --1,1,2-Trichloroethane 120 70-130 --Tetrachloroethene 119 70-130 --Chlorobenzene 94 70-130 --Trichlorofluoromethane 97 70-130 --102 70-130 1.2-Dichloroethane --1,1,1-Trichloroethane 102 70-130 -70-130 Bromodichloromethane 98 -trans-1,3-Dichloropropene 115 70-130 -cis-1,3-Dichloropropene 70-130 111 --Bromoform 88 70-130 --1,1,2,2-Tetrachloroethane 95 70-130 --Benzene 106 70-130 --Toluene 70-130 125 _ -Ethylbenzene 70-130 92 -p/m-Xylene 94 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931 Report Date: 04/15/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 Batch: WG407461-1 Chloromethane 96 70-130 --Bromomethane 93 70-130 _ -Vinyl chloride 106 70-130 --70-130 Chloroethane 88 --1,1-Dichloroethene 96 70-130 --70-130 trans-1.2-Dichloroethene 97 -cis-1,2-Dichloroethene 107 70-130 --Trichloroethene 101 70-130 --1.2-Dichlorobenzene 70-130 105 --1,3-Dichlorobenzene 104 70-130 --1.4-Dichlorobenzene 104 70-130 --Styrene 94 70-130 o-Xylene 94 70-130 --103 70-130 1,1-Dichloropropene --102 70-130 2,2-Dichloropropane --1.1.1.2-Tetrachloroethane 88 70-130 --1,2,3-Trichloropropane 84 70-130 --Bromochloromethane 109 70-130 --70-130 n-Butylbenzene 104 _ -Dichlorodifluoromethane 70-130 90 --Hexachlorobutadiene 103 70-130 --

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number: L1004931 Report Date: 04/15/10

Parameter	LCS %Recovery	Qual	LCSI %Recov) very	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01,05,09	Batch:	WG40	7461-1			
Isopropylbenzene	92		-			70-130	-		
p-lsopropyltoluene	91		-			70-130	-		
Naphthalene	93		-			70-130	-		
n-Propylbenzene	91		-			70-130	-		
sec-Butylbenzene	92		-			70-130	-		
tert-Butylbenzene	92		-			70-130	-		
1,2,3-Trichlorobenzene	102		-			70-130	-		
1,2,4-Trichlorobenzene	101		-			70-130	-		
1,2,4-Trimethylbenzene	94		-			70-130	-		
1,3,5-Trimethylbenzene	92		-			70-130	-		
Bromobenzene	92		-			70-130	-		
o-Chlorotoluene	91		-			70-130	-		
p-Chlorotoluene	93		-			70-130	-		
Dibromomethane	105		-			70-130	-		
1,2-Dibromoethane	114		-			70-130	-		
1,2-Dibromo-3-chloropropane	99		-			70-130	-		
1,3-Dichloropropane	128		-			70-130	-		
Methyl tert butyl ether	95		-			70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number: L1004931 Report Date: 04/15/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01,05,09 Bate	h: WG4	07461-1			

Surrogate	LCS %Recovery	Qual	LCSD Qual %Recovery		Acceptance Criteria
1,2-Dichlorobenzene-d4	98				80-120
4-Bromofluorobenzene	89				80-120

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	S - Westborough	n Lab Assoc	iated sample	e(s): 01,05,09	QC Bat	tch ID: WG	6407461-5	QC Sam	ple: L1004	819-01	Clien	t ID: MS
Methylene chloride	ND	4	3.9	97		-	-		70-130	-		20
1,1-Dichloroethane	ND	4	4.4	111		-	-		70-130	-		20
Chloroform	ND	4	4.7	117		-	-		70-130	-		20
Carbon tetrachloride	ND	4	4.8	120		-	-		70-130	-		20
1,2-Dichloropropane	ND	4	4.6	114		-	-		70-130	-		20
Dibromochloromethane	ND	4	4.9	123		-	-		70-130	-		20
1,1,2-Trichloroethane	ND	4	5.4	136	Q	-	-		70-130	-		20
Tetrachloroethene	ND	4	5.4	136	Q	-	-		70-130	-		20
Chlorobenzene	ND	4	4.6	115		-	-		70-130	-		20
Trichlorofluoromethane	ND	4	4.6	115		-	-		70-130	-		20
1,2-Dichloroethane	ND	4	4.6	115		-	-		70-130	-		20
1,1,1-Trichloroethane	ND	4	4.9	123		-	-		70-130	-		20
Bromodichloromethane	ND	4	4.4	109		-	-		70-130	-		20
trans-1,3-Dichloropropene	ND	4	4.4	111		-	-		70-130	-		20
cis-1,3-Dichloropropene	ND	4	5.0	124		-	-		70-130	-		20
Bromoform	ND	4	4.0	100		-	-		70-130	-		20
1,1,2,2-Tetrachloroethane	ND	4	4.6	114		-	-		70-130	-		20
Benzene	ND	4	4.4	111		-	-		70-130	-		20
Toluene	ND	4	5.3	133	Q	-	-		70-130	-		20
Ethylbenzene	ND	4	4.4	111		-	-		70-130	-		20
p/m-Xylene	ND	8	8.9	111		-	-		70-130	-		20

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M Sample	S - Westborougł	n Lab Assoc	iated sample	e(s): 01,05,09	QC Bat	tch ID: WG	6407461-5	QC Sam	ple: L1004	819-01	Clien	t ID: MS
Chloromethane	ND	4	5.2	131	Q	-	-		70-130	-		20
Bromomethane	ND	4	4.0	101		-	-		70-130	-		20
Vinyl chloride	ND	4	6.9	173	Q	-	-		70-130	-		20
Chloroethane	ND	4	4.3	107		-	-		70-130	-		20
1,1-Dichloroethene	ND	4	4.1	103		-	-		70-130	-		20
trans-1,2-Dichloroethene	ND	4	4.2	105		-	-		70-130	-		20
cis-1,2-Dichloroethene	ND	4	4.7	118		-	-		70-130	-		20
Trichloroethene	ND	4	4.4	110		-	-		70-130	-		20
1,2-Dichlorobenzene	ND	4	4.3	108		-	-		70-130	-		20
1,3-Dichlorobenzene	ND	4	4.2	106		-	-		70-130	-		20
1,4-Dichlorobenzene	ND	4	4.1	103		-	-		70-130	-		20
Styrene	ND	4	4.2	105		-	-		70-130	-		20
o-Xylene	ND	4	4.4	111		-	-		70-130	-		20
1,1-Dichloropropene	ND	4	4.7	118		-	-		70-130	-		20
2,2-Dichloropropane	ND	4	4.7	119		-	-		70-130	-		20
1,1,1,2-Tetrachloroethane	ND	4	4.0	101		-	-		70-130	-		20
1,2,3-Trichloropropane	ND	4	4.2	106		-	-		70-130	-		20
Bromochloromethane	ND	4	4.6	115		-	-		70-130	-		20
n-Butylbenzene	ND	4	4.5	113		-	-		70-130	-		20
Dichlorodifluoromethane	ND	4	5.6	140	Q	-	-		70-130	-		20
Hexachlorobutadiene	ND	4	3.9	99		-	-		70-130	-		20

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Rec Qual Li	overy mits R	PD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	S - Westborough	n Lab Assoc	ciated sample	e(s): 01,05,09	QC Bate	ch ID: WG	6407461-5	QC Sample:	L100481	9-01	Client	ID: MS
Isopropylbenzene	ND	4	3.9	97		-	-	70	-130	-		20
p-Isopropyltoluene	ND	4	4.2	104		-	-	70	-130	-		20
Naphthalene	ND	4	3.8	95		-	-	70	-130	-		20
n-Propylbenzene	ND	4	4.5	112		-	-	70	-130	-		20
sec-Butylbenzene	ND	4	4.4	110		-	-	70	-130	-		20
tert-Butylbenzene	ND	4	4.2	106		-	-	70	-130	-		20
1,2,3-Trichlorobenzene	ND	4	3.9	98		-	-	70	-130	-		20
1,2,4-Trichlorobenzene	ND	4	3.6	91		-	-	70	-130	-		20
1,2,4-Trimethylbenzene	ND	4	4.4	110		-	-	70	-130	-		20
1,3,5-Trimethylbenzene	ND	4	4.3	108		-	-	70	-130	-		20
Bromobenzene	ND	4	4.3	107		-	-	70	-130	-		20
o-Chlorotoluene	ND	4	4.3	107		-	-	70	-130	-		20
p-Chlorotoluene	ND	4	4.2	106		-	-	70	-130	-		20
Dibromomethane	ND	4	4.3	109		-	-	70	-130	-		20
1,2-Dibromoethane	ND	4	4.2	105		-	-	70	-130	-		20
1,2-Dibromo-3-chloropropane	ND	4	4.0	101		-	-	70	-130	-		20
1,3-Dichloropropane	ND	4	5.3	134	Q	-	-	70	-130	-		20
Methyl tert butyl ether	ND	4	4.1	103		-	-	70	-130	-		20

Drainat Nama		Batch Quality Control	Lob Number	1 4 00 4004
Project Name:	WALPOLE PARK SOUTH		Lap Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Sample	Westborough	n Lab Assoc	iated sampl	e(s): 01,05,09	QC Bate	ch ID: WG	6407461-5	QC Sam	nple: L1004	819-01	Clien	t ID: MS

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifi	er % Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	99		80-120	
4-Bromofluorobenzene	100		80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931 04/15/10 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits	
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01,05,09	QC Batch ID: WG4	07461-6 QC	Sample: L100	04819-02 Client ID: DUP	
Methylene chloride	ND	ND	ug/l	NC	20	
1,1-Dichloroethane	ND	ND	ug/l	NC	20	
Chloroform	ND	ND	ug/l	NC	20	
Carbon tetrachloride	ND	ND	ug/l	NC	20	
1,2-Dichloropropane	ND	ND	ug/l	NC	20	
Dibromochloromethane	ND	ND	ug/l	NC	20	
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20	
Tetrachloroethene	ND	ND	ug/l	NC	20	
Chlorobenzene	ND	ND	ug/l	NC	20	
Trichlorofluoromethane	ND	ND	ug/l	NC	20	
1,2-Dichloroethane	ND	ND	ug/l	NC	20	
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20	
Bromodichloromethane	ND	ND	ug/l	NC	20	
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20	
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20	
Bromoform	ND	ND	ug/l	NC	20	
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20	
Benzene	ND	ND	ug/l	NC	20	
Toluene	ND	ND	ug/l	NC	20	

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931 04/15/10 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01,05,09	QC Batch ID: WG4	07461-6 QC	Sample: L10048	19-02 Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Lab Duplicate Analysis

Project Name: WALPOLE PARK SOUTH

12700058

Project Number:

Batch Quality Control

Lab Number: L1004931 Report Date: 04/15/10

Native Sample Duplicate Sample Units RPD **RPD Limits** Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407461-6 QC Sample: L1004819-02 Client ID: DUP Sample Bromochloromethane ND ND ug/l NC 20 ND ug/l NC 20 n-Butylbenzene ND NC 20 Dichlorodifluoromethane ND ND ug/l Hexachlorobutadiene ND ND NC 20 ug/l Isopropylbenzene ND ND NC 20 ug/l p-Isopropyltoluene ND ND NC 20 ug/l Naphthalene ND ND NC 20 ug/l n-Propylbenzene ND ND NC 20 ug/l sec-Butylbenzene ND ND NC 20 ug/l tert-Butylbenzene ND ND NC 20 ug/l 1.2.3-Trichlorobenzene ND ND ug/l NC 20 ND ND ug/l NC 20 1.2.4-Trichlorobenzene NC ND ND 20 1,2,4-Trimethylbenzene ug/l ND ND NC 20 1,3,5-Trimethylbenzene ug/l Bromobenzene ND ND NC 20 ug/l 20 NC o-Chlorotoluene ND ND ug/l NC 20 p-Chlorotoluene ND ND ug/l Dibromomethane ND ND NC 20 ug/l 20 ND ND ug/l NC 1,2-Dibromoethane

		Lab Duplicate Analysis
Project Name:	WALPOLE PARK SOUTH	Batch Quality Control
Project Number:	12700058	

Lab Number: L1004931 Report Date: 04/15/10

Parameter Native Sample **Duplicate Sample** Units RPD **RPD** Limits Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407461-6 QC Sample: L1004819-02 Client ID: DUP Sample 1,2-Dibromo-3-chloropropane ND ND ug/l NC 20 1,3-Dichloropropane ND ND ug/l NC 20 Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	103		104		80-120	
4-Bromofluorobenzene	92		93		80-120	

SEMIVOLATILES

L1004931

04/15/10

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab ID:	L1004931-01	Date Collected:	04/07/10 12:32
Client ID:	GHC-5	Date Received:	04/07/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water	Extraction Method:	EPA 625
Analytical Method:	5,625	Extraction Date:	04/13/10 14:03
Analytical Date:	04/15/10 05:53		
Analyst:	PS		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extractables by GC/MS -	Westborough Lab				
Acenaphthene	ND		ug/l	5.0	1
Benzidine	ND		ug/l	50	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1
Hexachlorobenzene	ND		ug/l	5.0	1
Bis(2-chloroethyl)ether	ND		ug/l	5.0	1
2-Chloronaphthalene	ND		ug/l	6.0	1
3,3'-Dichlorobenzidine	ND		ug/l	50	1
2,4-Dinitrotoluene	ND		ug/l	6.0	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1
Azobenzene	ND		ug/l	5.0	1
Fluoranthene	ND		ug/l	5.0	1
4-Chlorophenyl phenyl ether	ND		ug/l	5.0	1
4-Bromophenyl phenyl ether	ND		ug/l	5.0	1
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	1
Hexachlorobutadiene	ND		ug/l	10	1
Hexachlorocyclopentadiene	ND		ug/l	30	1
Hexachloroethane	ND		ug/l	5.0	1
Isophorone	ND		ug/l	5.0	1
Naphthalene	ND		ug/l	5.0	1
Nitrobenzene	ND		ug/l	5.0	1
NDPA/DPA	ND		ug/l	15	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0	1
Butyl benzyl phthalate	ND		ug/l	5.0	1
Di-n-butylphthalate	ND		ug/l	5.0	1
Di-n-octylphthalate	ND		ug/l	5.0	1
Diethyl phthalate	ND		ug/l	5.0	1
Dimethyl phthalate	ND		ug/l	5.0	1
Benzo(a)anthracene	ND		ug/l	5.0	1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

04151012:21 Lab Number: L1004931 Report Date: 04/15/10

Lab ID: Client ID: Sample Location:	L1004931-01 GHC-5 WALPOLE, MA			Dat Dat Fiel	e Collected: e Received: d Prep:	04/07/10 12:32 04/07/10 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
Base/Neutral Extractab	oles by GC/MS - Westb	orough Lab					
Benzo(a)pyrene		ND		ug/l	5.0	1	
Benzo(b)fluoranthene		ND		ug/l	5.0	1	
Benzo(k)fluoranthene		ND		ug/l	5.0	1	
Chrysene		ND		ug/l	5.0	1	
Acenaphthylene		ND		ug/l	5.0	1	
Anthracene		ND		ug/l	5.0	1	
Benzo(ghi)perylene		ND		ug/l	5.0	1	
Fluorene		ND		ug/l	5.0	1	
Phenanthrene		ND		ug/l	5.0	1	
Dibenzo(a,h)anthracene		ND		ug/l	5.0	1	
Indeno(1,2,3-cd)pyrene		ND		ug/l	7.0	1	
Pyrene		ND		ug/l	5.0	1	
Aniline		ND		ug/l	20	1	
4-Chloroaniline		ND		ug/l	5.0	1	
1-Methylnaphthalene		ND		ug/l	5.0	1	
2-Nitroaniline		ND		ug/l	5.0	1	
3-Nitroaniline		ND		ug/l	5.0	1	
4-Nitroaniline		ND		ug/l	7.0	1	
Dibenzofuran		ND		ug/l	5.0	1	
2-Methylnaphthalene		ND		ug/l	5.0	1	
n-Nitrosodimethylamine		ND		ug/l	50	1	

Surrogata		Qualifier	Acceptance Criteria	
Surrogate	% Recovery	Quaimer		
Nitrobenzene-d5	48		23-120	
2-Fluorobiphenyl	49		15-120	
4-Terphenyl-d14	78		33-120	

L1004931

04/15/10

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab ID:	L1004931-05	Date Collected:	04/07/10 13:39
Client ID:	RIZ-2	Date Received:	04/07/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water	Extraction Method:	EPA 625
Analytical Method:	5,625	Extraction Date:	04/13/10 14:03
Analytical Date:	04/15/10 06:18		
Analyst:	PS		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extractables by GC/MS - V	Vestborough Lab				
Acenaphthene	ND		ug/l	5.0	1
Benzidine	ND		ug/l	50	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1
Hexachlorobenzene	ND		ug/l	5.0	1
Bis(2-chloroethyl)ether	ND		ug/l	5.0	1
2-Chloronaphthalene	ND		ug/l	6.0	1
3,3'-Dichlorobenzidine	ND		ug/l	50	1
2,4-Dinitrotoluene	ND		ug/l	6.0	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1
Azobenzene	ND		ug/l	5.0	1
Fluoranthene	ND		ug/l	5.0	1
4-Chlorophenyl phenyl ether	ND		ug/l	5.0	1
4-Bromophenyl phenyl ether	ND		ug/l	5.0	1
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	1
Hexachlorobutadiene	ND		ug/l	10	1
Hexachlorocyclopentadiene	ND		ug/l	30	1
Hexachloroethane	ND		ug/l	5.0	1
Isophorone	ND		ug/l	5.0	1
Naphthalene	ND		ug/l	5.0	1
Nitrobenzene	ND		ug/l	5.0	1
NDPA/DPA	ND		ug/l	15	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0	1
Butyl benzyl phthalate	ND		ug/l	5.0	1
Di-n-butylphthalate	ND		ug/l	5.0	1
Di-n-octylphthalate	ND		ug/l	5.0	1
Diethyl phthalate	ND		ug/l	5.0	1
Dimethyl phthalate	ND		ug/l	5.0	1
Benzo(a)anthracene	ND		ua/l	5.0	1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

04151012:21 Lab Number: L1004931 Report Date:

04/15/10

Lab ID: Client ID: Sample Location:	L1004931-05 RIZ-2 Location: WALPOLE, MA		Date Date Fiel	e Collected: e Received: d Prep:	04/07/10 13:39 04/07/10 See Narrative	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extract	ables by GC/MS - Westb	orough Lab				
Benzo(a)pyrene		ND		ug/l	5.0	1
Benzo(b)fluoranthene		ND		ug/l	5.0	1
Benzo(k)fluoranthene		ND		ug/l	5.0	1
Chrysene		ND		ug/l	5.0	1
Acenaphthylene		ND		ug/l	5.0	1
Anthracene		ND		ug/l	5.0	1
Benzo(ghi)perylene		ND		ug/l	5.0	1
Fluorene		ND		ug/l	5.0	1
Phenanthrene		ND		ug/l	5.0	1
Dibenzo(a,h)anthracene		ND		ug/l	5.0	1
Indeno(1,2,3-cd)pyrene		ND		ug/l	7.0	1
Pyrene		ND		ug/l	5.0	1
Aniline		ND		ug/l	20	1
4-Chloroaniline		ND		ug/l	5.0	1
1-Methylnaphthalene		ND		ug/l	5.0	1
2-Nitroaniline		ND		ug/l	5.0	1
3-Nitroaniline		ND		ug/l	5.0	1
4-Nitroaniline		ND		ug/l	7.0	1
Dibenzofuran		ND		ug/l	5.0	1
2-Methylnaphthalene		ND		ug/l	5.0	1
n-Nitrosodimethylamine		ND		ug/l	50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	56		23-120	
2-Fluorobiphenyl	59		15-120	
4-Terphenyl-d14	81		33-120	

L1004931

04/15/10

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab ID:	L1004931-09	Date Collected:	04/07/10 14:19
Client ID:	RIZ-10	Date Received:	04/07/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water	Extraction Method:	EPA 625
Analytical Method:	5,625	Extraction Date:	04/13/10 14:03
Analytical Date:	04/14/10 16:59		
Analyst:	PS		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extractables by GC/MS -	Westborough Lab				
Acenaphthene	ND		ug/l	5.0	1
Benzidine	ND		ug/l	50	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1
Hexachlorobenzene	ND		ug/l	5.0	1
Bis(2-chloroethyl)ether	ND		ug/l	5.0	1
2-Chloronaphthalene	ND		ug/l	6.0	1
3,3'-Dichlorobenzidine	ND		ug/l	50	1
2,4-Dinitrotoluene	ND		ug/l	6.0	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1
Azobenzene	ND		ug/l	5.0	1
Fluoranthene	ND		ug/l	5.0	1
4-Chlorophenyl phenyl ether	ND		ug/l	5.0	1
4-Bromophenyl phenyl ether	ND		ug/l	5.0	1
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	1
Hexachlorobutadiene	ND		ug/l	10	1
Hexachlorocyclopentadiene	ND		ug/l	30	1
Hexachloroethane	ND		ug/l	5.0	1
Isophorone	ND		ug/l	5.0	1
Naphthalene	ND		ug/l	5.0	1
Nitrobenzene	ND		ug/l	5.0	1
NDPA/DPA	ND		ug/l	15	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0	1
Butyl benzyl phthalate	ND		ug/l	5.0	1
Di-n-butylphthalate	ND		ug/l	5.0	1
Di-n-octylphthalate	ND		ug/l	5.0	1
Diethyl phthalate	ND		ug/l	5.0	1
Dimethyl phthalate	ND		ug/l	5.0	1
Benzo(a)anthracene	ND		ua/l	5.0	1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

04151012:21 Lab Number: L1004931 Report Date: 04/15/10

Lab ID: Client ID: Sample Location:	L1004931-09 RIZ-10 WALPOLE, MA			Date Date Fiel	e Collected: e Received: d Prep:	04/07/10 14:19 04/07/10 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extracta	bles by GC/MS - Westb	orough Lab				
Benzo(a)pyrene		ND		ug/l	5.0	1
Benzo(b)fluoranthene		ND		ug/l	5.0	1
Benzo(k)fluoranthene		ND		ug/l	5.0	1
Chrysene		ND		ug/l	5.0	1
Acenaphthylene		ND		ug/l	5.0	1
Anthracene		ND		ug/l	5.0	1
Benzo(ghi)perylene		ND		ug/l	5.0	1
Fluorene		ND		ug/l	5.0	1
Phenanthrene		ND		ug/l	5.0	1
Dibenzo(a,h)anthracene		ND		ug/l	5.0	1
Indeno(1,2,3-cd)pyrene		ND		ug/l	7.0	1
Pyrene		ND		ug/l	5.0	1
Aniline		ND		ug/l	20	1
4-Chloroaniline		ND		ug/l	5.0	1
1-Methylnaphthalene		ND		ug/l	5.0	1
2-Nitroaniline		ND		ug/l	5.0	1
3-Nitroaniline		ND		ug/l	5.0	1
4-Nitroaniline		ND		ug/l	7.0	1
Dibenzofuran		ND		ug/l	5.0	1
2-Methylnaphthalene		ND		ug/l	5.0	1
n-Nitrosodimethylamine		ND		ug/l	50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	52		23-120	
2-Fluorobiphenyl	59		15-120	
4-Terphenyl-d14	77		33-120	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L1004931		
Project Number:	12700058	Report Date:	04/15/10		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	5,625
Analytical Date:	04/14/10 15:44
Analyst:	PS

Extraction Method: EPA 625 Extraction Date: 04/13/10 14:03

Parameter	Result	Qualifier	Units	RDL		
Base/Neutral Extractables by GC/I	NS - Westbo	prough Lab for	r sample(s):	01,05,09	Batch:	WG407902-1
Acenaphthene	ND		ug/l	5.0		
Benzidine	ND		ug/l	50		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Hexachlorobenzene	ND		ug/l	5.0		
Bis(2-chloroethyl)ether	ND		ug/l	5.0		
2-Chloronaphthalene	ND		ug/l	6.0		
3,3'-Dichlorobenzidine	ND		ug/l	50		
2,4-Dinitrotoluene	ND		ug/l	6.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene	ND		ug/l	5.0		
Fluoranthene	ND		ug/l	5.0		
4-Chlorophenyl phenyl ether	ND		ug/l	5.0		
4-Bromophenyl phenyl ether	ND		ug/l	5.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	10		
Hexachlorocyclopentadiene	ND		ug/l	30		
Hexachloroethane	ND		ug/l	5.0		
Isophorone	ND		ug/l	5.0		
Naphthalene	ND		ug/l	5.0		
Nitrobenzene	ND		ug/l	5.0		
NDPA/DPA	ND		ug/l	15		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	5.0		
Benzo(a)pyrene	ND		ug/l	5.0		

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L1004931		
Project Number:	12700058	Report Date:	04/15/10		
Method Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	5,625
Analytical Date:	04/14/10 15:44
Analyst:	PS

Extraction Method: EPA 625 Extraction Date: 04/13/10 14:03

Parameter	Result	Qualifier	Units	RDL		
Base/Neutral Extractables by GC	C/MS - Westbo	brough Lab for	sample(s):	01,05,09	Batch:	WG407902-1
Benzo(b)fluoranthene	ND		ug/l	5.0		
Benzo(k)fluoranthene	ND		ug/l	5.0		
Chrysene	ND		ug/l	5.0		
Acenaphthylene	ND		ug/l	5.0		
Anthracene	ND		ug/l	5.0		
Benzo(ghi)perylene	ND		ug/l	5.0		
Fluorene	ND		ug/l	5.0		
Phenanthrene	ND		ug/l	5.0		
Dibenzo(a,h)anthracene	ND		ug/l	5.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	7.0		
Pyrene	ND		ug/l	5.0		
Aniline	ND		ug/l	20		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	5.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	7.0		
Dibenzofuran	ND		ug/l	5.0		
2-Methylnaphthalene	ND		ug/l	5.0		
n-Nitrosodimethylamine	ND		ug/l	50		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
				_
Nitrobenzene-d5	63		23-120	
2-Fluorobiphenyl	65		15-120	
4-Terphenyl-d14	90		33-120	

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number: L1004931 Report Date: 04/15/10

Parameter	LCS %Recovery	Qual	LC %Rec	SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Base/Neutral Extractables by GC/MS - Westb	orough Lab A	ssociated s	ample(s):	01,05,09	Batch:	WG407902-2			
Acenaphthene	70			-		46-118	-		30
1,2,4-Trichlorobenzene	54			-		39-98	-		30
2-Chloronaphthalene	77			-		40-140	-		30
2,4-Dinitrotoluene	81			-		24-96	-		30
2,6-Dinitrotoluene	72			-		40-140	-		30
Fluoranthene	88			-		40-140	-		30
4-Chlorophenyl phenyl ether	73			-		40-140	-		30
n-Nitrosodi-n-propylamine	60			-		41-116	-		30
Butyl benzyl phthalate	82			-		40-140	-		30
Anthracene	83			-		40-140	-		30
Pyrene	81			-		26-127	-		30
P-Chloro-M-Cresol	75			-		23-97	-		30
2-Chlorophenol	61			-		27-123	-		30
2-Nitrophenol	66			-		30-130	-		30
4-Nitrophenol	57			-		10-80	-		30
2,4-Dinitrophenol	52			-		20-130	-		30
Pentachlorophenol	68			-		9-103	-		30
Phenol	31			-		12-110	-		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

 LCS
 LCSD
 %Recovery

 Parameter
 %Recovery
 Qual
 %Recovery

 Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s):
 01,05,09
 Batch:
 WG407902-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2-Fluorophenol	41				21-120	
Phenol-d6	29				10-120	
Nitrobenzene-d5	56				23-120	
2-Fluorobiphenyl	64				15-120	
2,4,6-Tribromophenol	78				10-120	
4-Terphenyl-d14	79				33-120	

Matrix Spike Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD	Qual	RPD Limits
Base/Neutral Extractables by MS Sample	GC/MS - Wes	stborough L	ab Associate	d sample(s): 0	1,05,09	QC Batc	h ID: WG407902-	3 QC Samp	ole: L100	04952-01	Client ID:
Acenaphthene	ND	97.6	73	75		-	-	46-118	-		30
1,2,4-Trichlorobenzene	ND	97.6	62	64		-	-	39-98	-		30
2-Chloronaphthalene	ND	97.6	83	85		-	-	40-140	-		30
2,4-Dinitrotoluene	ND	97.6	83	85		-	-	24-96	-		30
2,6-Dinitrotoluene	ND	97.6	78	80		-	-	40-140	-		30
Fluoranthene	ND	97.6	86	88		-	-	40-140	-		30
4-Chlorophenyl phenyl ether	ND	97.6	75	77		-	-	40-140	-		30
n-Nitrosodi-n-propylamine	ND	97.6	65	67		-	-	41-116	-		30
Butyl benzyl phthalate	ND	97.6	85	87		-	-	40-140	-		30
Anthracene	ND	97.6	79	81		-	-	40-140	-		30
Pyrene	ND	97.6	82	84		-	-	26-127	-		30
P-Chloro-M-Cresol	ND	97.6	81	83		-	-	23-97	-		30
2-Chlorophenol	ND	97.6	67	69		-	-	27-123	-		30
2-Nitrophenol	ND	97.6	72	74		-	-	30-130	-		30
4-Nitrophenol	ND	97.6	77	79		-	-	10-80	-		30
2,4-Dinitrophenol	ND	97.6	ND	64		-	-	20-130	-		30
Pentachlorophenol	ND	97.6	78	80		-	-	9-103	-		30
Phenol	ND	97.6	54	55		-	-	12-110	-		30

Matrix Spike Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1004931
Project Number:	12700058		Report Date:	04/15/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Base/Neutral Extractables by	GC/MS - Wes	stborough L	ab Associate	ed sample(s): 0 ⁻	1,05,09	QC Batc	h ID: WG4079	02-3	QC Sampl	e: L100	04952-0	1 Client ID:
MS Sample												

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	81				10-120	
2-Fluorobiphenyl	72				15-120	
2-Fluorophenol	64				21-120	
4-Terphenyl-d14	85				33-120	
Nitrobenzene-d5	65				23-120	
Phenol-d6	55				10-120	

Lab Duplicate Analysis

Project Name: WALPOLE PARK SOUTH

12700058

Project Number:

Batch Quality Control

Lab Number: L1004931 Report Date: 04/15/10

Native Sample Duplicate Sample RPD Qual **RPD Limits** Parameter Units Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407902-4 QC Sample: L1004952-01 Client ID: DUP Sample ND ND NC 30 Acenaphthene ug/l ND ug/l NC 30 Benzidine ND NC 30 1.2.4-Trichlorobenzene ND ND ug/l Hexachlorobenzene ND ND NC 30 ug/l Bis(2-chloroethyl)ether ND ND NC 30 ug/l 2-Chloronaphthalene ND ND NC 30 ug/l 3,3'-Dichlorobenzidine ND ND NC 30 ug/l ND ND NC 30 2,4-Dinitrotoluene ug/l ND ND NC 30 2.6-Dinitrotoluene ug/l ND ND NC 30 Azobenzene ug/l ND ND ug/l NC 30 Fluoranthene 4-Chlorophenyl phenyl ether ND ND NC 30 ug/l 4-Bromophenyl phenyl ether NC ND ND 30 ug/l Bis(2-chloroisopropyl)ether ND ND NC 30 ug/l ND ND NC 30 Bis(2-chloroethoxy)methane ug/l 30 NC Hexachlorobutadiene ND ND ug/l NC 30 Hexachlorocyclopentadiene ND ND ug/l Hexachloroethane ND ND NC 30 ug/l 30 ND ug/l NC Isophorone ND

Lab Duplicate Analysis

Project Name: WALPOLE PARK SOUTH

12700058

Project Number:

Batch Quality Control

Lab Number: L1004931 Report Date: 04/15/10

Native Sample Duplicate Sample Units RPD **RPD Limits** Parameter Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407902-4 QC Sample: L1004952-01 Client ID: DUP Sample ND ND ug/l NC 30 Naphthalene ND ND ug/l NC 30 Nitrobenzene NC 30 NDPA/DPA ND ND ug/l n-Nitrosodi-n-propylamine ND ND NC 30 ug/l Bis(2-ethylhexyl)phthalate 37 46 22 30 ug/l Butyl benzyl phthalate ND ND NC 30 ug/l Di-n-butylphthalate ND ND NC 30 ug/l Di-n-octylphthalate ND ND NC 30 ug/l Diethyl phthalate ND ND NC 30 ug/l Dimethyl phthalate ND ND NC 30 ug/l ND ND ug/l NC 30 Benzo(a)anthracene ND ND ug/l NC 30 Benzo(a)pyrene Benzo(b)fluoranthene NC ND ND 30 ug/l Benzo(k)fluoranthene ND ND NC 30 ug/l Chrysene ND ND NC 30 ug/l 30 NC Acenaphthylene ND ND ug/l NC 30 Anthracene ND ND ug/l Benzo(ghi)perylene ND ND NC 30 ug/l NC 30 ND ND ug/l Fluorene

Lab Duplicate Analysis

Project Name: WALPOLE PARK SOUTH

12700058

Project Number:

Batch Quality Control

Lab Number: L1004931 Report Date: 04/15/10

Native Sample **Duplicate Sample** Units RPD **RPD Limits** Parameter Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407902-4 QC Sample: L1004952-01 Client ID: DUP Sample Phenanthrene ND ND ug/l NC 30 NC Dibenzo(a,h)anthracene ND ND ug/l 30 Indeno(1,2,3-cd)pyrene ND ND ug/l NC 30 Pyrene ND ND ug/l NC 30 Aniline ND ND ug/l NC 30 4-Chloroaniline ND ND ug/l NC 30 1-Methylnaphthalene ND ND NC 30 ug/l 2-Nitroaniline ND ND NC 30 ug/l 3-Nitroaniline ND ND NC 30 ug/l 4-Nitroaniline ND ND ug/l NC 30 Dibenzofuran ND ND ug/l NC 30 2-Methylnaphthalene ND ND ug/l NC 30 n-Nitrosodimethylamine NC 30 ND ND ug/l

			Acceptance	
Surrogate	%Recovery Qual	ifier %Recovery Qu	alifier Criteria	
Nitrobenzene-d5	58	71	23-120	
2-Fluorobiphenyl	58	74	15-120	
4-Terphenyl-d14	81	93	33-120	

Project Name: Project Number:	WALPOLE PARK SOUTH 12700058	La	b Duplic Batch Qu	ality Control	SIS	Lab Nui Report	mber: Date:	L1004931 04/15/10	
Parameter		Native Sample	Duplica	te Sample	Units	RPD	RPD	Limits	
Base/Neutral Extractable DUP Sample	s by GC/MS - Westborough Lab	Associated sample(s):	01,05,09	QC Batch ID:	WG407902-4	QC Sample:	L1004952-0)1 Client ID:	
					Acceptance				

. .

. .

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
	_					

METALS

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931 **Project Number: Report Date:** 12700058 04/15/10 SAMPLE RESULTS Lab ID: L1004931-01 Date Collected: 04/07/10 12:32 Client ID: GHC-5 Date Received: 04/07/10 WALPOLE, MA Field Prep: Sample Location: See Narrative Matrix: Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst MCP Total Metals - Westborough Lab 59 60,6010B Sodium, Total mg/l 2.0 1 04/08/10 10:00 04/09/10 13:39 EPA 3005A AI

MCP Dissolved Me	etals - Westboro	ugh Lab							
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.171	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:53	EPA 7470A	64,7470A	EZ
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI

04151012:21

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931 **Project Number: Report Date:** 12700058 04/15/10 SAMPLE RESULTS Lab ID: L1004931-05 Date Collected: 04/07/10 13:39 Client ID: RIZ-2 Date Received: 04/07/10 WALPOLE, MA Field Prep: Sample Location: See Narrative Matrix: Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst MCP Total Metals - Westborough Lab 68 60,6010B Sodium, Total mg/l 2.0 1 04/08/10 10:00 04/09/10 13:46 EPA 3005A AI

MCP Dissolved Me	etals - Westboro	ugh Lab							
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.090	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:55	EPA 7470A	64,7470A	ΕZ
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI

04151012:21

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931 **Project Number: Report Date:** 12700058 04/15/10 SAMPLE RESULTS Lab ID: L1004931-09 Date Collected: 04/07/10 14:19 Client ID: **RIZ-10** Date Received: 04/07/10 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst MCP Total Metals - Westborough Lab 84 60,6010B Sodium, Total mg/l 2.0 1 04/08/10 10:00 04/09/10 13:49 EPA 3005A AI

MCP Dissolved Me	etals - Westboro	ugh Lab							
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.030	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:56	EPA 7470A	64,7470A	ΕZ
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 11:06	EPA 3005A	60,6010B	AI

04151012:21

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab for	or sample	(s): 01,	05,09 Bat	ch: WG40726	6-1		
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qual	ifier Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Total Metals -	Westborough Lab for	or sample(s):	01,05,09	Batch:	WG407276-1			
Sodium, Total	ND	mg/l	2.0	1	04/08/10 10:00	04/09/10 13:19	60,6010B	AI
	_	Pr	ep Inform	nation				
		Digestion M	ethod:	EPA 300	5A			

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - V	Vestborough Lab for	r sample	(s): 01,0	05,09 Bate	ch: WG407348	5-1		
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:48	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number: L1004931 Report Date: 04/15/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals - Westborough Lab	Associated samp	ole(s): 01	,05,09 Batch:	WG407266-2	WG407266-3				
Arsenic, Dissolved	112		113		80-120	1		20	
Barium, Dissolved	100		100		80-120	0		20	
Cadmium, Dissolved	113		113		80-120	0		20	
Chromium, Dissolved	95		100		80-120	5		20	
Lead, Dissolved	107		107		80-120	0		20	
Selenium, Dissolved	115		115		80-120	0		20	
Silver, Dissolved	97		98		80-120	1		20	
MCP Total Metals - Westborough Lab Assoc	ciated sample(s)	: 01,05,0	9 Batch: WG	407276-2 WC	6407276-3				
Sodium, Total	98		100		80-120	2		20	
MCP Dissolved Metals - Westborough Lab A	Associated samp	ble(s): 01	,05,09 Batch:	WG407345-2	WG407345-3				
Mercury, Dissolved	115		115		80-120	0		20	

INORGANICS & MISCELLANEOUS

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L1004931

 Project Number:
 12700058
 Report Date:
 04/15/10

Lab ID:	L1004931-01	Date Collected:	04/07/10 12:32
Client ID:	GHC-5	Date Received:	04/07/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:49	30,4500NO3-F	DD
Nitrogen, Nitrate	6.5		mg/l	0.10	1	-	04/08/10 19:49	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.0	1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		ma/l	0.15	5	_	04/10/10 21:31	1.9065	ТН

Lab ID: Client ID: Sample Location: Matrix:	L1004931-02 GHC-5-A WALPOLE, MA Water					Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specif	I2:56 fied
	121 00000		SAI	MPLE R	ESULTS			
Project Name: Project Number:	WALPOLE PA 12700058	RK SOUTI	4			Lab Number: Report Date:	L1004931 04/15/10	

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

arameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Lab ID: Client ID: Sample Location: Matrix:	L1004931-03 GHC-5-B WALPOLE, MA Water						Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specit	12:57 fied
Project Number:	12700058		SAI	MPLE R	ESULTS		Report Date:	04/15/10	
Project Name:	WALPOLE PA	RK SOUTI	4				Lab Number:	L1004931	

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

					Dilution	Date	Date	Analytical	
Lab ID: Client ID: Sample Location: Matrix:	L1004931-04 GHC-5-C WALPOLE, MA Water						Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specit	12:58 fied
Project Number:	WALPOLE PA 12700058	KK SOUT	SAI	MPLE R	ESULTS		Report Date:	L1004931 04/15/10	

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L1004931

 Project Number:
 12700058
 Report Date:
 04/15/10

Lab ID:	L1004931-05	Date Collected:	04/07/10 13:39
Client ID:	RIZ-2	Date Received:	04/07/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:50	30,4500NO3-F	DD
Nitrogen, Nitrate	0.47		mg/l	0.10	1	-	04/08/10 19:50	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.0	1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		ma/l	0.03	1	_	04/10/10 21:32	1.9065	ТН

		o	Unite		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	A a h
Lab ID: Client ID: Sample Location: Matrix:	L1004931-06 RIZ-2-A WALPOLE, MA Water						Date Collected: Date Received: Field Prep:	04/07/10 04/07/10 Not Speci	13:55 fied
	12100000		SAI	MPLE R	ESULTS				
Project Name: Project Number:	WALPOLE PA 12700058	RK SOUTI	4				Lab Number: Report Date:	L1004931 04/15/10	

2.0

2

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

arameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Lab ID: Client ID: Sample Location: Matrix:	L1004931-07 RIZ-2-B WALPOLE, MA Water						Date Collected: Date Received: Field Prep:	04/07/10 2 04/07/10 Not Speci	13:56 fied
Project Number:	12700058		SAI	MPLE R	ESULTS		Report Date:	04/15/10	
Project Name:	WALPOLE PA	RK SOUTI	4				Lab Number:	L1004931	

2.0

2

-

col/100ml

04/07/10 20:35

30,9222D

JT

Coliform, Fecal (MF)

arameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analy
Matrix:	Water								
Lab ID: Client ID: Sample Location:	L1004931-08 RIZ-2-C WALPOLE, MA						Date Collected: Date Received: Field Prep:	04/07/10 04/07/10 Not Speci	13:57 fied
			SAI	MPLE R	ESULTS				
Project Number:	12700058						Report Date:	04/15/10	
Project Name:	WALPOLE PA	RK SOUTI	Н				Lab Number:	L1004931	
							()4151012:21	

2.0

2

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L1004931

 Project Number:
 12700058
 Report Date:
 04/15/10

I	Lab ID:	L1004931-09	Date Collected:	04/07/10 14:19
(Client ID:	RIZ-10	Date Received:	04/07/10
:	Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
I	Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:51	30,4500NO3-F	DD
Nitrogen, Nitrate	1.0		mg/l	0.10	1	-	04/08/10 19:51	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.4	1.1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		ma/l	0.15	5	_	04/10/10 21:33	1.9065	ТН

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Lab ID: Client ID: Sample Location: Matrix:	L1004931-10 RIZ-10-A WALPOLE, MA Water						Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specif	4:32 fied
Project Number:	12700058		SAI	MPLE R	ESULTS		Report Date:	04/15/10	
Project Name:	WALPOLE PA	RK SOUTI	4				Lab Number:	L1004931	

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Matrix:	Water								
Lab ID: Client ID: Sample Location:	L1004931-11 RIZ-10-B WALPOLE, MA						Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specit	14:33 fied
			SA	MPLE R	ESULTS				
Project Name: Project Number:	WALPOLE PA 12700058	RK SOUTH	4				Lab Number: Report Date:	L1004931 04/15/10	
							(04151012:21	

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Matrix:	Water								
Lab ID: Client ID: Sample Location:	L1004931-12 RIZ-10-C WALPOLE, MA						Date Collected: Date Received: Field Prep:	04/07/10 1 04/07/10 Not Specif	14:34 fied
			SA	MPLE R	ESULTS				
Project Name: Project Number:	WALPOLE PA 12700058	RK SOUTH	ł				Lab Number: Report Date:	L1004931 04/15/10	
							(04151012:21	

10

10

-

04/07/10 20:35

30,9222D

JT

col/100ml

Coliform, Fecal (MF)

ND

04151012:21

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier Unit	s RDL	Dilutio Facto	on or I	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analy	sis - Westborough	Lab for samp	le(s): 02-0	4,06-08	,10-12	Batch: W	G407183-1		
Coliform, Fecal (MF)	ND	col/10	00ml 1.0	1		-	04/07/10 20:35	30,9222D	JT
General Chemistry -	Westborough Lab	for sample(s):	01,05,09	Batch:	WG40	7254-2			
Oil & Grease, Hem-Grav	ND	mç	y/l 4.0	1	04	4/08/10 11:00	04/09/10 09:15	74,1664A	JO
General Chemistry -	Westborough Lab	for sample(s):	01,05,09	Batch:	WG40	7333-2			
Nitrogen, Nitrate	ND	mç	ı/l 0.10) 1		-	04/08/10 19:40	30,4500NO3-	F DD
General Chemistry -	Westborough Lab	for sample(s):	01,05,09	Batch:	WG40	7334-2			
Nitrogen, Nitrite	ND	mç	y/l 0.05	5 1		-	04/08/10 19:42	30,4500NO3-	F DD
General Chemistry -	Westborough Lab	for sample(s):	01,05,09	Batch:	WG40	7584-1			
Phenolics, Total	ND	mç	y/l 0.03	6 1		-	04/10/10 21:27	1,9065	ТН

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Parameter	LCS %Recovery	Qual %	LCSD %Recover	У Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407254-1					
Oil & Grease, Hem-Grav	108		-		78-114	-		18	
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407333-1					
Nitrogen, Nitrate	98		-		90-110	-			
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407334-1					
Nitrogen, Nitrite	100		-		90-110	-			
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407584-2					
Phenolics, Total	101		-		70-130	-			

Matrix Spike Analysis Batch Quality Control

WALPOLE PARK SOUTH

Project Name: WALPOLE PARK SOL

Project Number: 12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits
General Chemistry - Westbord	ough Lab Asso	ciated sampl	e(s): 01,05,	09 QC Batc	h ID: WG407254-3	QC Sample	: L1004815-02	Client ID:	MS Sample
Oil & Grease, Hem-Grav	ND	43	38	89	-	-	78-114	-	18
General Chemistry - Westbord	ough Lab Asso	ciated sampl	e(s): 01,05,	09 QC Batc	h ID: WG407333-3	QC Sample	: L1004954-08	Client ID:	MS Sample
Nitrogen, Nitrate	0.81	4	4.7	97	-	-	83-113	-	17
General Chemistry - Westbord	ough Lab Asso	ciated sampl	e(s): 01,05,	09 QC Batc	h ID: WG407334-3	QC Sample	: L1004931-01	Client ID:	GHC-5
Nitrogen, Nitrite	ND	4	4.0	100	-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated sampl	e(s): 01,05,	09 QC Batc	h ID: WG407584-3	QC Sample	: L1004931-05	Client ID:	RIZ-2
Phenolics, Total	ND	0.8	0.73	91	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L1004931

 Report Date:
 04/15/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 Q	C Batch ID: WG407254-4	QC Sample:	L1004835-03	Client ID: DI	JP Sample
Oil & Grease, Hem-Grav	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 Q	C Batch ID: WG407333-4	QC Sample:	L1004954-08	Client ID: DI	JP Sample
Nitrogen, Nitrate	0.81	0.81	mg/l	0		17
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 Q	C Batch ID: WG407334-4	QC Sample:	L1004931-01	Client ID: GI	HC-5
Nitrogen, Nitrite	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 Q	C Batch ID: WG407584-4	QC Sample:	L1004931-05	Client ID: RI	Z-2
Phenolics, Total	ND	ND	mg/l	NC		20

04151012:21

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L1004931 Report Date: 04/15/10

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Inform	ation						
Cooler	Custody Seal						
A	Absent		VOA	/VPH H2	20 Pre	servative Date:	NA
В	Absent						
Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis
L1004931-01A	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-01B	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-01C	Amber 1000ml HCI preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-01D	Amber 1000ml HCI preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-01E	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-01F	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-01G	Amber 1000ml H2SO4 preserved	А	<2	5.9	Y	Absent	TPHENOL-9065(28)
L1004931-01H	Plastic 250ml HNO3 preserved	А	<2	5.9	Y	Absent	MCP-NA-6010T(180)
L1004931-01I	Plastic 500ml unpreserved	А	7	5.9	Y	Absent	NO3-4500(2),NO2-4500NO3(2)
L1004931-01J	Plastic 500ml HNO3 preserved	A	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SE- 6010S(180),MCP-CD- 6010S(180),MCP- 7470S(28),MCP-CR- 6010S(180),MCP-PB- 6010S(180),MCP-AS- 6010S(180)
L1004931-02A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-02B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-03A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-03B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-04A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-04B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-05A	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-05B	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-05C	Amber 1000ml HCl preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-05D	Amber 1000ml HCI preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-05E	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-05F	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-05G	Amber 1000ml H2SO4 preserved	А	<2	5.9	Y	Absent	TPHENOL-9065(28)
L1004931-05H	Plastic 250ml HNO3 preserved	А	<2	5.9	Y	Absent	MCP-NA-6010T(180)
L1004931-05I	Plastic 500ml unpreserved	А	7	5.9	Y	Absent	NO3-4500(2),NO2-4500NO3(2)

04151012:21

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L1004931 Report Date: 04/15/10

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis
L1004931-05J	Plastic 500ml HNO3 preserved	A	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SE- 6010S(180),MCP-CD- 6010S(180),MCP- 7470S(28),MCP-CR- 6010S(180),MCP-PB- 6010S(180),MCP-AS- 6010S(180)
L1004931-06A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-06B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-07A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-07B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-08A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-08B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-09A	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-09B	Vial Ascorbic Acid/HCI preserved	А	N/A	5.9	Y	Absent	524.2(14)
L1004931-09C	Amber 1000ml HCI preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-09D	Amber 1000ml HCl preserved	В	N/A	4	Y	Absent	OG-1664(28)
L1004931-09E	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-09F	Amber 1000ml unpreserved	В	7	4	Y	Absent	BNEXT-625(7)
L1004931-09G	Amber 1000ml H2SO4 preserved	А	<2	5.9	Y	Absent	TPHENOL-9065(28)
L1004931-09H	Plastic 250ml HNO3 preserved	А	<2	5.9	Y	Absent	MCP-NA-6010T(180)
L1004931-09I	Plastic 500ml unpreserved	А	7	5.9	Y	Absent	NO3-4500(2),NO2-4500NO3(2)
L1004931-09J	Plastic 500ml HNO3 preserved	A	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SE- 6010S(180),MCP-CD- 6010S(180),MCP- 7470S(28),MCP-CR- 6010S(180),MCP-PB- 6010S(180),MCP-AS- 6010S(180)
L1004931-10A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-10B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-11A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-11B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-12A	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)
L1004931-12B	Bacteria Cup Na2S2O3 preserved	А	N/A	5.9	Y	Absent	F-COLI-MF(.33)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Report Date:

04/15/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reported detection limit (RDL) for the sample.

 Lab Number:
 L1004931

 Report Date:
 04/15/10

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 5 Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised March 16, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-TP (Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. <u>Organic Parameters</u>: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Ti,Tl, V,Zn,Ca,Mg,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N,

SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B,

5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-06-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters:SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010,9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A.Organic Parameters:SW-846 3540C, 3545,3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500CI-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Non-Potable Water* (<u>Organic Parameters</u>: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. <u>Organic Parameters</u>: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

_ <u></u>	e ²	· .											:						0	4151	012:2	21		
FORM NO: 01-01 (rev. 18Jan	MA MCP or	PLEASE ANSWER	-04	ප්	-07	4						43101	ALPHA Lab ID (Lab Use Only)	(Note: All CAM metho	Other Project Spe	Email: ///n. /////	Fax: 588 900	Phone 508 90	Address: One Gra	Client: Tota le-	Client Information	WESTBORO, MA TEL: 508-898-9220	AAPIA	
-2010)	CT RCP?		64C-5-C	GHC-S-B	64C-5-A	4						675	Samp	ids for inorganic analyses	ecific Requirement	work to the two the second sec	2001	12031	nt St	lare		MANSFIELD, MA		7
	Belingui													require MS every 20 so	s/Comments/Dete	d by Alpha	Xstanda	Turn-A	Project Mi ALPHA Q	Project #:	Project Lo	Project Na		こしてい
	shed By:		12:58	12:57	15:21	14:57	ANEL	21:41	12.45	242	0421	1232	Collection Date Time	l samples)	ction Limits: s and what tests MS to b	" HIHIO		round Time	anager: / / / / / / / / / / / / / / / / / / /	22000F21	ocation: Lik/ps/e /	ame: Uslowle Put		りてつうく
	Clf (1 1520	Container Type Preservative	V									- bw 1/2_	Sample Sampler's Matrix Initials		e performed.	Time:	confirmed if pre-approved!)		n /Key Johnson		MA	1 South	AGEOF	-
	Receiv	46 A6 A6 P					-		X		×	X	0, 00 (inter)	A Hiren Neutrily I Phenel	NAL (166 (62	YSIS X) S)			MA MCP PRESUI	State /Fed Program	ADEx Port latory Born		Date Rec'd in Lab	
	ter f	X P P P Aci -N	X	×	×	×	X	×					10/ Q D / 15/ 40	an 52 Non 8			Are CT RCP (Reasor	Are MCP Analytical I Is Matrix Spike (MS)	V PICI MPTIVE CERTAINI		Add'I Deliverables			
	Date/Time													516	Ne fer	at / / /	nable Confidence Pro	Methods Required? Required on this SD(TY CT REASON	Criteria	Ch Af	XSame a	ALPHA	
	start until any ambigu start until any ambigu All samples submitter Alpha's Terms and Cr Alpha's Sterros side	Please print clearly, k pletely. Samples can						· · ·					Sample Specific C	□ Not need □ Lab to do Preservation □ Lab to do	Filtration 4	SAMPLE H	tocols) Required?	G? (If yes see note in				s Client info PO #:		
Pag	tities are resolved tare subject to 6 vnditions.	gibly and com- not be logged	ນ	يو	R			J			-2	2	omments s		my wy	NDLING		Comments)	CE PROTO	and the second second second second second second second second second second second second second second second		Addar Addar Addar Addar Addar Addar Addar Addar)) -

N.A.

		1999 - A.		÷					· · · ·	a a a constante da serie da s Serie da serie	C	41510	12:21		
PLEASE ANSWER QUESTIONS , IS YOUR PROJECT MA MCP or CT RCI FORM NO: 01-01 (rev. 18-Jan-2010)	A 80-	-06				431-05 RIZ-2	ALPHA Lab ID (Lab Use Only)	Other Project Specific Require If MS is required , indicate in Sample S (Note: All CAN methods for Inorganic a	Email:	Phone X			FAX: 508-898-9193 FAX: 508-822-328 Client Information	WESTBORO MA MANSFIELD MA TEL: 508-898-9220 TEL: 508-822-930	C
							Sample ID	ements/Comments pecific Comments which analyses require MS eve	analyzed by Alpha		Pn Al	2 P	Pr Pr		IAIN OF (
to a second	<u>21</u> <u>21</u> <u>21</u>	L 1	<u> </u>		- <mark>-</mark> (3	4/1/0 /3	Collection Date	5/Detection Limits: samples and what tests N ry 20 soil samples)	ate Due: 4/14/16	urn-Around Time	PHA Quote #:	oject#:	oject Name: oject Location:	oject Information	CUSTODY
Container T Preserva لازاتراره رو ت	26 1	\$ \$ }	67 2	42	Vy T	39 WW 14	n Sample Samp Time Matrix Initi	AS to be performed.	Тіте:				e		
tive ACI - H Rect - H Rect - H Rect				×	×	X	als V al 5	ANAL Loreace (66 y Nortals (YSIS	□Yes □No		State /Fed Prog		Report Inforr	Date Rec'd in L
$\frac{P}{V} \frac{V}{HCl} = \frac{P}{V} \frac{P}{P}$			X		· · · · · · · · · · · · · · · · · · ·		(A) Z Z/E/	Kun Kun Kun Kun Kun Kun	3)///2	Are CT RCP (Reas	SUMPTIVE CERTAIN	quirements/Report am	☐ Add'l Deliverable	nation - Data Delive	ab: 4 7 10
Date/Time					· · · · · · · · · · · · · · · · · · ·			at GIG	1×1×1	s) Required on this SE onable Confidence Pr	VTY CT REASO	Limits Criteria IV	38 Providence	erables Billing	ALPHA
Please print clearly, le pletely. Samples can in and turnaround time start until any ambigui All samples submitted Alpha's Terms and Co See reverse side.							(Please specify below Sample Specific Co	Filtration Inc.	SAMPLEAN	DG? (If yes see note in otocols) Required?	NABLE CONFIDENC	(m)-1		Information	100 # UD6
gibly and com- not be logged s clock will not?8 ties are resolved are subject to 77 nditions 77 Page	<u>در ل</u>	× –			- S	0	w) mments s	Q Q X C X X C X X C X X C X X C X X X X X X X X X X	NDLING	Comments)	CEPROTO				4931

					1					100000	1.00			/				- 2			,	04	1510	12:2	21	•	
FORM NO: 01-01 (rev. 18-Ja	MA MCP o	PLEASE ANSWER		<u>-[7]</u>	Z	017	W						431-09	(Lab Use Only)	ALPHA Lab ID	Other Project Sp If MS is required , Ind (Note: All CAM meth	These samples hav	Email:	Fax:	Phone		Address:	Client:	Client Information	TEL: 508-898-9220	WESTBORO, MA	
n-2010)	r CT RCP?) (R12-10-	¢						012-10	Sam		ecific Requiremen icate in Sample Specific ods for inorganic analys	e been previously analyz			June					TEL: 508-822-9300 FAX: 508-822-3288	MANSFIELD, MA	CHA
	The second					A				· · · · · ·				ple ID		hts/Comments/De Comments which sam es require MS every 20	red by Alpha			Tum	ALPH	Project	Project	Project	Project	Projec	IN OF CL
	Tuished By:		• • • • • • • • • • • • • • • • • • •	<i>PI</i>	(4)	(µ/	/4	<i>μ</i> /μ/	z h l	rh/	1 M J	chi 1	4/7/60 141	Date Tir	Collection	tection Limits: ples and what tests MS soil samples)	0.1414			-Around Time	A Quote #:	Manager:	#: 50	Location:	Name:	ct Information	JSTODY
	Upate/Time	Preserva		7 1	~	~	3(4	~		4	1	1 60 (m	ne Matrix Initi	Sample Samp	to be performed.		Time.	· · · · · · · · · · · · · · · · · · ·								PAGE 2 OF 2
	20 ITCR	tive All - N									×	- (~	\times	a) () (~ (oler's	ANAL + Grean (16 Ne-tal)	YS/ 6 7	s \			MA MCP PR	State /Fed Pro	Regulatory F		D FAX	Report Info	Date Rec'd in
	eceived By:	$\frac{1}{N}$ $\frac{1}{P}$ $\frac{1}$	0 1 0				\mathbf{x}	×	×	\propto				~ ~ ~ ~ ~ ~	A VO VO	1 house (1/2 (524.0) (2) (524.0)	2/ // //		o Are CT RCP (R	o Are MCP Analy o Is Matrix Spike	ESUMPTIVE CER	igram //U	kequirements/Rep	Add'l Dettve		rmation - Data De	Lab: 477 [[1
	4(7)10 15		>>		\mathbf{X}	×	P	-						A. 4 / / .	2	RIRA:	1. 1. 18/	1 1	teasonable,Confiden	/tical Methods Requi (MS) Required on th	IAINTY CT RE/			rables	S D	eliverables Bil	
ocetevelses	 start until any All samples su Alpha's Terms 	Please print cl pletely. Samp												/ Sample Spe	(Please s	Filtra 28000 D Lal Prese	SAMI		ce Protocols) Require	ired? nis SDG? (If yes see	ASONABLE CON		an - search at the state of the second second		ame as Client info	lling Information	PHA Job #:
Ue:	ambiguitles are resolved britted are subject to and Conditions.	early, legibly and con les can not be logged Ind time clock will not			I. - - - -									cific Comments	ipecify below)	ion ۲۰۰۹ منازم ne ۲۵۸۲ - ۲۵ مدر t needed t needed t to do ivvation to do			3 d?	note in Comments)			and the second states of the second second second second second second second second second second second second		PO #		1004931
Page	∋78 o≩7	78		<u>~</u>			~		<u>[])</u>		-	5	8	¢л п	B	<u></u>	- ∧ -	- 0 -							: 		

ANALYTICAL REPORT

Lab Number:	L1008812
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN: Phone: Project Name: Project Number:	Ian Cannan (508) 903-2039 WALPOLE PARK SOUTH 12700058-003
Report Date:	06/21/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number:	L1008812
Report Date:	06/21/10

Project Name:	WALPOLE PARK SOUTH					
Project Number:	12700058-003					

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1008812-01	MW-3	WALPOLE, MA	06/11/10 08:02
L1008812-02	RIZ-3	WALPOLE, MA	06/11/10 08:56
L1008812-03	MW-2	WALPOLE, MA	06/11/10 09:33
L1008812-04	GHC-6	WALPOLE, MA	06/11/10 10:08
L1008812-05	RIZ-9	WALPOLE, MA	06/11/10 11:07
L1008812-06	RIZ-10	WALPOLE, MA	06/11/10 12:30
L1008812-07	RIZ-8	WALPOLE, MA	06/11/10 13:40
L1008812-08	MW-9	WALPOLE, MA	06/11/10 14:10
L1008812-09	20100611-TRIP BLANK	WALPOLE, MA	06/11/10 00:00

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003

Report Date: 06/21/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An at	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	NO
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
Ea	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
Aros	nonse to questions G. H and Lis required for "Presumptive Cortainty" status	
Ales	ponse to questions 6, H and his required for Presumptive Certainty status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO

I NO Were results reported for the complete analyte list specified in the selected CAM protocol(s)?

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L1008812 Report Date: 06/21/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question B:

At the client's request, the analytical method specified in the CAM protocol was not followed.

In reference to question H:

An MS/Dup was performed in lieu of an LCS/LCSD.

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Case Narrative (continued)

Metals

L1008812-01 through -08 have elevated detection limits for Antimony and Thallium due to the dilutions

required by the high concentrations of non-target analytes.

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

find I. Without Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 06/21/10

ORGANICS

VOLATILES

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-01	Date Collected:	06/11/10 08:02
Client ID:	MW-3	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 09:52		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Serial_No:06211013:10

L1008812 **Report Date:** 06/21/10

Lab Number:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-01 MW-3 WALPOLE, MA			Date Date Field	Date Collected: Date Received: Field Prep:		1/10 08:02 1/10 Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ie	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

				Serial_No:06211013:10			
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-01			Date	Collected:	06/1	1/10 08:02
Client ID:	MW-3			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep: See Na		Narrative	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	101		80-120
4-Bromofluorobenzene	96		80-120

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-02	Date Collected:	06/11/10 08:56
Client ID:	RIZ-3	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 11:40		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-02 RIZ-3 WALPOLE, MA			Date Collected: Date Received: Field Prep:		06/11/10 08:56 06/11/10 See Narrative	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	ab					
1,3-Dichlorobenzene		ND		ug/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

						o:06211	013:10
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-02			Date	Collected:	06/1	1/10 08:56
Client ID:	RIZ-3			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep:		See	Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	96		80-120

Serial_No:06211013:10

L1008812

06/21/10

Lab Number: Report Date:

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-03	Date Collected:	06/11/10 09:33
Client ID:	MW-2	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 12:17		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	1.2		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-03 MW-2 WALPOLE, MA			Date Date Field	Date Collected: Date Received: Field Prep:		1/10 09:33 1/10 Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough I	_ab					
1,3-Dichlorobenzene		ND		uq/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-lsopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	e	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

	Serial_No:0621101					013:10	
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-03			Date	Collected:	06/1	1/10 09:33
Client ID:	MW-2			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep:		See	Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	/ GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	96		80-120	

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-04	Date Collected:	06/11/10 10:08
Client ID:	GHC-6	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 12:54		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10 Lab Number: L1008812

Report Date: 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-04 GHC-6 WALPOLE, MA				e Collected: e Received: d Prep:	06/ [/] 06/ [/] See	11/10 10:08 11/10 Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	_ab					
1.3-Dichlorobenzene		ND		ug/l	0.50		1
1.4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xvlene		ND		ua/l	0.50		1
1.1-Dichloropropene		ND		ua/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

					013:10					
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812			
Project Number:	12700058-003			Re	port Date:	06	/21/10			
	SAMPLE RESULTS									
Lab ID:	L1008812-04			Date	Collected:	06/1	1/10 10:08			
Client ID:	GHC-6			Date	Received:	06/1	1/10			
Sample Location:	WALPOLE, MA			Field	Prep:	See	Narrative			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics b	y GC/MS - Westborough Lab									

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	101		80-120
4-Bromofluorobenzene	96		80-120

Serial_N	lo:06211013:10
----------	----------------

L1008812

Lab Number: Report Date: 06/21/10

WALPOLE PARK SOUTH Project Number: 12700058-003

Project Name:

SAMPLE RESULTS

Lab ID:	L1008812-05	Date Collected:	06/11/10 11:07
Client ID:	RIZ-9	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 13:31		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ugh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-05 RIZ-9 WALPOLE, MA			Date Date Field	e Collected: e Received: d Prep:	06/1 06/1 See	1/10 11:07 1/10 Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough I	_ab					
1.3-Dichlorobenzene		ND		ua/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

		Serial_No:062110					013:10
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-05			Date	Collected:	06/1	1/10 11:07
Client ID:	RIZ-9			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep:		See Narrative	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	96		80-120

Serial	_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-06	Date Collected:	06/11/10 12:30
Client ID:	RIZ-10	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 14:08		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-06 RIZ-10 WALPOLE, MA		Date Collected: Date Received: Field Prep:		06/11/10 12:30 06/11/10 See Narrative		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	_ab					
1.3-Dichlorobenzene		ND		ua/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

				Serial_No:06211013:1			
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-06			Date	Collected:	06/1	1/10 12:30
Client ID:	RIZ-10			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep:		See	Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	98		80-120

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-07	Date Collected:	06/11/10 13:40
Client ID:	RIZ-8	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 14:46		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-07 RIZ-8 WALPOLE, MA		Date Collected: Date Received: Field Prep:		06/11/10 13:40 06/11/10 See Narrative		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough L	_ab					
1,3-Dichlorobenzene		ND		ug/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

		Serial_No:06211013:10					013:10
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE F	RESULTS				
Lab ID:	L1008812-07			Date	Collected:	06/1	1/10 13:40
Client ID:	RIZ-8			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field Prep:		See	Narrative
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	97		80-120	

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-08	Date Collected:	06/11/10 14:10
Client ID:	MW-9	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	See Narrative
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 15:23		
Analyst:	TT		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	igh Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Serial_No:06211013:10 Lab Number: L1008812

Report Date: 06/21/10

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-08 MW-9 WALPOLE, MA		Date Collected: Date Received: Field Prep:		: 06/11/10 14:10 : 06/11/10 See Narrative		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough I	_ab					
1,3-Dichlorobenzene		ND		ug/l	0.50		1
1,4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

				Serial_No:06211013:10				
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812	
Project Number:	12700058-003			Re	port Date:	06	/21/10	
		SAMPLE F	RESULTS					
Lab ID:	L1008812-08			Date	Collected:	06/1	1/10 14:10	
Client ID:	MW-9			Date	Received:	06/1	1/10	
Sample Location:	WALPOLE, MA			Field Prep:		See	Narrative	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	97		80-120	

06/21/10

Report Date:

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

SAMPLE RESULTS

Lab ID:	L1008812-09	Date Collected:	06/11/10 00:00
Client ID:	20100611-TRIP BLANK	Date Received:	06/11/10
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	16,524.2		
Analytical Date:	06/14/10 16:00		
Analyst:	ТТ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH

Serial_No:06211013:10

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L1008812-09 20100611-TRIP BLANK WALPOLE, MA			Date Date Field	Date Collected: Date Received: Field Prep:		1/10 00:00 1/10 Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough Lab						
1.3-Dichlorobenzene		ND		ug/l	0.50		1
1.4-Dichlorobenzene		ND		ug/l	0.50		1
Styrene		ND		ug/l	0.50		1
o-Xylene		ND		ug/l	0.50		1
1,1-Dichloropropene		ND		ug/l	0.50		1
2,2-Dichloropropane		ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50		1
1,2,3-Trichloropropane		ND		ug/l	0.50		1
Bromochloromethane		ND		ug/l	0.50		1
n-Butylbenzene		ND		ug/l	0.50		1
Dichlorodifluoromethane		ND		ug/l	0.50		1
Hexachlorobutadiene		ND		ug/l	0.50		1
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	0.50		1
n-Propylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trichlorobenzene		ND		ug/l	0.50		1
1,2,4-Trimethylbenzene		ND		ug/l	0.50		1
1,3,5-Trimethylbenzene		ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	0.50		1
o-Chlorotoluene		ND		ug/l	0.50		1
p-Chlorotoluene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	0.50		1
1,2-Dibromoethane		ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropan	e	ND		ug/l	0.50		1
1,3-Dichloropropane		ND		ug/l	0.50		1
Methyl tert butyl ether		ND		ug/l	0.50		1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/I	1

				Serial_No:06211013:10			013:10
Project Name:	WALPOLE PARK SOUTH			La	b Number:	L1	008812
Project Number:	12700058-003			Re	port Date:	06	/21/10
		SAMPLE	RESULTS				
Lab ID:	L1008812-09			Date	Collected:	06/1	1/10 00:00
Client ID:	20100611-TRIP BLANK			Date	Received:	06/1	1/10
Sample Location:	WALPOLE, MA			Field	Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	100		80-120
4-Bromofluorobenzene	97		80-120

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L1008812

 Project Number:
 12700058-003
 Report Date:
 06/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:06/14/10 07:26Analyst:TT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	o for sample(s)	: 01-09	Batch: WG4	17697-2
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L1008812

 Project Number:
 12700058-003
 Report Date:
 06/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:06/14/10 07:26Analyst:TT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS -	· Westborough Lal	b for sample(s)	: 01-09	Batch: WG41	7697-2
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L1008812		
Project Number:	12700058-003	Report Date:	06/21/10		
Mothod Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:06/14/10 07:26Analyst:TT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample(s):	01-09	Batch: WG41769	7-2

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/l

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	97		80-120	

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812 Report Date: 06/21/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 Batch: WG417697-1 Methylene chloride 107 70-130 --1,1-Dichloroethane 106 70-130 _ -Chloroform 102 70-130 --Carbon tetrachloride 70-130 86 --1,2-Dichloropropane 107 70-130 --Dibromochloromethane 70-130 95 --1,1,2-Trichloroethane 102 70-130 --Tetrachloroethene 106 70-130 --Chlorobenzene 97 70-130 --Trichlorofluoromethane 102 70-130 --99 70-130 1.2-Dichloroethane --1,1,1-Trichloroethane 99 70-130 -70-130 Bromodichloromethane 94 -trans-1,3-Dichloropropene 70-130 79 -cis-1,3-Dichloropropene 70-130 84 --Bromoform 70-130 86 --1,1,2,2-Tetrachloroethane 94 70-130 --Benzene 109 70-130 --Toluene 70-130 108 _ -Ethylbenzene 70-130 98 -p/m-Xylene 100 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812 Report Date: 06/21/10

LCSD %Recovery LCS %Recovery %Recovery Qual Limits RPD **RPD** Limits Qual Qual Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 Batch: WG417697-1 Chloromethane 119 70-130 --Bromomethane 116 70-130 _ -Vinyl chloride 117 70-130 --112 70-130 Chloroethane --1,1-Dichloroethene 109 70-130 --70-130 trans-1.2-Dichloroethene 109 -cis-1,2-Dichloroethene 104 70-130 --Trichloroethene 103 70-130 --1.2-Dichlorobenzene 70-130 91 --1,3-Dichlorobenzene 70-130 94 --1.4-Dichlorobenzene 93 70-130 --Styrene 97 70-130 o-Xylene 97 70-130 --104 70-130 1,1-Dichloropropene --70-130 2,2-Dichloropropane 78 --1.1.1.2-Tetrachloroethane 92 70-130 --1,2,3-Trichloropropane 92 70-130 --Bromochloromethane 101 70-130 --70-130 n-Butylbenzene 96 _ -Dichlorodifluoromethane 70-130 122 --Hexachlorobutadiene 98 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812 Report Date: 06/21/10

LCSD LCS %Recovery %Recovery Limits %Recovery Qual RPD **RPD** Limits Parameter Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 Batch: WG417697-1 Isopropylbenzene 97 70-130 -p-Isopropyltoluene 98 70-130 _ -Naphthalene 74 70-130 -n-Propylbenzene 98 70-130 -sec-Butylbenzene 97 70-130 -tert-Butylbenzene 97 70-130 _ -70-130 1,2,3-Trichlorobenzene 82 --1,2,4-Trichlorobenzene 86 70-130 --1,2,4-Trimethylbenzene 98 70-130 --1,3,5-Trimethylbenzene 98 70-130 --Bromobenzene 96 70-130 -o-Chlorotoluene 100 70-130 _ p-Chlorotoluene 99 70-130 --Dibromomethane 98 70-130 --1,2-Dibromoethane 91 70-130 --1,2-Dibromo-3-chloropropane 78 70-130 --1,3-Dichloropropane 100 70-130 --Methyl tert butyl ether 101 70-130 --

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number: L1008812 Report Date: 06/21/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-09 Batch:	WG417697-	·1			

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
1,2-Dichlorobenzene-d4	98				80-120
4-Bromofluorobenzene	98				80-120

		Batch Quality Control		
Project Name:	WALPOLE PARK SOUTH		Lab Number:	L1008812
Project Number:	12700058-003		Report Date:	06/21/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	6 - Westborough	n Lab Assoc	ciated sample	e(s): 01-09 (QC Batch	ID: WG41	7697-3 QC	Sample: L1008822	-01	Client ID:	MS
Methylene chloride	ND	4	4.5	112		-	-	70-130	-		20
1,1-Dichloroethane	ND	4	4.5	113		-	-	70-130	-		20
Chloroform	27	4	31	102		-	-	70-130	-		20
Carbon tetrachloride	ND	4	4.0	101		-	-	70-130	-		20
1,2-Dichloropropane	ND	4	4.5	113		-	-	70-130	-		20
Dibromochloromethane	4.8	4	8.8	100		-	-	70-130	-		20
1,1,2-Trichloroethane	ND	4	4.3	108		-	-	70-130	-		20
Tetrachloroethene	ND	4	4.6	116		-	-	70-130	-		20
Chlorobenzene	ND	4	4.1	104		-	-	70-130	-		20
Trichlorofluoromethane	ND	4	4.6	114		-	-	70-130	-		20
1,2-Dichloroethane	ND	4	4.1	102		-	-	70-130	-		20
1,1,1-Trichloroethane	ND	4	4.3	108		-	-	70-130	-		20
Bromodichloromethane	10	4	14	100		-	-	70-130	-		20
trans-1,3-Dichloropropene	ND	4	3.1	77		-	-	70-130	-		20
cis-1,3-Dichloropropene	ND	4	4.0	99		-	-	70-130	-		20
Bromoform	0.59	4	4.2	91		-	-	70-130	-		20
1,1,2,2-Tetrachloroethane	ND	4	3.8	96		-	-	70-130	-		20
Benzene	ND	4	4.5	112		-	-	70-130	-		20
Toluene	ND	4	4.5	112		-	-	70-130	-		20
Ethylbenzene	ND	4	4.4	110		-	-	70-130	-		20
p/m-Xylene	1.2	8	9.4	102		-	-	70-130	-		20

		Batch Quality Control		
Project Name:	WALPOLE PARK SOUTH	Baten Quanty Control	Lab Number:	L1008812
Project Number:	12700058-003		Report Date:	06/21/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/M Sample	S - Westborough	n Lab Assoc	ciated sample	e(s): 01-09 (QC Batch	ID: WG41	7697-3 QC	Sample: L1008822	-01	Client ID	MS
Chloromethane	ND	4	4.0	101		-	-	70-130	-		20
Bromomethane	ND	4	4.6	116		-	-	70-130	-		20
Vinyl chloride	ND	4	5.9	148	Q	-	-	70-130	-		20
Chloroethane	ND	4	4.9	122		-	-	70-130	-		20
1,1-Dichloroethene	ND	4	4.6	115		-	-	70-130	-		20
trans-1,2-Dichloroethene	ND	4	4.5	113		-	-	70-130	-		20
cis-1,2-Dichloroethene	ND	4	4.6	116		-	-	70-130	-		20
Trichloroethene	ND	4	4.3	108		-	-	70-130	-		20
1,2-Dichlorobenzene	ND	4	3.8	95		-	-	70-130	-		20
1,3-Dichlorobenzene	ND	4	3.8	95		-	-	70-130	-		20
1,4-Dichlorobenzene	ND	4	3.7	94		-	-	70-130	-		20
Styrene	ND	4	3.7	93		-	-	70-130	-		20
o-Xylene	ND	4	4.4	110		-	-	70-130	-		20
1,1-Dichloropropene	ND	4	4.6	116		-	-	70-130	-		20
2,2-Dichloropropane	ND	4	3.7	94		-	-	70-130	-		20
1,1,1,2-Tetrachloroethane	ND	4	3.9	98		-	-	70-130	-		20
1,2,3-Trichloropropane	ND	4	3.6	91		-	-	70-130	-		20
Bromochloromethane	ND	4	4.5	112		-	-	70-130	-		20
n-Butylbenzene	ND	4	3.9	98		-	-	70-130	-		20
Dichlorodifluoromethane	ND	4	4.2	105		-	-	70-130	-		20
Hexachlorobutadiene	ND	4	3.9	99		-	-	70-130	-		20

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1008812
Project Number:	12700058-003		Report Date:	06/21/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Sample	Westborough	Lab Assoc	iated sample	e(s): 01-09 C	QC Batch II	D: WG41	7697-3 QC	Sample: L100882	2-01	Client ID:	MS
Isopropylbenzene	ND	4	3.6	90		-	-	70-130	-		20
p-Isopropyltoluene	ND	4	3.9	98		-	-	70-130	-		20
Naphthalene	0.59	4	3.9	82		-	-	70-130	-		20
n-Propylbenzene	ND	4	4.1	102		-	-	70-130	-		20
sec-Butylbenzene	ND	4	4.1	102		-	-	70-130	-		20
tert-Butylbenzene	ND	4	4.1	102		-	-	70-130	-		20
1,2,3-Trichlorobenzene	ND	4	3.4	86		-	-	70-130	-		20
1,2,4-Trichlorobenzene	ND	4	3.4	85		-	-	70-130	-		20
1,2,4-Trimethylbenzene	ND	4	4.0	101		-	-	70-130	-		20
1,3,5-Trimethylbenzene	ND	4	4.0	100		-	-	70-130	-		20
Bromobenzene	ND	4	3.9	98		-	-	70-130	-		20
o-Chlorotoluene	ND	4	4.2	104		-	-	70-130	-		20
p-Chlorotoluene	ND	4	3.9	98		-	-	70-130	-		20
Dibromomethane	ND	4	4.3	108		-	-	70-130	-		20
1,2-Dibromoethane	ND	4	3.7	93		-	-	70-130	-		20
1,2-Dibromo-3-chloropropane	ND	4	3.4	86		-	-	70-130	-		20
1,3-Dichloropropane	ND	4	4.1	103		-	-	70-130	-		20
Methyl tert butyl ether	ND	4	4.2	104		-	-	70-130	-		20

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L1008812
Project Number:	12700058-003		Report Date:	06/21/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recove	y Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS Sample	- Westborough	h Lab Assoc	iated sample	e(s): 01-09 Q	C Batch	ID: WG41	7697-3 Q	C Sample	e: L100882:	2-01	Client ID): MS

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	100		80-120	
4-Bromofluorobenzene	99		80-120	

Project Name: WALPOLE PARK SOUTH **Project Number:**

12700058-003

Lab Number: Report Date:

L1008812 06/21/10

Native Sample Duplicate Sample Units RPD **RPD** Limits Parameter Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-4 QC Sample: L1008812-01 Client ID: MW-3 Methylene chloride ND ND ug/l NC 20 1,1-Dichloroethane ND ND ug/l NC 20 Chloroform ND ND ug/l NC 20 Carbon tetrachloride ND ND ug/l NC 20 1,2-Dichloropropane ND ND ug/l NC 20 Dibromochloromethane ND ND ug/l NC 20 1,1,2-Trichloroethane ND ND ug/l NC 20 Tetrachloroethene ND ND ug/l NC 20 Chlorobenzene ND ND ug/l NC 20 Trichlorofluoromethane ND ND ug/l NC 20 1,2-Dichloroethane ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ug/l NC 20 Bromodichloromethane ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ug/l NC 20 cis-1,3-Dichloropropene ND ND ug/l NC 20 Bromoform ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ug/l NC 20 Toluene ND ND ug/l NC 20

Project Name: WALPOLE PARK SOUTH **Project Number:**

12700058-003

Lab Number: Report Date:

L1008812 06/21/10

Native Sample Duplicate Sample Units RPD **RPD** Limits Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-4 QC Sample: L1008812-01 Client ID: MW-3 Ethylbenzene ND ND ug/l NC 20 p/m-Xylene ND ND ug/l NC 20 Chloromethane ND ND ug/l NC 20 Bromomethane ND ND ug/l NC 20 Vinyl chloride ND ND ug/l NC 20 Chloroethane ND ND ug/l NC 20 1,1-Dichloroethene ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ug/l NC 20 Trichloroethene ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ug/l NC 20 1.3-Dichlorobenzene ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ug/l NC 20 Styrene ND ND ug/l NC 20 o-Xylene ND ND ug/l NC 20 1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20 1,2,3-Trichloropropane ND ND ug/l NC 20

Project Name: WALPOLE PARK SOUTH

Lab Number: L1008812 06/21/10 Report Date:

Project Number: 12700058-003

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-09	QC Batch ID: WG417697	7-4 QC Sample	: L1008812-01	Client ID: MW-3
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Parameter Native Sample **Duplicate Sample** Units RPD **RPD Limits** Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-4 QC Sample: L1008812-01 Client ID: MW-3 1,2-Dibromo-3-chloropropane ND ND NC 20 ug/l 1,3-Dichloropropane ug/l NC ND ND 20 Methyl tert butyl ether ug/l NC 20 ND ND

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101		101		80-120	
4-Bromofluorobenzene	96		97		80-120	

METALS

Project Name:	WALP		SOUTH				Lab Nu	mber:	L1008	812	
Project Number:	12700	058-003					Report	Date:	te: 06/21/10		
				SAMPL	E RES	ULTS					
Lab ID:	L1008	812-01					Date Co	ollected:	06/11/	/10 08:02	
Client ID:	MW-3						Date Re	eceived:	06/11/	/10	
Sample Location:	WALP	OLE, MA					Field Pr	ep:	See N	arrative	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Meta	als - Wes	tborough L	ab								

		9=				
Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:32 EPA 3005A 97,	6020A BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Barium, Dissolved	0.036	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:34 EPA 7470A 97,	7470A EZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 14:57 EPA 3005A 97,	6010B AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:32 EPA 3005A 97,	6020A BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI
Zinc, Dissolved	ND	mg/l	0.050	 1	06/14/10 13:10 06/16/10 17:57 EPA 3005A 97,	6010B AI

	VVALEV		. 30016						L1000	012	
Project Number:	127000	058-003					Report	Date:	06/21/	/10	
				SAMPL	E RES	ULTS					
Lab ID:	L10088	812-02					Date Co	ollected:	06/11/	/10 08:56	
Client ID:	RIZ-3						Date Re	eceived:	06/11/	'10	
Sample Location:	WALP	/ALPOLE, MA					Field Pr	ep:	See N	arrative	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:38 EPA 3005A	97,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Barium, Dissolved	0.161	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:35 EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 15:00 EPA 3005A	97,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:38 EPA 3005A	97,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	 1	06/14/10 13:10 06/16/10 18:00 EPA 3005A	97,6010B	AI

Project Number:	12700	058-003					Report	Date:	06/21/	/10	
				SAMPI	E RES	ULTS					
Lab ID:	L1008	812-03					Date Co	ollected:	06/11/	/10 09:33	
Client ID:	MW-2						Date Re	eceived:	06/11/	/10	
Sample Location:	WALP	/ALPOLE, MA					Field Pr	rep:	See N	larrative	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

	-						
Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:44 EPA 3005A	97,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Barium, Dissolved	0.070	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:37 EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 15:04 EPA 3005A	97,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 03:44 EPA 3005A	97,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	 1	06/14/10 13:10 06/16/10 18:04 EPA 3005A	97,6010B	AI

Client ID:	GHC-6	3					Date Re	eceived:	06/11/	(10	
Sample Location: Matrix:	WALP Water	OLE, MA					Field Pr	ep:	See N	arrative	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

INCP Dissolved Met	ais - vvestooi	rough Lab				
Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:09 EPA 3005A 97,60	D20A BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Barium, Dissolved	0.063	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	D10B AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:42 EPA 7470A 97,74	470A EZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 14:34 EPA 3005A 97,60	D10B AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:09 EPA 3005A 97,60	020A BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI
Zinc, Dissolved	ND	mg/l	0.050	 1	06/14/10 13:10 06/16/10 17:24 EPA 3005A 97,60	010B AI

Project Name.	VVALF		30011						L1000	012	
Project Number:	12700	058-003					Report	Date:	06/21/	10	
				SAMPL	E RES	ULTS					
Lab ID:	L1008	812-05					Date Co	ollected:	06/11/	10 11:07	
Client ID:	RIZ-9						Date Re	eceived:	06/11/	10	
Sample Location:	WALP	WALPOLE, MA					Field Pr	ep:	See N	arrative	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

	ab						
ND	mg/l	0.0020		4	06/12/10 10:30 06/15/10 04:27 EPA 3005A	97,6020A	BM
ND	mg/l	0.005		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.004		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.004		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.01		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.0002		1	06/17/10 17:30 06/18/10 11:46 EPA 7470A	97,7470A	EZ
ND	mg/l	0.025		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.007		1	06/14/10 13:10 06/17/10 14:44 EPA 3005A	97,6010B	AI
ND	mg/l	0.0020		4	06/12/10 10:30 06/15/10 04:27 EPA 3005A	97,6020A	BM
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
ND	mg/l	0.050		1	06/14/10 13:10 06/16/10 17:34 EPA 3005A	97,6010B	AI
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND mg/l ND mg/l	ND mg/l 0.0020 ND mg/l 0.005 ND mg/l 0.005 ND mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.0022 ND mg/l 0.0025 ND mg/l 0.010 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.010 ND mg/l 0.010	ND mg/l 0.0020 ND mg/l 0.005 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.0002 ND mg/l 0.0002 ND mg/l 0.0002 ND mg/l 0.0007 ND mg/l 0.0020 ND mg/l 0.0020 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 </td <td>ND mg/l 0.0020 4 ND mg/l 0.005 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.004 1 ND mg/l 0.004 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.0002 1 ND mg/l 0.0002 1 ND mg/l 0.007 1 ND mg/l 0.0020 4 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010<td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.0002 1 06/17/10 17:30 06/18/10 11:46 EPA 7470A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010</td><td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A 97,6020A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND</td></td>	ND mg/l 0.0020 4 ND mg/l 0.005 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.004 1 ND mg/l 0.004 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.0002 1 ND mg/l 0.0002 1 ND mg/l 0.007 1 ND mg/l 0.0020 4 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 <td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.0002 1 06/17/10 17:30 06/18/10 11:46 EPA 7470A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010</td> <td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A 97,6020A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND</td>	ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.0002 1 06/17/10 17:30 06/18/10 11:46 EPA 7470A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A ND mg/l 0.010	ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A 97,6020A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ND

Project Name:	WALP	OLE PARK	SOUTH	l			Lab Nu	mber:	L1008	L1008812		
Project Number:	12700	058-003					Report	Date:	06/21/	′10		
				SAMPI	E RES	ULTS						
Lab ID:	L1008	812-06					Date Co	ollected:	06/11/	/10 12:30		
Client ID:	RIZ-10)					Date Re	eceived:	06/11/	′10		
Sample Location:	WALP	VALPOLE, MA					Field Pr	ep:	See N	arrative		
Matrix:	Water											
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	

ND	mg/l	0.0020		4	06/12/10 10:30 06/15/10 04:33 EPA 3005A	97,6020A	BM
ND	mg/l	0.005		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
0.107	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.004		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.004		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.01		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.0002		1	06/17/10 17:30 06/18/10 11:48 EPA 7470A	97,7470A	EZ
ND	mg/l	0.025		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.007		1	06/14/10 13:10 06/17/10 14:47 EPA 3005A	97,6010B	AI
ND	mg/l	0.0020		4	06/12/10 10:30 06/15/10 04:33 EPA 3005A	97,6020A	BM
ND	mg/l	0.010		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
ND	mg/l	0.050		1	06/14/10 13:10 06/16/10 17:37 EPA 3005A	97,6010B	AI
	ND 0.107 ND ND ND ND ND ND ND ND ND ND	NDmg/lNDmg/l0.107mg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/l	ND mg/l 0.0020 ND mg/l 0.005 0.107 mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.002 ND mg/l 0.0025 ND mg/l 0.0025 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.0020 ND mg/l 0.0070 ND mg/l 0.0020 ND mg/l 0.010	ND mg/l 0.0020 ND mg/l 0.005 0.107 mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.002 ND mg/l 0.025 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 <tr tr=""> ND mg/l</tr>	ND mg/l 0.0020 4 ND mg/l 0.005 1 0.107 mg/l 0.010 1 ND mg/l 0.004 1 ND mg/l 0.004 1 ND mg/l 0.004 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.002 1 ND mg/l 0.025 1 ND mg/l 0.007 1 ND mg/l 0.0020 4 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l 0.010 1 ND mg/l <t< td=""><td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:33 EPA 3005A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 0.107 mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.025 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.010</td></t<> <td>ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:33 EPA 3005A 97,6020A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B 0.107 mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND</td>	ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:33 EPA 3005A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 0.107 mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.025 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A ND mg/l 0.010	ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:33 EPA 3005A 97,6020A ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B 0.107 mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:37 EPA 3005A 97,6010B ND

Project Number:	12700	058-003					Report	Date:	06/21/	'10	
•				SAMPI	E RES	ULTS	•				
Lab ID:	L1008	812-07					Date Co	ollected:	06/11/	10 13:40	
Client ID:	RIZ-8						Date Re	eceived:	06/11/	'10	
Sample Location:	WALP	WALPOLE, MA					Field Pr	ep:	See N	arrative	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst

INCE DISSOIVED INE		Jiough Lab					
Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:39 EPA 3005A 9	7,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:49 EPA 7470A 9	7,7470A	ΕZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 14:51 EPA 3005A 9	7,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:39 EPA 3005A 9	7,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	 1	06/14/10 13:10 06/16/10 17:50 EPA 3005A 9	7,6010B	AI

Serial_No:06211013:10

Project Number	40700		00011	I			Deport	Dete:	00/04/	06/01/10			
Project Number:	12700	058-003					кероп	Date:	06/21/	10			
				SAMPL	E RES	ULTS							
Lab ID:	L1008	812-08					Date Co	ollected:	06/11/	/10 14:10			
Client ID:	MW-9						Date Re	eceived:	06/11/	/10			
Sample Location:	WALP	OLE, MA					Field Pr	ep:	See N	larrative			
Matrix:	Water												
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		

		lough Lab				
Antimony, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:45 EPA 3005A 97,602	0A BM
Arsenic, Dissolved	ND	mg/l	0.005	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Barium, Dissolved	0.064	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Beryllium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Cadmium, Dissolved	ND	mg/l	0.004	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Chromium, Dissolved	ND	mg/l	0.01	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Lead, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Mercury, Dissolved	ND	mg/l	0.0002	 1	06/17/10 17:30 06/18/10 11:51 EPA 7470A 97,747	0A EZ
Nickel, Dissolved	ND	mg/l	0.025	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Selenium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Silver, Dissolved	ND	mg/l	0.007	 1	06/14/10 13:10 06/17/10 14:54 EPA 3005A 97,601	0B AI
Thallium, Dissolved	ND	mg/l	0.0020	 4	06/12/10 10:30 06/15/10 04:45 EPA 3005A 97,602	0A BM
Vanadium, Dissolved	ND	mg/l	0.010	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
Zinc, Dissolved	0.051	mg/l	0.050	 1	06/14/10 13:10 06/16/10 17:54 EPA 3005A 97,601	0B AI
		0				

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab for	sample(s)): 01-08	B Bat	ch: WG417	601-1			
Antimony, Dissolved	ND	mg/l	0.0005		1	06/12/10 10:30	06/14/10 18:34	97,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005		1	06/12/10 10:30	06/14/10 18:34	97,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals - V	Vestborough Lab for	sample(s)	: 01-08	B Bato	ch: WG417	803-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Barium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Lead, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Nickel, Dissolved	ND	mg/l	0.025		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Silver, Dissolved	ND	mg/l	0.007		1	06/14/10 13:10	06/17/10 14:07	97,6010B	AI
Vanadium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050		1	06/14/10 13:10	06/16/10 17:15	97,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	Westborough Lab for	sample(s)): 01-08	Bate	ch: WG418	542-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:28	97,7470A	EZ

Project Name: WALPOLE PARK SOUTH

 Lab Number:
 L1008812

 Report Date:
 06/21/10

Project Number: 12700058-003

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Number: 12700058-003 Lab Number: L1008812 Report Date: 06/21/10

Parameter	LCS %Recovery	Qual %	LCSD &Recovery	V Qual	%Recovery Limits	RPD	Qual F	PD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-08	Batch:	WG417601-2	WG417601-3			
Antimony, Dissolved	95		96		80-120	1		20
Thallium, Dissolved	96		96		80-120	0		20
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-08	Batch:	WG417803-2	WG417803-3			
Arsenic, Dissolved	114		115		80-120	1		20
Barium, Dissolved	98		100		80-120	2		20
Beryllium, Dissolved	100		102		80-120	2		20
Cadmium, Dissolved	109		110		80-120	1		20
Chromium, Dissolved	95		100		80-120	5		20
Lead, Dissolved	107		110		80-120	3		20
Nickel, Dissolved	98		99		80-120	1		20
Selenium, Dissolved	113		115		80-120	2		20
Silver, Dissolved	92		94		80-120	2		20
Vanadium, Dissolved	101		102		80-120	1		20
Zinc, Dissolved	101		102		80-120	1		20
MCP Dissolved Metals - Westborough Lab	Associated sample	e(s): 01-08	Batch:	WG418542-2	WG418542-3			
Mercurv. Dissolved	114		111		80-120	3		20

Matrix Spike Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number: L1008812 **Report Date:** 06/21/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	/ RPD Q	RPD Qual Limits
MCP Dissolved Metals - W	estborough Lab	Associated s	ample(s): 01	-08 QC Bat	ch ID: WG417601-4	QC Sample	e: L1008812-04	Client ID:	GHC-6
Antimony, Dissolved	ND	0.5	0.4899	98	-	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1159	96	-	-	75-125	-	20
MCP Dissolved Metals - W	estborough Lab	Associated s	ample(s): 01	-08 QC Bate	ch ID: WG417803-4	QC Sample	e: L1008812-04	Client ID:	GHC-6
Arsenic, Dissolved	ND	0.12	0.140	117	-	-	75-125	-	20
Barium, Dissolved	0.063	2	2.04	99	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.050	100	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.055	108	-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.20	100	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.533	104	-	-	75-125	-	20
Nickel, Dissolved	ND	0.5	0.472	94	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.137	114	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.047	95	-	-	75-125	-	20
Vanadium, Dissolved	ND	0.5	0.531	106	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.511	102	-	-	75-125	-	20
MCP Dissolved Metals - W	estborough Lab	Associated s	ample(s): 01	-08 QC Bate	ch ID: WG418542-4	QC Sample	e: L1008812-04	Client ID:	GHC-6
Mercury, Dissolved	ND	0.001	0.0011	115	-	-	75-125	-	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L1008812 Report Date: 06/21/10

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

A

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1008812-01A	Vial Ascorbic Acid/HCl preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-01B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-01C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S-
L1008812-02A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-02B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-02C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S-
L1008812-03A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-03B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)

Serial_No:06211013:10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L1008812 Report Date: 06/21/10

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1008812-03C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1008812-04A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-04B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-04C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S-10(180)
L1008812-04D	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S-
L1008812-05A	Vial Ascorbic Acid/HCl preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-05B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-05C	Plastic 250ml HNO3 preserved	A	<2	4	Υ	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1008812-06A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)

Serial_No:06211013:10

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L1008812 Report Date: 06/21/10

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1008812-06B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-06C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-PB-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1008812-07A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-07B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-07C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-CR-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BE-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S-10(180)
L1008812-08A	Vial Ascorbic Acid/HCI preserved	A	N/A	4	Y	Absent	524.2(14)
L1008812-08B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-08C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP- 7470S-10(28),MCP-AG-6010S- 10(180),MCP-SB-6020S- 10(180),MCP-ZN-6010S- 10(180),MCP-AS-6010S- 10(180),MCP-TL-6020S- 10(180),MCP-BA-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-BE-6010S- 10(180),MCP-NI-6010S- 10(180),MCP-SE-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S- 10(180),MCP-V-6010S-
L1008812-09A	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	524.2(14)
L1008812-09B	Vial Ascorbic Acid/HCI preserved	А	N/A	4	Y	Absent	-

Container Comments

L1008812-01C

L1008812-07C

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

Report Date: 06/21/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E · Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **Q** The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.

Report Format: Data Usability Report

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L1008812
Project Number:	12700058-003	Report Date:	06/21/10

Data Qualifiers

- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L1008812

 Report Date:
 06/21/10

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. <u>Organic Parameters</u>: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Ti,Tl, V,Zn,Ca,Mg,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N,

SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B,

5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-06-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters:SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010,9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A.Organic Parameters:SW-846 3540C, 3545,3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500CI-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> <u>Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Non-Potable Water* (<u>Organic Parameters</u>: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. <u>Organic Parameters</u>: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, <u>Organic Parameters</u>: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035, MassDEP EPH, MassDEP VPH.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

FORM NO: 01-01 (rev. 14-OCT-07)	MA MCP or CT RCP?		PLEASE ANSWER QUESTIONS ABOVE	9 DAIDONA 11- TAN	P-MM &	7 RIZ-8	6 R1Z-10	S R1Z-9	4 GHC-6	2-MM E	2 R12-3	8812.1 MW-3	(Lab Use Only) Samp	ALPHALab ID			Other Project Specific Requiremer	These samples have been previously analyze	Email: Ian, Cannon/2 teta tech. 10	Fax: 508 GU3 -2001	Behone: 508 903-2039	Froming han , 114	Address: One Grant A	21 Client: Tetra Tech Rizzo	Client Information	TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288	WESTBORO, MA	CHAI
	Bernmusched By:			2/m/ 6/9/10	oth N	0.451 J	1230	167 167	\$ 00/ × 100	093	1 0856	6/11/10 0802	le ID Date Time	Collection			ts/Comments/Detection Limits:	d by Alpha Date Due: 0(18/10			Turn-Around Time	ALPHA Quote #:	Project Manager: Lay JAs.	Project # 12700058	Project Location: Walpole	Project Name: Whypele Par	Project Information	N OF CUSTODY
	Chilo 1612	Preservative Affect	Container Type	Anota X	V V V							Gw R X	Matrix Initials	Sample Sampler's		×.	NAL	Time:	y confirmed if pre-approvedi)	kontra karana aran aran aran aran aran aran	X	MAN	1 la Camen Mi	COO 3 Contraction Reg	m4	ات المندة لا	Rep	AGEOFDate
1	Received By					 Martine Control of Contro of Control of Control of Control of Control of Control of Co						×	1 2 1 mar 1 1 1 mar 1 2 1			24.	<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			es XNo Are CT RCP (Rea	es DNo Are MCP Analytics	MCP PRESUMPTIVE CERTAI	A MCP CAM	Ted Program	ADEx 🗆 Add't Deliverab	FAX	oort Information - Data Deliv	Rec'd in Lab: $\mathcal{C}[1]$
	Date/Time star Let NI IO IOLZ-AID				tentre en la constante de la constante de la constante de la constante de la constante de la constante de la co La constante de la constante de								/							sonable Confidence Protoco	al Methods Required?	NTY - CT REASONABLE	RC6W-1	ULINIUS		Kame as Cli	erables Billing Info	
Page	rt until any ambiguities are resolved samples submitted are subject to 2 hats Terms and Conditions 0	ase philit dearly, legiply and com- lefy Samples can not be logged nd tumaround time clock will not 2							tors the methods 4				ample Specific Comments s	(Please specify below)	Preservation	☐ Lab to do		SAMPLE HANDLING		ols) Required?		E CONFIDENCE PROTOCOLS				ient info PO #:	rmation	- 6 18 3 00 V) :# 9

Appendix F

Copy of DEP Transmittal Forms (BWSC-104 and BWSC-108)

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup	BWSC104
RESPONSE ACTION OUTCOME (RAO) STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J)	Release Tracking Number
For sites with multiple RTN	s, enter the Primary RTN above.
A. SITE LOCATION:	
1. Site Name/Location Aid:	
2. Street Address:	
3. City/Town: 4. ZIP Code:	
5. Check here if a Tier Classification Submittal has been provided to DEP for this disposal site. a. Tier IA b. Tier IB c. Tier IC d. Tier II	
6. If a Tier I Permit has been issued, provide Permit Number:	
B. THIS FORM IS BEING USED TO: (check all that apply)	
1. List Submittal Date of RAO Statement (if previously submitted):	
2. Submit a Response Action Outcome (RAO) Statement	
a. Check here if this RAO Statement covers additional Release Tracking Numbers (RTNs). previously linked to a Tier Classified Primary RTN do not need to be listed here.	RTNs that have been
b. Provide additional Release Tracking Number(s) -	
3. Submit a Revised Response Action Outcome Statement	
 a. Check here if this Revised RAO Statement covers additional Release Tracking Numbers RAO Statement or previously submitted Revised RAO Statements. RTNs that have been preclassified Primary RTN do not need to be listed here. 	(RTNs), not listed on the aviously linked to a Tier
b. Provide additional Release Tracking Number(s)	-
4. Submit a Response Action Outcome Partial (RAO-P) Statement	
Check above box, if any Response Actions remain to be taken to address conditions associated having the Primary RTN listed in the header section of this transmittal form. This RAO Statemer RAO-Partial Statement for that RTN. A final RAO Statement will need to be submitted that refer Statements and, if applicable, covers any remaining conditions not covered by the RAO-Partial Alex, appeit/vit/veu are an Eligible Percen or Tenant pursuant to MCL, a 215 a 2, and have no	ed with this disposal site ent will record only an rences all RAO-Partial Statements.
conduct response actions on the remaining portion(s) of the disposal site:	
a. Eligible Person b. Eligible Tenant	
5. Submit an optional Phase I Completion Statement supporting an RAO Statement	
6. Submit a Periodic Review Opinion evaluating the status of a Temporary Solution for a Class specified in 310 CMR 40.1051 (Section F is optional)	s C-1 RAO Statement, as
7. Submit a Retraction of a previously submitted Response Action Outcome Statement (Section	ons E & F are not required)
(All sections of this transmittal form must be filled out unless otherwise noted	d above)

Massachusetts Department of Enviro Bureau of Waste Site Cleanup	onmental Protection BWSC104
RESPONSE ACTION OUTCOME (RA	O) STATEMENT
Pursuant to 310 CMR 40.1000 (Subpart J)	
C. DESCRIPTION OF RESPONSE ACTIONS: (check all that apply: fo	r volumes. list cumulative amounts)
1. Assessment and/or Monitoring Only	2. Temporary Covers or Caps
3. Deployment of Absorbent or Containment Materials	4. Treatment of Water Supplies
5. Structure Venting System	6. Engineered Barrier
7. Product or NAPL Recovery	8. Fencing and Sign Posting
9. Groundwater Treatment Systems	10. Soil Vapor Extraction
11. Bioremediation	12. Air Sparging
13. Monitored Natural Attenuation	14. In-situ Chemical Oxidation
15. Removal of Contaminated Soils	
a. Re-use, Recycling or Treatment i. On Site Estimated	volume in cubic yards
ii. Off Site Estimated	volume in cubic yards
iia. Facility Name: Town	: State:
iib. Facility Name: Town	n: State:
iii. Describe:	
b. Landfill	
i. Cover Estimated volume in cubic yards	
Facility Name: Town	State:
	0.000
ii. Disposal Estimated volume in cubic yards	
Facility Name: Town	n: State:
16 Removal of Drume, Tapke or Containers:	
Describe Quantity and Amount:	
b. Facility Name: Towr	n: State:
c. Facility Name: Town): State:
17. Removal of Other Contaminated Media:	
a. Specify Type and Volume:	
b. Facility Name: Towr	n: State:
c. Facility Name: Town	:: State:

	Massachusetts Department of Environmental Protection	BWSC104
		Release Tracking Number
	RESPONSE ACTION OUTCOME (RAO) STATEMENT	
	Pursuant to 310 CMR 40.1000 (Subpart J)	
C. DESCRIPTION C	F RESPONSE ACTIONS (cont.): (check all that apply; for volumes, list cumulation	ve amounts)
18. Other Res	sponse Actions:	
Describe:		
19. Use of Inr	novative Technologies:	
Describe:		
D. SITE USE:		
1. Are the respons expansion of the cu	e actions that are the subject of this submittal associated with the <i>redevelopmen</i> <i>irrent use</i> of property(ies) impacted by the presence of oil and/or hazardous mate	<i>t, reuse</i> or the <i>major</i> rials?
🗌 a. Yes	b. No c. Don't know	
2. Is the property a	a vacant or under-utilized commercial or industrial property ("a brownfield property	")?
a. Yes	b. No c. Don't know	
3. Will funds from site?	a state or federal brownfield incentive program be used on one or more of the pro	perty(ies) within the disposal
a. Yes	b. No c. Don't know If Yes, identify program(s):	
4. Has a Covenant	Not to Sue been obtained or sought?	
a. Yes	b. No c. Don't know	
5. Check all applic	able categories that apply to the person making this submittal:	elopment Agency or Authority
b. Commu	inity Development Corporation	Corporation
d. Private	Developere. Flauciaryf. Secured Lenderg. Mu	nicipality
	r Buyer (hor-owner) i. Other, describe	ata any logal commitment
This data will be u	obligation or liability on the part of the party or person providing this data to M	assDEP.
E. RESPONSE ACT	ION OUTCOME CLASS:	
Specify the Class o Select ONLY one C	f Response Action Outcome that applies to the disposal site, or site of the Threat lass.	of Release.
1. Class A-1 F	RAO: Specify one of the following:	
a. Conta	mination has been reduced to background levels.	has been eliminated.
2. Class A-2 F infeasible.	RAO: You MUST provide justification that reducing contamination to or approaching the second se	ng background levels is
3. Class A-3 F contamination	RAO : You MUST provide an implemented Activity and Use Limitation (AUL) and junt to or approaching background levels is infeasible.	stification that reducing
4. Class A-4 F background le (UCLs) 15 fee Engineered Ba of the Engineer	RAO : You MUST provide an implemented AUL, justification that reducing contam evels is infeasible, and justification that reducing contamination to less than Uppent below ground surface or below an Engineered Barrier is infeasible. If the Permarrier, you must provide or have previously provided a Phase III Remedial Action Fored Barrier.	ination to or approaching r Concentration Limits anent Solution relies upon an Plan that justifies the selection

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC104
RESPONSE ACTION OUTCOME (RAO) STATEMENT
Pursuant to 310 CMR 40.1000 (Subpart J)
E. RESPONSE ACTION OUTCOME CLASS (cont.):
5. Class B-1 RAO: Specify one of the following:
a. Contamination is consistent with background levels b. Contamination is NOT consistent with background levels.
6. Class B-2 RAO: You MUST provide an implemented AUL.
7. Class B-3 RAO : You MUST provide an implemented AUL and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface is infeasible.
8. Class C-1 RAO: You must submit a plan as specified at 310 CMR 40.0861(2)(h). Indicate type of ongoing response actions.
a. Active Remedial System b. Active Remedial Monitoring Program c. None
d. Other Specify:
9. Class C-2 RAO: You must hold a valid Tier I Permit or Tier II Classification to continue response actions toward a Permanent Solution.
F. RESPONSE ACTION OUTCOME INFORMATION:
1. Specify the Risk Characterization Method(s) used to achieve the RAO described above:
a. Method 1 b. Method 2 c. Method 3
d. Method Not Applicable-Contamination reduced to or consistent with background, or Threat of Release abated
2. Specify all Soil Category(ies) applicable. More than one Soil Category may apply at a Site. Be sure to check off all APPLICABLE categories:
a. S-1/GW-1 d. S-2/GW-1 g. S-3/GW-1
b. S-1/GW-2 e. S-2/GW-2 h. S-3/GW-2
□ c. S-1/GW-3 □ f. S-2/GW-3 □ i. S-3/GW-3
3. Specify all Groundwater Category(ies) impacted. A site may impact more than one Groundwater Category. Be sure to check off all IMPACTED categories:
a. GW-1 b. GW-2 c. GW-3 d. No Groundwater Impacted
4. Specify remediation conducted:
a. Check here if soil remediation was conducted.
b. Check here if groundwater remediation was conducted.
5. Specify whether the analytical data used to support the Response Action Outcome was generated pursuant to the Department's Compendium of Analytical Methods (CAM) and 310 CMR 40.1056:
a. CAM used to support all analytical data. b. CAM used to support some of the analytical data.
C. CAM not used.
6. Check here to certify that the Class A, B or C Response Action Outcome includes a Data Usability Assessment and Data Representativeness Evaluation pursuant to 310 CMR 40.1056.
7. Estimate the number of acres this RAO Statement applies to:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Release Tracking Number

Pursuant to	310 CMR	40 1000 ((Subi	nart lì	۱
		-0.1000	(Oub)	parto	,

-			
	_		

G. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

if Section B indicates that either an RAO Statement, Phase I Completion Statement and/or Periodic Review Opinion is being provided, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #:	
2. First Name:	3. Last Name:
4. Telephone: 5. Ext.: _	6. FAX:
7. Signature:	
8. Date: mm/dd/yyyy	9. LSP Stamp:
H. PERSON MAKING SUBMITTAL:	
1. Check all that apply: 🗌 a. change in contact name	b. change of address c. change in the person undertaking response actions
2. Name of Organization:	
3. Contact First Name:	4. Last Name:
5. Street:	6. Title:
7. City/Town:	8. State: 9. ZIP Code:
10. Telephone: 11. Ext.: _	12. FAX:

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC104
Pursuant to 310 CMR 40,1000 (Subpart J)
I. RELATIONSHIP TO RELEASE OR THREAT OF RELEASE OF PERSON MAKING SUBMITTAL:
1. RP or PRP a. Owner b. Operator c. Generator d. Transporter
e. Other RP or PRP Specify:
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))
4. Any Other Person Making Submittal Specify Relationship:
L REQUIRED ATTACHMENT AND SUBMITTALS:
1. Check here if the Response Action(s) on which this opinion is based, if any are (were) subject to any order(s) permit(s)
and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of an RAO Statement that relies on the public way/rail right-of-way exemption from the requirements of an AUL.
3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of a RAO Statement with instructions on how to obtain a full copy of the report.
 4. Check here to certify that documentation is attached specifying the location of the Site, or the location and boundaries of the Disposal Site subject to this RAO Statement. If submitting an RAO Statement for a PORTION of a Disposal Site, you must document the location and boundaries for both the portion subject to this submittal and, to the extent defined, the entire Disposal Site.
 5. Check here to certify that, pursuant to 310 CMR 40.1406, notice was provided to the owner(s) of each property within the disposal site boundaries, or notice was not required because the disposal site boundaries are limited to property owned by the party conducting response actions. (check all that apply)
a. Notice was provided prior to, or concurrent with the submittal of a Phase II Completion Statement to the Department.
b. Notice was provided prior to, or concurrent with the submittal of this RAO Statement to the Department.
c. Notice not required. d. Total number of property owners notified, if applicable:
 6. Check here if required to submit one or more AULs. You must submit an AUL Transmittal Form (BWSC113) and a copy of each implemented AUL related to this RAO Statement. Specify the type of AUL(s) below: (required for Class A-3, A-4, B-2, B-3 RAO Statements)
a. Notice of Activity and Use Limitation b. Number of Notices submitted:
c. Grant of Environmental Restriction d. Number of Grants submitted:
7. If an RAO Compliance Fee is required for any of the RTNs listed on this transmittal form, check here to certify that an RAO Compliance Fee was submitted to DEP, P. O. Box 4062, Boston, MA 02211.
8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Address/Location Aid. Send corrections to the DEP Regional Office.
9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

	Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup	BWSC104
	RESPONSE ACTION OUTCOME (RAO) STATEMENT	Release Tracking Number
	Pursuant to 310 CMR 40.1000 (Subpart J)	
K. CERTIFICATION	OF PERSON MAKING SUBMITTAL:	
1. I, examined and am f transmittal form, (ii) material informatio that I am fully autho entity on whose be possible fines and	, attest under the pains and penalties of perjury amiliar with the information contained in this submittal, including any and all docu that, based on my inquiry of those individuals immediately responsible for obtain in contained in this submittal is, to the best of my knowledge and belief, true, accur rized to make this attestation on behalf of the entity legally responsible for this sub half this submittal is made am/is aware that there are significant penalties, includi mprisonment, for willfully submitting false, inaccurate, or incomplete information.	(i) that I have personally ments accompanying this ing the information, the ate and complete, and (iii) mittal. I/the person or ng, but not limited to,
2. By:	3. Title:	
4. For:(Na	me of person or entity recorded in Section H) 5. Date:	mm/dd/vvvv
6. Check here	if the address of the person providing certification is different from address record	ed in Section H.
7. Street:		
8. City/Town:	9. State: 10. ZI	P Code:
11. Telephone:	12. Ext.: 13. FAX:	
		10 000 PEP
	BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL	RELEVANT
ડા	JEMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRE	D DEADLINE.
Date Stamp (DEP USE ONLY:)	

	Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup	BWSC108
	COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT	Release Tracking Number
	Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)	
A. SITE LOCATIO	DN:	
1. Site Name:		
2. Street Address:	·	
3. City/Town:	4. ZIP Code:	
5. Check her	re if a Tier Classification Submittal has been provided to DEP for this disposal site.	
a. Tier I/	A b. Tier IB c. Tier IC d. Tier II	
6. If applicable, pro	ovide the Permit Number:	
B. THIS FORM IS I	BEING USED (check all that apply)	
1. Submit a F	Phase I Completion Statement, pursuant to 310 CMR 40.0484.	
2. Submit a F	Revised Phase I Completion Statement, pursuant to 310 CMR 40.0484.	
3. Submit a F	Phase II Scope of Work, pursuant to 310 CMR 40.0834.	
4. Submit an 310 CMR 40.	interim Phase II Report . This report does not satisfy the response action deadline 0500.	requirements in
5. Submit a fi	inal Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.	
6. Submit a R	Revised Phase II Report and Completion Statement, pursuant to 310 CMR 40.083	6.
│ │ 7. Submit a F	Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR	40.0862.
8. Submit a F	Revised Phase III Remedial Action Plan and Completion Statement, pursuant to	310 CMR 40.0862.
9. Submit a F	Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.	
10. Submit a	Modified Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.	
11. Submit a	n As-Built Construction Report, pursuant to 310 CMR 40.0875.	
12. Submit a	Phase IV Status Report, pursuant to 310 CMR 40.0877.	
13. Submit a	Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.	
Specify th	he outcome of Phase IV activities: (check one)	
a. Phase Respons	e V Operation, Maintenance or Monitoring of the Comprehensive Remedial Action is se Action Outcome.	necessary to achieve a
b. The re Monitorir Statemer	equirements of a Class A Response Action Outcome have been met. No additional ng is necessary to ensure the integrity of the Response Action Outcome. A complete nt and Report (BWSC104) will be submitted to DEP.	Operation, Maintenance or ed Response Action Outcome
c. The re Monitorir Statemer	equirements of a Class C Response Action Outcome have been met. No additional ng is necessary to ensure the integrity of the Response Action Outcome. A complete nt and Report (BWSC104) has been or will be submitted to DEP.	Operation, Maintenance or ed Response Action Outcome
d. The r Monitorir toward a will be su	requirements of a Class C Response Action Outcome have been met. Further Opera ng of the remedial action is necessary to ensure that conditions are maintained and t a Permanent Solution. A completed Response Action Outcome Statement and Repo ubmitted to DEP.	ation, Maintenance or hat further progress is made rt (BWSC104) has been or

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC108	
COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT	r
Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)	
B. THIS FORM IS BEING USED TO (cont.):(check all that apply)	
14. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0678 and 40.0679.	
15. Submit a Prase V Status Report, pursuant to 310 CMR 40.0692.	
a. Turbe of Report: (sheek one)	
b. Eroquency of Submittel: (check all that apply)	
b. Frequency of Submittal. (check an that apply)	
ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.	
iii. A Remedial Monitoring Report(s) submitted concurrent with a Status Report.	
c. Status of Site: (check one)i Phase IVii Phase Viii. Remedy Operation Statusiv. Class C F	RAO
d. Number of Remedial Systems and/or Monitoring Programs:	
A separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring Program addressed by this transmittal form.	
17. Submit a Remedy Operation Status , pursuant to 310 CMR 40.0893.	
18. Submit a Status Report to maintain a Remedy Operation Status, pursuant to 310 CMR 40.0893(2).	
 19. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status (ROS), pursuant to 3 CMR 40.0893(5) (check one, or both, if applicable). 	10
a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions").	
b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Sec D, "Person Undertaking Response Actions").	ction
c. Number of Persons Maintaining an ROS not including the primary representative:	
20. Submit a Termination of a Remedy Operation Status , pursuant to 310 CMR 40.0893(6).(check one)	
a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 C 40.0893(6)(b) for resuming the ROS are attached.	MR
b. Submit a notice of Termination of ROS.	
21. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.	
Specify the outcome of Phase V activities: (check one)	
 a. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance of Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement (BWSC104) will be submitted to DEP. 	r me
 b. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance o Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outco Statement and Report (BWSC104) will be submitted to DEP. 	r me
 c. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and/or that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP. 	e
22. Submit a Revised Phase V Completion Statement , pursuant to 310 CMR 40.0894.	
23. Submit a Post-Class C Response Action Outcome Status Report, pursuant to 310 CMR 40.0898.	

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release Tracking Number

Pursuant to 310 CMR 40.0484 (Subpart D)	and 40.0800 (Subpart H)	1
---	---------------	------------	---

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

> if Section B indicates that a Phase I, Phase II, Phase III, Phase IV or Phase V Completion Statement and/or a Termination of a Remedy Operation Status is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

> if Section B indicates that a Phase II Scope of Work or a Phase IV Remedy Implementation Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (iii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Post-Class C RAO Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #:		
2. First Name:	3. Last Nam	ne:
4. Telephone:	5. Ext.: 6. F	AX:
7. Signature:		
8. Date:(mm/dd/yyyy)	9. LSP Stamp:

Massachusetts Department of Environmental Protection				
Bureau of Waste Site Cleanup BWSC1	08			
	ing Number			
FORM & PHASE I COMPLETION STATEMENT				
Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)				
D. PERSON UNDERTAKING RESPONSE ACTIONS:				
1. Check all that apply: a. change in contact name b. change of address c. change in the undertaking response.	person onse actions			
2. Name of Organization:				
3. Contact First Name: 4. Last Name:				
5. Street: 6. Title:				
7. City/Town: 8. State: 9. ZIP Code:				
10. Telephone: 11. Ext.: 12. FAX:				
E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS:	relationship			
1. RP or PRP a. Owner b. Operator c. Generator d. Transporter				
e. Other RP or PRP Specify:				
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)				
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))				
4. Any Other Person Undertaking Response Actions Specify Relationship:				
F. REQUIRED ATTACHMENT AND SUBMITTALS:				
1. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.				
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP.				
3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan.				
4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan.				
5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action.				
6. If submitting a Transfer of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for the person making this submittal (transferee) is attached.				
7. If submitting a Modification of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for each new person making this submittal is attached.				
8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Name. Send corrections to: BWSC.eDEP@state.ma.us.				
9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.				

	Massachusetts Department of Environmental Protec Bureau of Waste Site Cleanup	etion BWSC108		
	COMPREHENSIVE RESPONSE ACTION TRANSMITT FORM & PHASE I COMPLETION STATEMENT	AL Release Tracking Number		
	Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)			
G. CERTIFICATIO	ON OF PERSON UNDERTAKING RESPONSE ACTIONS:			
1. I,, attest under the pains and penalties of perjury (i) that I have personally examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information.				
> <i>if Section B indicates that this is a</i> Modification of a Remedy Operation Status (ROS) , I attest under the pains and penalties of perjury that I am fully authorized to act on behalf of all persons performing response actions under the ROS as stated in 310 CMR 40.0893(5)(d) to receive oral and written correspondence from MassDEP with respect to performance of response actions under the ROS, and to receive a statement of fee amount as per 4.03(3).				
I understand that any material received by the Primary Representative from MassDEP shall be deemed received by all the persons perform ing response actions under the ROS, and I am aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate or incomplete information.				
2. Ву:		:		
	Signature			
4. For:	5. Date	9:		
	(Name of person or entity recorded in Section D)	(mm/dd/yyyy)		
6. Check here if the address of the person providing cartification is different from address recorded in Section D				
7. Street:				
8. City/Town:	9. State:	10. ZIP Code:		
11. Telephone:	12. Ext.: 13. FAX:			
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.				
Date Stamp (DEP USE ONLY:)				