Submitted to:

Massachusetts Department of Environmental Protection Southeast Regional Office

January 12, 2011

January 12, 2011

Massachusetts Department of Environmental Protection Southeast Regional Office Bureau of Waste Site Cleanup 20 Riverside Drive Lakeville, MA 02347

Re: Class A-2 Response Action Outcome Statement and Phase V Completion Statement
Walpole Park South
Walpole, Massachusetts
RTN 4-3021915

Dear Sir/Madam:

In accordance with the requirements of 310 CMR 40.000, and on behalf of Walpole Park South Trust, Tetra Tech, Inc. d/b/a Tetra Tech Rizzo is submitting this Class A-2 Response Action Outcome (RAO) Statement and Phase V Completion Statement for the Disposal Site identified by Release Tracking Number (RTN) 4-3021915, Walpole Park South (the Site). A Method 2 Human Health and Environmental Risk Characterization was conducted to evaluate the risk posed by the contaminants of concern at the Site. The results of the risk characterization concluded that a condition of No Significant Risk has been achieved for the Disposal Site, and an Activity and Use Limitation (AUL) is not required.

This report has been prepared in accordance with the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000 and is subject to the Limitations and Conditions presented in Appendix A. The original DEP transmittal forms for this report (BWSC-104 and BWSC-108) were submitted electronically via eDEP.

Please contact us if you have any questions or comments.

Very truly yours,

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\1270000\12700058\Rpts\RAO Statement January 2011.doc

Table of Contents

1.0	Introd	luction		1
2.0	Dispo	sal Site I	Information	1
	2.1	Dispos	sal Site Description	1
	2.2	Releas	se Description and Regulatory History	2
		2.2.1	Background and Site History	2
		2.2.2	Phase II – Comprehensive Site Assessment	3
		2.2.3	Phase III – Remedial Action Plan	5
		2.2.4	Phase IV – Remedy Implementation Plan	5
		2.2.5	Phase IV Completion Statement	6
		2.2.6	Phase V – Remedy Operation Status	6
3.0	Natur	e and Ex	tent of Contamination	6
	3.1	Extent	of Groundwater Contamination	7
		3.1.1	Phase II Groundwater Analysis Results	7
		3.1.2	Phase IV and Phase V Groundwater Analysis Results	7
		3.1.3	Summary	8
4.0	Repre	esentative	eness Evaluation and Data Usability Assessment	8
	4.1	Repres	sentativeness Evaluation	9
		4.1.1	Conceptual Site Model	9
		4.1.2	Use of Field/Screening Data	9
		4.1.3	Sampling Locations and Depths	10
		4.1.4	Sampling Density, Spatial Distribution, Collection Methods and Handling	10
		4.1.5	Temporal Distribution of Samples	10
		4.1.6	Completeness	11
		4.1.7	Inconsistency and Uncertainty	11
		4.1.8	Representativeness of the Data Set	11
	4.2	Data U	Jsability Assessment	11
		4.2.1	Analytical Data Usability Assessment	12
		4.2.2	Field Data Usability Assessment	13

	4.3	Conclusions	13
5.0	Meth	od 2 Human Health and Environmental Risk Characterization	14
	5.1	Method Selection	14
	5.2	Soil and Groundwater Characterization	14
	5.3	Exposure Point Concentrations	15
6.0	Risk	Characterization	15
		6.1.1 Risk of Harm to Health, Public Welfare and the Environment	16
		6.1.2 Risk of Harm to Public Safety	16
	6.2	Risk Characterization Conclusions	16
7.0	Feasi	bility of Achieving Background	16
8.0	Relat	ionship of RAO to Other Disposal Site RAO(s)	17
9.0	Phase	e V Completion Statement	17
10.0	Publi	c Notifications	18
11.0	L.S.P	P. Opinion and Response Action Outcome Statement	18

List of Tables

 Table 1
 Groundwater Elevation Data – April 2010

 Table 2
 Soil Analytical Data

 Table 3
 Groundwater Analytical Data

List of Figures

Figure 1 Site Locus Plan

Figure 2 Site Plan

Figure 3 MassGIS Map

List of Appendices

Appendix A LSP Statement of Limitations and Conditions

Appendix B Data Usability Assessment Documentation

Appendix C Public Notification Documentation

Appendix D Soil Boring Logs and Monitoring Well Construction Diagrams

Appendix E Laboratory Certificates of Analysis

Appendix F Copy of DEP Transmittal Forms (BWSC-104 and BWSC-108)

1.0 Introduction

Tetra Tech, Inc. d/b/a Tetra Tech Rizzo (TTR) has prepared this Class A-2 Response Action Outcome (RAO) Statement and Phase V Completion Statement on behalf of Walpole Park South Trust for the Disposal Site identified by the Massachusetts Department of Environmental Protection under Release Tracking Number (RTN) 4-3021915 (the Site). The Site is known as Walpole Park South and is generally located at the northwest quadrant of the intersection of Providence Highway (Route 1) and Pine Street in Walpole, Massachusetts.

Multiple phases of subsurface investigations have been implemented at the Site, as described in the Phase II – Comprehensive Site Assessment (July 2006), Phase III – Remedial Action Plan (July 2006), Phase IV – Remedy Implementation Plan (July 2007), Phase IV Completion Report and Remedy Operation Status Submittal (July 2009) and Phase V – Remedy Operation Status Reports #1 and #2 submitted in February and August 2010, respectively. The Phase II report concluded that a condition of No Significant Risk did not exist in 2006 because of the presence of bromodichloromethane and chloroform in MW-2 and RIZ-3, chloroform in MW-3 and lead in MW-9. The installation of additional groundwater monitoring wells, and collection of six (6) rounds of groundwater samples since submission of the Phase II report generated additional groundwater data, indicative of current and recent conditions at the Site, which was used for preparation of a Method 2 risk characterization. Based on the results of the testing done since submission of the Phase II report and the conclusions of the risk characterization presented herein, a condition of No Significant Risk has been achieved at the Site and an Activity and Use Limitation (AUL) is not required to restrict or limit human exposures.

This report presents a description of the releases, a summary of historic and recent assessment of soil and groundwater conditions at the Site, a representativeness evaluation and data usability assessment, and a summary of the risk characterization.

This Class A-2 RAO Statement/Phase V Completion Statement has been prepared in accordance with the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000, and is subject to the LSP Statement of Limitations and Conditions included in Appendix A. Copies of the DEP transmittal forms (BWSC-104 and BWSC-108) are included in Appendix F.

2.0 Disposal Site Information

In accordance with the MCP (310 CMR 40.1056) the following sections provide the general Disposal Site information relevant to this Class A-2 RAO and Phase V Completion Statement.

2.1 Disposal Site Description

The Site encompasses approximately 54 acres of land, located at the intersection of US Route 1 and Pine Street in Walpole, Massachusetts, as shown on Figure 1. The Site is divided into eight lots, seven of which contain buildings occupied by office and warehouse space that are leased to commercial and/or light industrial businesses. The current configuration of the Site and the

configuration of the individual building lots are depicted on Figure 2. An access road, Walpole Park South Drive, crosses the Site from Route 1 along the northeast boundary of Walpole Park South, to Pine Street on the southern boundary of the property. The buildings, driveways and parking areas cover the majority of the Site. The remainder of the property consists of landscaped areas adjacent to the buildings, wooded land and unpaved open areas. Prior to construction of the existing buildings the Site was vacant land, portions of which were reportedly used as a gravel pit. Development of the Site and building construction commenced in 1986.

The property is abutted to the north by vacant wooded land, to the west by single-family residences, to the south by Pine Street, across which are commercial properties including a truck repair and painting facility, and to the east by Route 1, across which are commercial and industrial properties. A Site Locus map is included as Figure 1, the Disposal Site boundaries and Site features are depicted on Figure 2 and the MassGIS Map is included as Figure 3.

The nearest surface water features to the Site are the Goldwater Farm Pond and School Meadow Brook. Goldwater Farm Pond is located approximately 650 feet south of the Site, and School Meadow Brook flows in a north and northwesterly direction downstream from the pond. The Site and surrounding area receive water from the Town of Walpole municipal water system, and are also serviced by public sanitary sewer service. No private drinking water wells are known or anticipated to exist within 500 ft of the Site. There is no known Protected Open Space within 500 ft of the Site. There are no known institutions (facilities with overnight housing such as a hospital, health care facility, orphanage, nursing home, convalescent home, educational facility, or correctional institution) located within 500 ft of the Site. Human receptors within 500 feet of the Disposal Site include workers at the Site and abutting properties, and residents of single family residences located west of the Site.

2.2 Release Description and Regulatory History

2.2.1 Background and Site History

Prior to construction of the existing buildings the Site was vacant land, portions of which were used as a gravel pit. Development of the Site and building construction commenced in 1986. Buildings have been constructed on the Site lots on an intermittent basis since 1986, and currently one lot remains undeveloped.

In compliance with requirements issued by the Walpole Board of Health (BOH), seven groundwater monitoring wells were installed at the Site in December 1986 by Carr Research Laboratory (Carr), and annual groundwater monitoring was performed on a limited number of the installed wells. In the late 1990's it was discovered that the reported results from the annual BOH sampling were occasionally exceeding the then current Massachusetts DEP reportable concentrations for GW-1 areas (RCGW-1 standards). Two RTNs were issued based on reported concentrations of compounds identified in groundwater at the Site.

RTN 3-19859 was issued in 2000 based on sampling performed in April 1999 and April 2000 when elevated concentrations of chloroform and bromodichloromethane were reported in

groundwater samples collected from monitoring wells along the western boundary of the Site. A Class A-2 RAO Statement was submitted by Carr Research Laboratory on July 25, 2001, indicating that a Permanent Solution had been achieved for this RTN. The RAO indicated that the source of the bromodichloromethane was treatment chemicals (brominating tablets) used in a residential swimming pool located on an upgradient property. The source of the chloroform was identified as a reaction between chlorine used for swimming pool disinfection at the same residence, and septage from the septic tank and leach field at the residence.

RTN 3-21915 was issued in April 2002 when it was noted that the lead concentrations reported by the laboratory for groundwater samples collected from monitoring wells MW-3 and MW-6 were 59 micrograms per liter (μ g/l) and 23 μ g/l, respectively; concentrations which exceeded the then applicable MCP reportable concentration for groundwater category RCGW-1 (20 μ g/l). To further evaluate this condition confirmatory groundwater sampling was performed in May 2002. The results of this sampling indicated lead concentrations in samples collected from MW-3 and MW-6 of 46 μ g/l and 18 μ g/l, respectively. Based on these sampling results it was concluded that the detected lead concentrations represented a 120-day notification condition under the MCP. Therefore, a RNF was submitted to the DEP on July 2, 2002. In response to the notification, DEP issued a Notice of Responsibility (NOR) on August 15, 2002 and assigned RTN 3-21915 to the reported release. Between September 2000 and February 2006 additional groundwater monitoring wells were installed on several occasions to replace damaged wells and/or to provide sufficient coverage to assess groundwater conditions at the Site.

Based on historic monitoring results and the investigations implemented after submission of the RNF for RTN 3-21915, a Phase I – Initial Site Investigation (Phase I) report and Tier Classification was prepared by GHC and submitted to DEP in June 2004. The Phase I report concluded that the nature and extent of contamination does not exhibit a regular pattern, relative to both the locations of wells in which levels exceed MCP Method 1 GW-1 standards and the detection of compounds over time. Based on the Numerical Ranking Scoresheet (NRS) prepared by GHC, the Site was classified as a Tier IB Disposal Site. An evaluation performed as part of the Phase I investigation concluded that the identified Site conditions did not represent an Imminent Hazard, indicating that implementation of an Immediate Response Action was not necessary. In an internal memorandum dated July 9, 2004, the DEP Drinking Water Program (DWP) found that "the groundwater contamination levels at the site are all low, compared to most waste sites," and "heavy metals have fairly low mobility in groundwater." DEP concluded "the site does not appear to pose a threat to the Walpole municipal wells, because of the low groundwater contamination levels and the distance from the site to the wells."

2.2.2 Phase II – Comprehensive Site Assessment

Following the Phase I investigation Rizzo Associates, Inc. (now Tetra Tech Rizzo) was retained to perform the Phase II – Comprehensive Site Assessment. The purpose of the Phase II investigation was to obtain data to characterize the nature and extent of releases of oil and/or hazardous materials (OHM) at the Site, quantify the risks posed by such releases, and assess the need to conduct further remedial actions at the Site.

The Phase II Investigation included the installation of 7 soil borings and completion of 3 of the soil borings as groundwater monitoring wells; sampling and analysis of soil and groundwater from select soil borings and monitoring wells; surveying to determine the locations and relative elevations of each newly installed monitoring well casing; gauging of groundwater elevations to evaluate the groundwater flow direction and prepare a potentiometric surface map; and hydraulic conductivity testing of three groundwater monitoring wells.

Laboratory analysis of seven (7) soil samples collected during the Phase II investigation did not detect VOCs or total metals at concentrations exceeding the applicable MCP Method 1 standards. Laboratory analysis of 45 groundwater samples collected over four Phase II sampling rounds identified the presence of volatile organic compounds (VOCs) and/or dissolved metals at concentrations greater than one or more of the applicable MCP Method 1 standards in four (4) wells (MW-2, MW-3, MW-9 and RIZ-3), all located near the perimeter of the Site and downgradient from potential off-site sources of groundwater contamination. The compounds exceeding the MCP Method 1 standards included bromodichloromethane, chloroform and lead; however, no on-site source was been identified for these compounds and the dissolved metals concentrations were inconsistent over the four sampling events. Lead was identified at a concentration greater than the method detection limit in well MW-9 in only one of the four groundwater sampling events. Because the locations and concentrations of the identified compounds were not consistent throughout the four groundwater sampling events there is not a clearly definable plume for the identified dissolved metals compounds.

The presence of bromodichloromethane and/or chloroform along the eastern boundary of the Site, specifically in monitoring wells MW-2, MW-3 and RIZ-3, suggested impacts from releases of chlorinated or brominated water. Historically identified concentrations of bromodichloromethane and chloroform along the western boundary of the Site, associated with RTN 3-19859, were attributed to a release of swimming pool water from the property upgradient from well MW-6. The chlorinated and/or brominated water was expected to have been reacting with the naturally occurring organic material in the sandy soils of the Site to form bromodichloromethane and chloroform. A similar reaction was also likely taking place along the eastern boundary of the Site. Potential sources for the chlorinated or brominated water are leaks in municipal water pipes, fire hydrant flushing, or infiltrating rainwater mixed with roadway deicing chemicals such as calcium chloride or sodium chloride. Based on the decreasing concentrations of bromodichloromethane and chloroform moving downgradient across the Site from well MW-2 to well RIZ-3 to well MW-3, the source of chlorinated or brominated water was likely upgradient from well MW-2, in or on the southeastern side of Route 1.

Since the concentrations of several compounds in groundwater exceeded the MCP Method 1 GW-1 and GW-3 standards, and the Site is located within a Zone II for a public water supply, the risk characterization performed during the Phase II concluded that a condition of No Significant Risk to human health and the environment had not been achieved at the Site for groundwater at that time.

2.2.3 Phase III – Remedial Action Plan

The Phase III evaluation included a review of alternative methods for treatment of groundwater to evaluate whether there were one or more financially and technically feasible remedial alternatives that could be implemented to reduce risk at the Site to a level where a Permanent Solution could be achieved, and the selection of an alternative for implementation. For the evaluation of remedial alternatives feasible technologies were considered based on their ability to address the conditions identified on the Site.

An initial screening evaluated nine remedial alternatives based on their ability to target these contaminant characteristics and the subsurface conditions at the Site. Alternatives evaluated during the initial screening included groundwater pump-and-treat, in-situ chemical oxidation, permeable reactive barriers, bioremediation/bio-barrier, electrical resistance heating, surfactant flushing, air sparging and vapor extraction, soil excavation and disposal/treatment, and MNA. Of these alternatives, groundwater pump-and-treat and MNA were selected for detailed evaluation.

The detailed evaluation compared the two remedial alternatives noted above in greater detail, based on the following criteria: effectiveness, reliability, difficulty, costs, risks, benefits and time for implementation. Based on the detailed evaluation, MNA was selected as the remedy for the Site.

At the time the Phase III was submitted it was anticipated that while the Phase IV was not due until July 26, 2007, MNA monitoring would commence in September or October 2006. However, because of unwillingness on the part of the Town of Walpole to cooperate with the responsible party relative to the installation of additional monitoring wells needed to implement the MNA, installation of the additional monitoring wells and commencement of the MNA sampling program was delayed until December 2007.

2.2.4 Phase IV - Remedy Implementation Plan

Based on the results of the Phase III, the Phase IV report indicated that MNA would be implemented at the Site to further evaluate groundwater conditions over time. The Phase IV report also noted that although MNA was identified as the appropriate remedial action for the Site, it may be determined that implementation of one or more other technologies should be considered as additional data on groundwater conditions was developed. In that case, feasible remedial alternatives would be evaluated and a determination made of whether the approach should be modified or changed. If changes to the remedial program were determined to be applicable, supplemental Phase III and Phase IV reports would be prepared to discuss the selection (Phase III) and design (Phase IV) of the remedy or remedies. The selection of MNA was appropriate given the sporadic and intermittent detection of metals or VOCs at concentrations exceeding applicable MCP standards, the absence of an identifiable source(s) of the detected compounds, and the likely off-site origin of those compounds. The proposed design for MNA included the installation of additional monitoring wells upgradient from the Site, and the collection of groundwater samples from the new wells and selected existing on-site monitoring wells.

2.2.5 Phase IV Completion Statement

Installation of the three additional monitoring wells, near the upgradient (southern) property line for Walpole Park South, was completed in December 2007. Wells were installed at two locations on Walpole Park South property, adjacent to Pine Street, and at one location on MHD property within the "jug handle" intersection of Route 1 southbound and Pine Street. The drilling locations were accessed using an all-terrain vehicle mounted hollow stem auger drilling rig, equipped with the capability to drill into bedrock, since the locations on Walpole Park South property were not accessible to conventional truck-mounted drilling equipment.

Four rounds of groundwater samples were collected during Phase IV. Based on the results of those samplings and previous sampling results for the Site, it was concluded that the requirements for a Class A or Class B RAO had not been and that ongoing monitoring would be performed to further characterize groundwater conditions over time. Specifically, it was indicated in the Phase IV Completion Statement that groundwater samples would be collected at approximately six month intervals for analysis for VOCs and metals. Details of the well installation and groundwater sampling were detailed in the Phase IV Completion Statement dated July 28, 2009.

2.2.6 Phase V - Remedy Operation Status

Phase V groundwater sampling was performed at the Site in December 2009 and June 2010. The results of those sampling events were discussed in Phase V – Remedy Operation Status Reports #1 and #2, submitted in February and August 2010, respectively. The results of four rounds of Phase IV groundwater monitoring and two rounds of Phase V groundwater monitoring did not detect VOCs or metals at concentrations exceeding the applicable MCP RCGW-1 reportable concentrations or the MCP Method 1 GW-1, GW-2 (where applicable) or GW-3 standards. The results of six (6) rounds of groundwater sampling performed over the period from December 2007 through June 2010 are summarized on Table 3.

3.0 Nature and Extent of Contamination

Based on the extensive subsurface testing completed to date, it does not appear that there is a specific on-site source of the identified compounds, historic data does not indicate a clearly definable plume, and recent results have shown the few detected analytes at concentrations well below the lower of the MCP GW-1 or GW-3 standards. Therefore, since contamination is not currently present on the Site, characterization of the nature and extent of contamination is not possible or required. However, historic groundwater monitoring results, including Phase II data and monitoring since submission of the Phase II report, are discussed in the following section to provide a general context for purposes of this RAO Statement/Phase V Completion Statement.

3.1 Extent of Groundwater Contamination

3.1.1 Phase II Groundwater Analysis Results

For the 45 groundwater samples that were submitted for laboratory analysis over four sampling rounds as a part of the Phase II investigation, VOCs and or dissolved metals concentrations greater than one or more of the applicable MCP Method 1 standards were reported in 4 wells. Compounds exceeding the MCP Method 1 standards included bromodichloromethane, chloroform and lead; however, no on-site source was identified for these compounds. Reported dissolved metals concentrations were inconsistent over the sampling events, and lead was identified at a concentration greater than the method detection limit in well MW-9 in only one of the four groundwater sampling events. Because the locations and concentrations of the identified compounds were not consistent throughout the four groundwater sampling events there is not a clearly definable dissolved metals plume.

The presence of bromodichloromethane and/or chloroform along the eastern boundary of the Site, specifically in monitoring wells MW-2, MW-3 and RIZ-3, suggested impacts from releases of chlorinated or brominated water. Historically identified concentrations of bromodichloromethane and chloroform along the western boundary of the Site, associated with RTN 3-19859, were attributed to a release of swimming pool water from the property upgradient from well MW-6. The chlorinated and/or brominated water was expected to have been reacting with the naturally occurring organic material in the sandy soils of the Site to form bromodichloromethane and chloroform. A similar reaction was also likely taking place along the eastern boundary of the Site. Potential sources for the chlorinated or brominated water are leaks in municipal water pipes, fire hydrant flushing, or infiltrating rainwater mixed with roadway deicing chemicals such as calcium chloride or sodium chloride. Based on the decreasing concentrations of bromodichloromethane and chloroform moving downgradient across the Site from well MW-2 to well RIZ-3 to well MW-3, the source of chlorinated or brominated water was likely upgradient from well MW-2, in or on the southeastern side of Route 1. We note that the Water Quality Reports for 2004 and 2005 issued by the Walpole Sewer & Water Department indicated the presence of bromodichloromethane and chloroform in samples collected from the municipal water system, and indicate that these compounds are a "by-product of drinking water disinfection." The generation of these compounds from chlorination of groundwater is a typical occurrence in this area of Massachusetts. Based on the data from monitoring wells MW-2, MW-3, RIZ-3 and RIZ-9, the Phase II report concluded that a condition of No Significant Risk did not exist in 2006.

3.1.2 Phase IV and Phase V Groundwater Analysis Results

Since submission of the Phase II report six (6) rounds of groundwater samples have been collected from monitoring wells MW-3, MW-9, RIZ-3, RIZ-8, RIZ-9 and RIZ-10. During that same period four (4) rounds of samples were collected from MW-2; samples could not be collected from that well during the December 2007 and December 2009 sampling events because the well was covered with snow piles and could not be located. Two rounds of groundwater samples were also collected from monitoring well RIZ-8S; samples were not collected at a

greater frequency from that well because during the other sampling events the well was dry or there was an insufficient saturated thickness to permit collection of water samples. These wells were selected to further evaluate conditions characterized during the Phase II investigations, to evaluate conditions near the upgradient property boundary, and to provide general coverage of the Site. Laboratory analysis of the samples collected during Phase IV and Phase V activities at the Site indicated low to non-detectable concentrations of the compounds which were the basis for the conclusions of the risk characterization in the Phase II report, and demonstrate that the historic elevated analysis results are likely related to off-site impacts that are intermittent and sporadic.

3.1.3 Summary

Historically, metals including antimony, arsenic, cadmium, chromium, and lead were identified at elevated concentrations at the Site. However, no metals have been reported at concentrations greater than the current Method 1 GW-1 standards since April 2006. In addition, when antimony was detected it was reported in multiple wells during a single groundwater sampling event but not reported at elevated concentrations in subsequent samplings of the same wells. The infrequent detections of antimony over the extensive sampling duration at the Site suggests that sampling and or laboratory error may account for the reported results, they may be naturally occurring impacts that vary in concentration over time, or related to intermittent off-site releases that migrate through the Site.

Lead is the only dissolved metal that has been identified in the groundwater at the Site on a somewhat regular basis; however, even lead concentrations have not been identified consistently enough to create plume maps or suggest an on-site source. Since April 1991, based on a combination of historical data and the groundwater sampling performed as a part of the Phase II investigation and post-Phase II monitoring, lead has been reported at concentrations greater than the current Method 1 GW-1 standard (15 μ g/L) three times in well MW-3 (22 to 59 μ g/L), twice in MW-9 (23 to 35 μ g/L) and once each in MW-2 (18 μ g/L), MW-6 (18 μ g/L) and MW-8 (26 μ g/L). Lead has not been reported above the lower of the MCP Method 1 GW-1 or GW-3 standard in the six sampling events performed since December 2007. Of these wells only well MW-3 is located on the downgradient side of the Site, indicating that an upgradient source or sources may be a significant contributor to the elevated lead concentrations on the Site.

None of the reported groundwater concentrations were detected at levels exceeding their respective Upper Concentration Limits (UCLs). Groundwater analytical data supporting this Class B-2 RAO is presented in Table 3. Laboratory certificates of analysis for groundwater samples collected as part of the MCP investigations since submission of the Phase II report are presented in Appendix E.

4.0 Representativeness Evaluation and Data Usability Assessment

A Representativeness Evaluation and Data Usability Assessment (REDUA) was conducted in support of this RAO Statement in accordance with 310 CMR 40.1056(2)(k) and DEP Policy

#WSC-07-350, "MCP Representativeness Evaluations and Data Usability Assessments" dated September 19, 2007. The Representativeness Evaluation documents the adequacy of the spatial and temporal data sets used to support the RAO. The Data Usability Assessment documents that the data relied upon are scientifically valid and defensible, and of sufficient accuracy, precision and completeness to support the RAO.

4.1 Representativeness Evaluation

The Representativeness Evaluation demonstrates the adequacy of the cumulative data set to sufficiently characterize conditions at the Disposal Site and supports the Conceptual Site Model. The evaluation includes a description of the Conceptual Site Model, use of field screening data; sampling rationale; number, spatial distribution and sampling procedures; temporal distribution of samples; data gaps; inconsistency and uncertainty and representativeness information. The components of the Representativeness Evaluation in support of this RAO are discussed in the sections below.

4.1.1 Conceptual Site Model

The Disposal Site is currently occupied by an industrial park with multiple buildings occupied by office, warehouse and distribution operations, paved parking lots, roadways and open space/landscaped areas. Laboratory analysis results of historic groundwater samples identified low concentrations of metals and VOCs. The monitoring has not identified a source or definable plume. The locations at which positive analytical results have been reported, and the intermittent and sporadic nature of the results, demonstrate that the historic elevated analysis results are likely related to off-site sources.

The topography of the Site slopes from southwest to northeast, from upland areas on the south and southwest side of Pine Street to wetlands and School Meadow Brook located north and northeast of the Site. The depth to bedrock ranges from 12 feet to greater than 50 feet below the ground surface, and the unconsolidated deposits overlying bedrock consist primarily of fine to coarse sand with gravel and boulders, with interbedded finer layers observed in some borings. Groundwater is present in overburden throughout most of the Site, although in some areas along the south and southwest property boundary, where shallow bedrock was observed, the overburden saturated thickness is limited and some monitoring wells are observed to periodically be dry. Groundwater at the site originates from migration from off-site upgradient locations, and from infiltration of precipitation at the Site, and flows from southwest to northeast consistent with topography and the groundwater discharge areas to the north and northeast (School Meadow Brook and associated wetlands).

4.1.2 Use of Field/Screening Data

The selection of laboratory analytical methods for the samples collected during and since the Phase II field investigations, which commenced in 2005, was based on the results of earlier sampling which indicated that VOCs and metals were the compounds of concern at the Site.

Field screening techniques, including PID headspace screening and field observations of soil characteristics and odors, were used in conjunction with existing analytical data to assist with the selection of soil samples for laboratory analysis.

4.1.3 Sampling Locations and Depths

Because of the absence of an identified release or source area, and the sporadic and intermittent presence of target compounds, sampling was conducted at locations throughout the Site to provide a representative characterization of subsurface conditions.

Our review indicates that the sampling locations and depths are sufficient to delineate Disposal Site boundaries, identify background COC concentrations, calculate EPCs, identify Hot Spots, identify exposure pathways and receptors, and assess human health and environmental risk at the Site.

4.1.4 Sampling Density, Spatial Distribution, Collection Methods and Handling

Soil and groundwater samples used to support this RAO were collected based on the layout and use of the Site and to provide general site-wide coverage. Soil samples included in the data set that supports this Class A-2 RAO Statement/Phase V Completion Statement were collected as discrete samples of subsurface materials. Groundwater samples were collected from monitoring wells screened across and below the water table using modified US Environmental Protection Agency (EPA) low flow sampling protocol which provides a representative sample of the static groundwater. Soil and groundwater samples collected to support this RAO were placed on ice and were transported to a Massachusetts certified laboratory under chains-of-custody.

The spatial distribution of the samples used for the calculation of EPCs used in the Risk Characterization is shown on Figure 2. A total of 30 soil samples, collected from 19 soil boring locations throughout the Site, were used to calculate the soil EPCs. Soil sample depths were selected based upon Field/Screening data, visual and olfactory observations and to provide general coverage of the fill materials encountered. A total of 48 groundwater samples collected from 9 monitoring wells during the period between December 2007 and June 2009 were used to calculate groundwater EPCs.

It is our opinion that the sampling density and spatial distribution of samples collected is consistent with the Conceptual Site Model and are representative of current Disposal Site conditions. We conclude that the sample collection and handling methods, sampling density and spatial distribution of soil and groundwater samples site-wide are sufficient to support the Class A-2 RAO Statement/Phase V Completion Statement.

4.1.5 Temporal Distribution of Samples

Soil and groundwater samples collected to support this RAO were collected at various times during the period from May 2003 to December 2007 for soil and December 2007 to June 2009

for groundwater. Therefore, we conclude that the temporal distribution of soil and groundwater sample collection is sufficient to demonstrate that no ongoing or uncontrolled source of contamination remains, that concentrations are stable and below the lower of the MCP GW-1 or GW-3 standards, and that EPCs accurately reflect Disposal Site concentrations.

4.1.6 Completeness

An extensive data set of 48 groundwater and 30 soil analytical data points has been used in support of this RAO. No data gaps were identified. Our review has concluded that the data set is sufficiently complete to support the RAO due to the extensive data set, sample density and distribution, and consistency with the Conceptual Site Model.

4.1.7 Inconsistency and Uncertainty

Based on the number of samples, historic site use, absence of on-site sources, and the consistency of the data set over multiple sampling events, no inconsistencies or uncertainty were identified in the data set.

4.1.8 Representativeness of the Data Set

Laboratory certificates of analysis for the groundwater samples collected since submission of the Phase II report are included in Appendix E and summarized on Table 3.

4.2 Data Usability Assessment

The Data Usability Assessment consists of an analytical and field component. The field component evaluates the sampling collection procedure to ensure a sample is representative of the sampling point upon delivery to the laboratory. The analytical component evaluates whether analytical data points are scientifically valid and defensible, and that a sufficient level of precision, accuracy, and sensitivity has been achieved. According to DEP Policy, the rigorousness of the Data Usability Assessment should be "proportional to the complexity of the project and the ramifications of risk-related decisions associated with the interpretation of the data."

As part of an effort to enhance the quality and consistency of analytical data supporting MCP submittals, the DEP has published the Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data (WSC-CAM-VII A). The original version of this document was released on May 21, 2004 and a revised version became effective on July 1, 2010. The purpose of the document is to provide quality assurance/quality control (QA/QC) guidance regarding the acquisition and reporting of analytical data, including regulatory performance standards and agency expectations for MCP data submittal. To facilitate the application of the performance standards, the DEP has published a Compendium of Analytical Methods (CAM) which provides a series of recommended protocols for the acquisition, analyses, and reporting of

analytical data in support of MCP decisions. Use of these procedures provides an LSP with "Presumptive Certainty" of data acceptance by the DEP.

Validation of the laboratory data included a review of field and laboratory quality control samples as applicable, including:

- CAM Compliance status and Presumptive Certainty of data;
- field sample custody, preservation, and analytical holding times;
- trip blanks to assess whether there may be false positive contamination during sample acquisition and/or storage;
- evaluation of surrogate recoveries to assess laboratory matrix effects and data accuracy;
- laboratory method blanks, surrogate spike recoveries (organics only), laboratory control sample (LCS) recoveries, MS/MSD recoveries, and laboratory sample duplicates and relative percent difference (RPD);
- laboratory quantitation (detection) limits; and
- miscellaneous observations.

A table summarizing the evaluation of analytical data points as part of the Data Usability Assessment is provided in Appendix B. The table lists the sample name, sample parameters, date sampled, sample matrix, CAM Compliance status and notes any qualifications or exceptions affecting data quality. The Data Usability Assessment provides justification as to why such analytical data are considered acceptable to support the RAO.

4.2.1 Analytical Data Usability Assessment

Soil data used in support of this RAO Statement were collected from May 2003 through December 2007, and groundwater data was collected from December 2007 to June 2009. The majority of the data is considered CAM Compliant, meaning that analytical results were (1) determined using an MCP Analytical Method detailed in CAM; (2) comply with method-specific QC requirements specified in CAM; (3) are reported with narration of method-specific performance standard deficiencies; and (4) are reported with required deliverables specified in CAM. The only data that is "non-CAM" is the June 2010 groundwater samples analyzed for VOCs by EPA Method 524. Specifically, the CAM method for VOCs is EPA 8260; however, Method 524 was used for groundwater VOC analysis to be consistent with the analytical method specified in the requirements for the annual groundwater monitoring performed at the Site in accordance with an agreement between the property owner and the Walpole Board of Health, and because Method 524 offers lower detection limits than Method 8260. CAM Compliant data have "Presumptive Certainty" and are of known accuracy, precision and sensitivity. Data that does not have "Presumptive Certainty" status may still be relied upon for purposes of the

conclusions of the RAO Statement provided further evaluation of the data concludes that it is of suitable quality to meet the requirements of the MCP.

A discussion of analytical data issues as identified by the Laboratory Case Narrative is included in Appendix B. In general, CAM Compliant data were found to have adequate sensitivity in detection levels compared to project-specific objectives. In some instances, surrogate recoveries, relative percent differences, matrix spike or method blank samples suggested that results may be biased low or detected outside of quality control limits. Most of these situations involved COCs that were consistently non-detect in samples collected throughout the Site or COCs that were materially contributing to the level of risk at the Site. The "non-CAM" data discussed above was also found to have adequate sensitivity in detection levels compared to project specific objectives, and this data is of suitable quality for use in the Risk Characterization and as a basis for this RAO Statement/Phase V Completion Statement.

In conclusion, limitations, uncertainties and qualifications associated with analytical deficiencies do not affect the overall accuracy, precision or sensitivity of the analytical data to the extent that the validity of the data would be jeopardized. No data were rejected based on gross failure criteria.

4.2.2 Field Data Usability Assessment

Appropriate sampling and handling methods were employed in the field during the collection of sample media. Suitable sampling containers were used, samples were properly preserved, stored within acceptable temperature ranges, and hold times were met for all samples. Analytical data were found to be consistent with field observations and screening data.

The field component of the data usability assessment indicates that sample collection, handling and analytical procedures were followed in a manner that is consistent with QC protocols required by the MCP. Based on our overall evaluation of the data, field sampling and handling methods are not anticipated to impact the field accuracy and precision of the data to the extent that the validity of the data would be jeopardized.

4.3 Conclusions

A Representativeness Evaluation and Data Usability Assessment was conducted in accordance with 310 CMR 40.1056(2) (k). It is our opinion that the data set relied upon to support this RAO is representative with regard to the spatial and temporal distribution of sampling points; is scientifically valid and defensible; and is of sufficient accuracy, precision and completeness to support the RAO Statement.

5.0 Method 2 Human Health and Environmental Risk Characterization

The following section presents a Method 2 Risk Characterization to evaluate the potential risks posed to human health, public welfare, public safety and the environment by concentrations of compounds of concern (COCs) that have been detected in Site soils and groundwater. This Risk Characterization was conducted in conformance with the requirements of the Massachusetts Contingency Plan (MCP), 310 CMR 40.0000. The DEP guidance document for risk characterization, *Guidance for Disposal Site Risk Characterization In Support of the Massachusetts Contingency Plan* (July 1995), has been followed in this analysis.

5.1 Method Selection

The MCP defines three methods for risk characterization: Methods 1, 2, and 3. We selected Method 2 as the appropriate method for characterization of risk because Method 1 standards have not been published by the DEP for isoproplybenzene and p-isopropyltoluene in soil. Method 2 allows for a relatively comprehensive, rapid evaluation of risk by comparison of Exposure Point Concentrations (EPCs) to standards published by DEP, and development of supplemental standards for compounds that do not have them or modification of standards with Site-specific information. Method 1 and 2 standards incorporate conservative assumptions for both contaminant transport and exposure, resulting in an overall conservative analysis. For the Site COCs that do not have Method 1 standards, we generated Method 2 standards for following the risk characterization guidance.

5.2 Soil and Groundwater Characterization

According to the criteria outlined in 310 CMR 40.0361, Site soils are classified as S-1 if the site is located within 500 feet of residentially zoned land, a school, playground, recreational area or park. Portions of the Site are located within 500 feet of residential property and, therefore, those areas are classified as category S-1.

The Massachusetts Geographic Information System (MassGIS) map of the Site area shows that the Site is located within a DEP Approved Zone II area and an EPA Sole Source Aquifer. According to the DEP, this means the Site is located within the "area of an aquifer which contributes water to a well under the most severe pumping and recharge conditions that can be realistically anticipated, as approved by the Department's Division of Water supply pursuant to 310 CMR 22.00." Thus, groundwater at the Site is classified as GW-1. Groundwater at the Site is also classified as GW-2 since there are occupied buildings on the Site and the depth to the water table is less than 15 feet. Additionally, groundwater at the Site is classified as GW-3, since, by definition, all groundwater in the Commonwealth of Massachusetts is considered GW-3. Therefore, we compare groundwater analytical results to GW-1, GW-2 and GW-3 standards.

5.3 Exposure Point Concentrations

EPCs represent the estimated concentrations of compounds of concern (COCs) to which a receptor may be exposed at the point of exposure. In keeping with DEP guidance, this characterization assumes that contaminant concentrations on the Site remain unchanged. Thus, we do not consider any mitigating factors resulting over the course of time (such as biodegradation). The risk characterization also assumes that for compounds detected at least once above detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit (MDL) for that sample.

Data used in this risk characterization include analytical results for soil samples collected from the Site from May 2003 to December 2007. We also used groundwater data collected at the Site in December 2007, April, May, November and December 2008, June and December 2009, and June 2010. Tables 2 and 3 present the soil and groundwater data used in the risk characterization, respectively. As shown in Table 3, thallium was detected above the laboratory method detection limit for the sample collected in November 2008 from monitoring well RIZ-10, located on MassDOT property upgradient from the Site, at a concentration of 11.6 µg/l. Since thallium had not been recently detected at the Site, it was believed that the positive result for thallium could be related to sampling or analytical error. Therefore, the well was re-sampled in December 2008 to evaluate whether the original thallium result was representative of conditions in the area of RIZ-10. Analysis of the second sample did not detect thallium, confirming that the original result was not representative of groundwater conditions in the area of RIZ-10. Based on this we consider the positive thallium result for the sample collected from RIZ-10 in November 2008 to be anomalous and therefore, thallium is not considered a COC at the Site and is not carried through the risk characterization. In this risk characterization, we evaluate risk from all other compounds that were detected in the Site soil and groundwater.

For groundwater exposures, data from each monitoring well were evaluated as separate exposure points as required by the guidance for a Method 2 risk characterization under the MCP. This approach provides a conservative, health-protective assessment of risk. For soil exposures, we estimated four separate sets of soil EPCs (EPC-1 through EPC-4) for the Site based on the depth at which the soil samples were collected. EPC-1 is estimated as the average concentrations of COCs detected in soil samples collected 0 to 3 feet below the ground surface (bgs). EPC-2 is estimated as the average concentrations of COCs in soil samples collected within 3 to 7 feet bgs. EPC-3 is calculated as the average concentrations of COCs in soil samples collected from 8 to 15bgs. EPC-4 is estimated as the average concentrations of COCs in soil samples collected from 15 to 50 feet bgs.

The soil and groundwater EPCs estimated for the Site are presented in Tables 2 and 3, respectively.

6.0 Risk Characterization

Under the MCP Method 2 risk characterization a condition of "No Significant Risk" (NSR) of harm to human health, public welfare and the environment shall exist if each of the EPCs are

equal to or less than their applicable Method 2 standards, and there are no risks to public safety. This section presents a comparison of risk conditions with reference standards.

We note that Tables 2 and 3 indicate Method 2 standards for many compounds. However, as noted previously, only two compounds detected in soil do not have MCP Method 1 standards and a Method 2 risk characterization was performed to develop comparison standards for those compounds. In accordance with DEP Risk Assessment Guidance all comparison standards presented in the Tables must be identified as Method 2 standards, but for all but two compounds the listed comparison standards are the MCP Method 1 standards.

6.1.1 Risk of Harm to Health, Public Welfare and the Environment

As noted above, two soil COCs do not have Method 1 standards (isopropylbenzene, p-isopropyltoluene). These COCs are identified as tentatively identified compounds (TICs). The mass of these compounds is included in the mass of the aliphatic and aromatic hydrocarbons analyzed as extractable petroleum hydrocarbons (EPH). Therefore, the estimated Site soil EPCs of these compounds are compared to EPH (C_9 - C_{18} aliphatics) standards.

In Table 2, soil EPCs are compared with Method 2 S-1/GW-1, S-1/GW-2 and S-1/GW-3 standards. As shown in the table, the estimated soil EPCs are below the established Method 2 standards. In Table 3, groundwater EPCs are compared to Method 2 GW-1, GW-2 and GW-3 standards. The groundwater EPCs are below the applicable Method 2 standards. Therefore, we conclude that a condition of NSR to human health, the environment and public welfare exists at the Site for the conditions evaluated.

6.1.2 Risk of Harm to Public Safety

Threats to public safety include physical conditions and chemical agents that may cause bodily harm or injury (e.g. burns or fractures) as opposed to illness. There are no open pits, lagoons, drums, dangerous structures, or other apparent threats to public safety and no danger of fire or explosion from the conditions evaluated in this report. Thus, we find a condition of NSR of harm to public safety exists for the conditions observed at the Site.

6.2 Risk Characterization Conclusions

Based on the results of this Method 2 Risk Characterization, a condition of NSR of harm to human health, the environment, public welfare and public safety exists at the Site for the conditions evaluated. Since a condition of NSR exists without restriction of Site uses or activities the Site qualifies for a Class A-2 Response Action Outcome Statement.

7.0 Feasibility of Achieving Background

As part of this Response Action Outcome Statement the feasibility of reducing concentrations of OHM to achieve or approach background was evaluated in accordance with 310 CMR 40.0860

and the DEP Guidance Document "Conducting Feasibility Evaluations Under the MCP" (Policy #WSC-04-160) dated July 16, 2004. The evaluation criteria applicable to background feasibility include whether the benefits justify the costs or risks associated with the actions taken to achieve background; whether the technology needed to achieve or approach background exists; whether there are individuals with the necessary expertise to conduct the necessary remedial actions; or, if the selected alternative is off-site disposal, whether permitted facilities exist to accept the contaminated media. In accordance with DEP guidance, a finding of infeasibility based on any one of the criteria above is sufficient to conclude that achieving or approaching background is infeasible.

Extensive monitoring at the Site has not identified an on-site source of the compounds detected in groundwater or a definable contaminant plume. Further, the intermittent and sporadic nature of positive analytical results observed over many years indicates that COCs detected in soil and groundwater are either naturally occurring or related to off-site impacts that are migrating through the Site. Naturally-occurring compounds are by definition background that do not require further evaluation, and compounds related to off-site impacts migrating through the Site are beyond the control of the property owner. Therefore, achieving background is not feasible for the conditions identified at the Site.

8.0 Relationship of RAO to Other Disposal Site RAO(s)

310 CMR 40.1056(1) (d) requires a discussion of the relationship between this RAO and any other RAOs that have been filed for the Disposal Site. As discussed previously in this report, RTN 3-19859 was issued in 2000 based on sampling performed in April 1999 and April 2000 which detected elevated concentrations of chloroform and bromodichloromethane in groundwater samples collected near the western property boundary. A Class A-2 RAO Statement was submitted by Carr Research Laboratory on July 25, 2001, indicating that a Permanent Solution had been achieved for this RTN. The RAO indicated that the source of the bromodichloromethane was treatment chemicals (brominating tablets) used in a residential swimming pool located on an upgradient property. The source of the chloroform was identified as a reaction between chlorine used for swimming pool disinfection at the same residence and septage from the septic tank and leach field at the residence.

9.0 Phase V Completion Statement

As discussed herein, and documented in Phase V – ROS Status Reports submitted in February and August 2010, groundwater monitoring performed since submission of the Phase II report has demonstrated that groundwater conditions are at or approaching background, a condition of No Significant Risk has been achieved, an AUL is not needed to limit exposures or Site uses, and further monitoring is not required. Therefore, ROS is being terminated and conditions consistent with completion of the Phase V status of the Site have been achieved. The DEP Transmittal Form for Termination of ROS and Phase V Completion is in Appendix F.

10.0 Public Notifications

As stipulated by 310 CMR 40.1403(3) (f), and 40.1403(7), the following public involvement activities have been completed for the Site:

- Written notification to the parties identified on the Public Involvement Plan (PIP) mailing
 list was made at least 14 days in advance of the January 13, 2011 PIP meeting and an
 advertisement was published in the December 30, 2011 edition of The Walpole Times to
 notify the general public of the PIP meeting. Therefore, the advance notification
 requirements for a PIP were met.
- Letters have been sent notifying the Chief Municipal Officer and the Board of Health of the availability of this RAO Statement/Phase V Completion Statement.

Copies of these public involvement filings are included in Appendix C.

11.0 L.S.P. Opinion and Response Action Outcome Statement

Six rounds of groundwater sampling have been performed at the Site during the period from December 2007 to June 2009 to further evaluate groundwater conditions at monitoring wells where the Phase II report concluded a condition of Significant Risk existed n the July 26, 2006 Phase II report. Remedial actions at the Site were limited to Monitored Natural Attenuation as discussed in the Phase IV report. The results of the risk characterization concluded that a condition of "No Significant Risk" of harm to human health, the environment, public safety or public welfare exists for the current and anticipated future Site conditions and uses evaluated, and that an Activity and Use Limitation is not required to limit uses or exposures at the Site.

In accordance with the MCP, the category of an RAO achieved for a Disposal Site is established based upon the following factors: whether the site poses "No Significant Risk"; whether all Substantial Hazards posed by the Disposal Site have been eliminated; whether remedial actions were undertaken to achieve a level of "No Significant Risk"; whether one or more AULs are required to maintain a level of "No Significant Risk"; whether concentrations of oil or hazardous materials (OHM) at the site exceed the Upper Concentration Limits (UCLs) in soil and/or groundwater; and whether remedial actions have achieved background in accordance with the MCP. A comparison of these criteria to the conditions evaluated for the Disposal Site indicates that the requirements for a Class A-2 RAO have been met since a Permanent Solution has been achieved, OHM concentrations have not been reduced to background, an AUL is not required, and OHM do not exceed applicable UCLs [310 CMR 40.1036(3)]. The L.S.P. Statement of Limitations and Conditions, and copies of the DEP Transmittal Forms for this Class A-2 RAO Statement/Phase V Completion Statement, are included in Appendix A and Appendix F, respectively.

MCP. A comparison of these criteria to the conditions evaluated for the Disposal Site indicates that the requirements for a Class A-2 RAO have been met, since a Permanent Solution has been achieved; OHM concentrations have not been reduced to background; an AUL is not required and OHM do not exceed applicable UCLs [310 CMR 40.1036(3)]. The L.S.P. Statement of Limitations and Conditions, and a copy of the DEP Transmittal Forms for this Class A-2 RAO Statement/Phase V Completion Statement, are included in Appendix A and Appendix F, respectively.

Table 1. Groundwater Elevation Data - April 2010

Monitoring Well I.D.	Relative Well Casing Elevation (ft)	Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
MW-1	259.36	13.25	246.11
MW-2	240.90	4.49	236.41
MW-3	236.67	31.49	205.18
MW-4	229.74	32.35	197.39
MW-5S	238.03	13.90	224.13
MW-5D	236.36	11.87	224.49
MW-8	258.61	11.80	246.81
MW-9	256.08	22.72	233.36
GHC-1	241.95	4.73	237.22
GHC-2	258.51	12.37	246.14
GHC-3	252.40	13.51	238.89
GHC-5	236.94	32.26	204.68
GHC-6	236.01	1.35	234.66
RIZ-1	239.60	NM ⁶	NM ⁶
RIZ-2	234.94	4.85	230.09
RIZ-3	241.52	9.10	232.42
RIZ-8	265.52	20.17	245.35
RIZ-8S	265.38	19.61	245.77
RIZ-9	246.69	5.85	240.84
RIZ-10	No survey data	30.70	No survey data

Notes

- 1. Rim elevations for MW and GHC series wells from the "Groundwater Sampling Report, Winter-Spring 2004" Report, August 10, 2004
- 2. Rim elevations for RIZ-1 through RIZ-3 from April 10, 2006 Rizzo Associates survey
- 3. Rim elevations for RIZ-8 and RIZ-8S surveyed relative to MW-1, MW-8 and GHC-2 on April 25, 2008.
- 4. Rim elevations for RIZ-9 surveyed relative to RIZ-1 on April 25, 2008 $\,$
- 5. Depth to water measured during groundwater screening on April 6, 2010
- 6. RIZ-1 not gauged due to well being under water and water upwelling proximate to well.

ocation:	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S				
ample Name:	MW-3 (5ft)	MW-3 (50ft)	MW-1-S1-5	MW-1-S2-10	MW-1-S3-15	MW-1-S4-20	GHC-1 SS-1	GHC-1 SS-3	GHC-2 SS-1	GHC-2 SS-4	GHC-3 SS-1	GHC-3 SS-3	GHC-4 SS-1	GHC-4 SS-3	GHC-5 SS-1	GHC-5 SS-4	GHC-6 SS-1	GHC-6 SS-2	GHC-7 SS-1	GHC-7 SS-4
ample Depth:	5'	50'	3'-5'	8'-10'	13'-15'	18'-20'	0-2'	10'-12'	0-2'	15'-17'	0-2'	10'-12'	0-2'	10'-12'	0-2'	15'-17'	0-2'	5'-7'	0-2'	15'-17'
aboratory:			Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum	Spectrum
aboratory I.D.:			AD93588	AD93589	AD93590	AD93591	SA07466-01	SA07466-03	SA07466-04	SA07466-06	SA07466-08	SA07466-10	SA07466-12	SA07466-14	SA07466-15	SA07466-18	SA07466-24	SA07466-25	SA07466-27	SA07466-3
ample Date:	21-May-03	21-May-03	16-Jun-03	16-Jun-03	16-Jun-03	16-Jun-03	19-Jan-04													
onsultant:	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC	GHC
							0.770	<0.783	<0.478	0.040	0.000	0.400	0.405	0.000	0.540	0.700	0.000	0.500	<0.887	0.040
etone nvlbenzene							<0.773 <0.0386	<0.783 <0.0392	<0.478 <0.0239	<0.610 <0.0305	<0.668 <0.0334	<0.408 <0.0204	<0.435 <0.0218	<0.690 <0.0345	<0.543 <0.0272	<0.703 <0.0352	<0.800 <0.0400	<0.508 <0.0254	<0.887 <0.0443	<0.819 <0.0409
opropylbenzene							< 0.0386	<0.0392	<0.0239	<0.0305	<0.0334	<0.0204	<0.0218	<0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
opropyltoluene, p-							<0.0386	< 0.0392	<0.0239	<0.0305	<0.0334	<0.0204	<0.0218	<0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
thylene chloride																				
chloromethane)							< 0.386	< 0.392	< 0.239	< 0.305	< 0.334	< 0.204	<0.218	< 0.345	< 0.272	< 0.352	< 0.400	< 0.254	< 0.443	< 0.409
oluene							<0.0386	<0.0392	<0.0239	<0.0305	< 0.0334	<0.0204	<0.0218	< 0.0345	<0.0272	<0.0352	<0.0400	<0.0254	<0.0443	<0.0409
senic. Total							3.9	4.1	<2.97	<2.89	<3.08	<2.91	<3.03	<3.47	<3.25	<2.94	<3.41	<3.47	<3.22	<3.37
arium, Total							17.5	32.7	18.3	36.9	9.7	11.1	15.8	42.7	14.1	11.3	17.2	34.9	19.8	24.6
ryllium, Total							7.0	0.0	44.7	00.7	0.5	0.4	40.0	4 7	0.7	44.0	40.0	- 0	0.4	40.7
romium, Total ad. Total	5.2	5.4	14.5	11.8	90.1	22.7	7.8 8.6	3.9 4.4	11.7 <1.98	30.7 18.8	6.5 3.1	8.1 <1.45	10.9	4.7 <4.62	9.7 <2.06	11.0 <1.47	10.0 4.2	5.6 5.0	9.4 8.7	12.7 <1.96
ckel. Total	5.2	5.4	14.5	11.0	90.1	22.1	0.0	4.4	<1.90	10.0	3.1	<1.45	<1.61	<4.02	<2.06	<1.47	4.2	5.0	0.7	<1.90
anadium																				
nc. Total																				
ercury, Total							<0.208	<0.169	<0.166	<0.192	<0.191	<0.173	<0.186	<0.204	<0.174	<0.175	<0.176	<0.184	<0.186	<0.206
-C ₁₂ Aliphatics							<1.93	<0.196	0.206	<0.153	0.321	<0.102	<0.109	<0.172	<0.136	<0.176	<0.2	<0.127	<0.222	<0.205
9-C ₁₀ Aromatics							<1.93	<0.196	0.747	<0.153	0.786	<0.102	<0.109	<0.172	<0.136	<0.176	<0.2	<0.127	<0.222	< 0.205

Notes: For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

Bold print indicates chemicals with no Method 1 standards which are identified as Extractable Petroleum Hydrocarbons (EPH) components. Therefore, EPH (C9-C18 aliphatics) standards are applied.

*MADEP, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, *Technical Update*, May 2002.

The maximum concentrations of all metals detected in Site soils with the exception of beryllium and chromium are detected in isolated soils (located >15 feet below the ground surface). NA = Not Available

ocation: ample Name:	Walpole Pk S. RIZ-1	Walpole Pk S. RIZ-2	Walpole Pk S. RIZ-3	Walpole Pk S. RIZ-4	Walpole Pk S. RIZ-5	Walpole Pk S. RIZ-6	Walpole Pk S. RIZ-7	Walpole Pk S. RIZ-8	Walpole Pk S. RIZ-9	Walpole Pk S. RIZ-10													
ample Name: ample Depth:	10'-12'	15'-17'	30'-32'	10'-12'	1'-3'	5'-7'	5'-7'	812-6 9'-11'	812-9 9'-11'	44'-46'													
aboratory:	Con-test	Alpha	Alpha	Alpha	Number	Number	Minimum	Maximum	Average		Soil EPCs	- (malles)		Method 2	Method 2	Method 2	Concentration						
aboratory: aboratory I.D.:	06B06407	06B06408	06B06409	06B06410	06B06411	06B06412	06B06413	Aipna L018223-01	Aipria L018223-02	Aipna L018223-03			Concentration	Concentration	Concentration	Cail		S (mg/kg) Soil	Soil	Standard		Standard	In Natural
	15-Feb-06		16-Feb-06		16-Feb-06		16-Feb-06			6-Dec-07						Soil EPC-1	Soil EPC-2	EPC-3	EPC-4	S-1/GW-1		S-1/GW-3	In Naturai Soil*
ample Date:		15-Feb-06		15-Feb-06		16-Feb-06		5-Dec-07	6-Dec-07		Detected	Sought	Detected	Detected	Detected					5-1/GW-1	5-1/GW-2	5-1/GW-3	
onsultant:	TTR						0-3'	3'-7'	8'-15'	>15'				(mg/kg)									
cetone	<0.059	< 0.054	< 0.055	< 0.047	0.059	0.11	<0.075	0.0073	<0.0065	<0.0055	3	24	0.01	0.11	0.20	0.29	0.13	0.14	0.19	6	50	400	NA
hylbenzene	<0.001	<0.002	< 0.002	<0.001	0.001	<0.002	<0.002	< 0.00063	< 0.00065	< 0.00055	1	24	0.001	0.001	0.010	0.01	0.00	0.01	0.01	40	500	500	NA
opropylbenzene	<0.001	< 0.002	< 0.002	<0.001	<0.001	0.002	< 0.002	< 0.00063	< 0.00065	< 0.00055	1	24	0.002	0.002	0.010	0.01	0.01	0.01	0.01	1,000	1,000	1,000	NA
opropyltoluene, p-	< 0.001	< 0.002	< 0.002	< 0.001	<0.001	0.015	< 0.002	< 0.00063	< 0.00065	< 0.00055	1	24	0.02	0.02	0.010	0.01	0.01	0.01	0.01	1,000	1,000	1,000	NA
ethylene chloride																							
lichloromethane)	0.042	< 0.011	0.030	< 0.009	< 0.010	< 0.011	< 0.015	< 0.00063	< 0.0065	< 0.0055	2	24	0.03	0.04	0.10	0.14	0.05	0.07	0.10	0.1	20	200	NA
oluene	<0.001	<0.002	<0.002	<0.001	<0.001	0.002	<0.002	<0.00094	<0.00097	<0.00082	1	24	0.002	0.002	0.010	0.01	0.01	0.01	0.01	30	500	500	NA
rsenic. Total	<6.04	<5.67	<5.60	<5.35	<5.4	<6.55	<5.74	1.8	4.0	3.2	5	24	1.8	4.1	2.34	2.0	2.6	2.7	2.2	20	20	20	20
arium. Total	29.0	42.1	16.9	18.5	16.4	23.9	21.8	18.0	32.0	37.0	24	24	9.7	42.7	23.4	16.1	26.9	26.3	28.1	1,000	1,000	1,000	50
eryllium, Total	0.45	0.87	0.42	<0.27	<0.27	0.37	0.36	0.40	0.83	0.88	8	10	0.36	0.88	0.49	0.14	0.37	0.45	0.72	100	100	100	0.4
hromium. Total	14.4	6.4	8.2	6.7	6.5	10.7	5.6	8.3	6.2	6.1	24	24	3.9	30.7	9.2	9.1	7.28	7.5	12.5	30	30	30	30
ead, Total	6.8	6.3	4.8	6.8	10.6	14.5	12.1	3.8	19.0	18.0	23	30	3.1	90.1	10.4	4.7	10.3	16.2	9.7	300	300	300	100
ickel, Total	7.2	3.8	6.7	5.64	4.7	6.4	4.7	6.3	5.0	3.7	10	10	3.7	7.2	5.4	4.7	5.5	6.0	4.7	20	20	20	20
anadium	13.0	7.7	12.2	9.8	12.5	22.2	10.6	16.0	12.0	7.7	10	10	7.7	22.2	12.4	12.5	16.4	12.7	9.2	600	600	600	30
nc, Total	32.3	41.4	27.4	23.2	20.3	24.5	24.9	34.0	45.0	70.0	10	10	20.3	70.0	34.3	20.3	24.7	33.6	46.3	2,500	2,500	2,500	100
ercury, Total	< 0.011	<0.006	< 0.005	<0.011	0.016	0.031	0.029	<0.08	<0.08	<0.09	3	24	0.02	0.03	0.06	0.08	0.05	0.05	0.06	20	20	20	0.3
₉ -C ₁₂ Aliphatics											2	14	0.21	0.32	0.17	0.26	0.06	0.08	0.09	1,000	1,000	1,000	NA
₉ -C ₁₀ Aromatics											2	14	0.75	0.79	0.24	0.40	0.06	0.08	0.09	100	100	100	NA

Notes: For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory

are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

Bold print indicates chemicals with no Method 1 standards which are identified as Extractable Petroleum Hydrocarbons (EPH) components. Therefore, EPH (C9-C18 aliphatics) standards are applied.

*MADEP, Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil, *Technical Update*, May 2002.

The maximum concentrations of all metals detected in Site soils with the exception of beryllium and chromium are less than "natural" soil background. The maximum concentrations of beryllium and chromium are detected in isolated soils (located >15 feet below the ground surface). NA = Not Available

Table 3	Positive Groundwater Ar	alytical Data (µg/L) - Walpole Park S	outh, Walpole, Massachusetts
Location:	Walpole Pk S. Walpole	Pk S. Walpole Pk S. Walpole Pk S	S. Walpole Pk S

Location:				Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.		Walpole Pk S.											
Sample Name:				MW-2-042808	MW-2-GW	MW-2	MW-2	MW-2	MW-3	MW-3-042808	MW-3-GW	MW-3	MW-3	MW-3	MW-3	MW-9	MW-9-051408	MW-9-GW	MW-9	MW-9	MW-9	MW-9
Laboratory:	Method 2	Method 2	Method 2	Alpha	Spectrum	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average
Laboratory I.D.:	Standard	Standard	Standard	L0806023-07	SA87371-05	L0907670-07	L1008812-03		L0718979-07	L0806023-03	SA87371-07	L0908197-01	L0918777-07	L1008812-01		L0718979-05	L0806993-02	SA87371-04	L0907670-04	L0918777-01	L1008812-08	
Sample Date:	GW-1	GW-2	GW-3	28-Apr-08	11-Nov-08	10-Jun-09	11-Jun-10		20-Dec-07	28-Apr-08	11-Nov-08	8-Jun-09	28-Dec-09	11-Jun-10		20-Dec-07	14-May-08	11-Nov-08	10-Jun-09	21-Dec-09	11-Jun-10	1
Consultant:				TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR	
Chloroform	70	50	20,000	2.2	<1.0	1.0	1.2	1.2	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.75	0.71	2.2	0.75	<0.5	<0.5	0.8
Methyl tert-butyl ether	70	50,000	50,000	<0.50	<1.0	<0.50	<0.5	0.3	1.7	<0.50	<1.0	<0.50	<0.5	<0.5	0.5	5.1	7.9	2.2	<0.50	0.77	<0.5	2.8
Toluene	1,000	6,000	50,000	<0.50	<1.0	<0.50	<0.5	0.3	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3
Barium, Dissolved	2,000	NA	50,000	31.0	120	70	70	75.0	15.2	10.0	11.4	24	-10	36	16.4	7.0	13.0	18.6	20	56	64	31.3
Lead, Dissolved	15	NΑ	10	<10.0	<7.5	<10	/U /10	15.0 4.7	-2.0	<10.0	8.8	Z1 Z10	<10	-10	5.0	<2.0	<10.0	<7.5	29 -10	<10	<10	A 1
Nickel, Dissolved	100	NA NA	200	<25.0	<5.0	<25	<25	10.0	<2.0	<25.0	<5.0	<25	<25	<25	8.9	<2.0	<10.0	<5.0	<25	<25	<25	8.2
Thallium, Dissolved	2	NA.	400	<2.0	<5.0	<2.0	<2	ND	<2.0	<2.0	<5.0	<2.0	<2	<2	ND	<2.0		<5.0	<2.0	<2	<2	ND
Zinc, Dissolved	5,000	NA	900	<50.0	28.0	<50	<50	25.8	<20.0	<50.0	34.5	<50	<50	<50	24.1	25.9		34.7	<50	52	51	37.7
																					ŀ	1

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample. Concentrations entered as < indicate that they were below the detection limit.

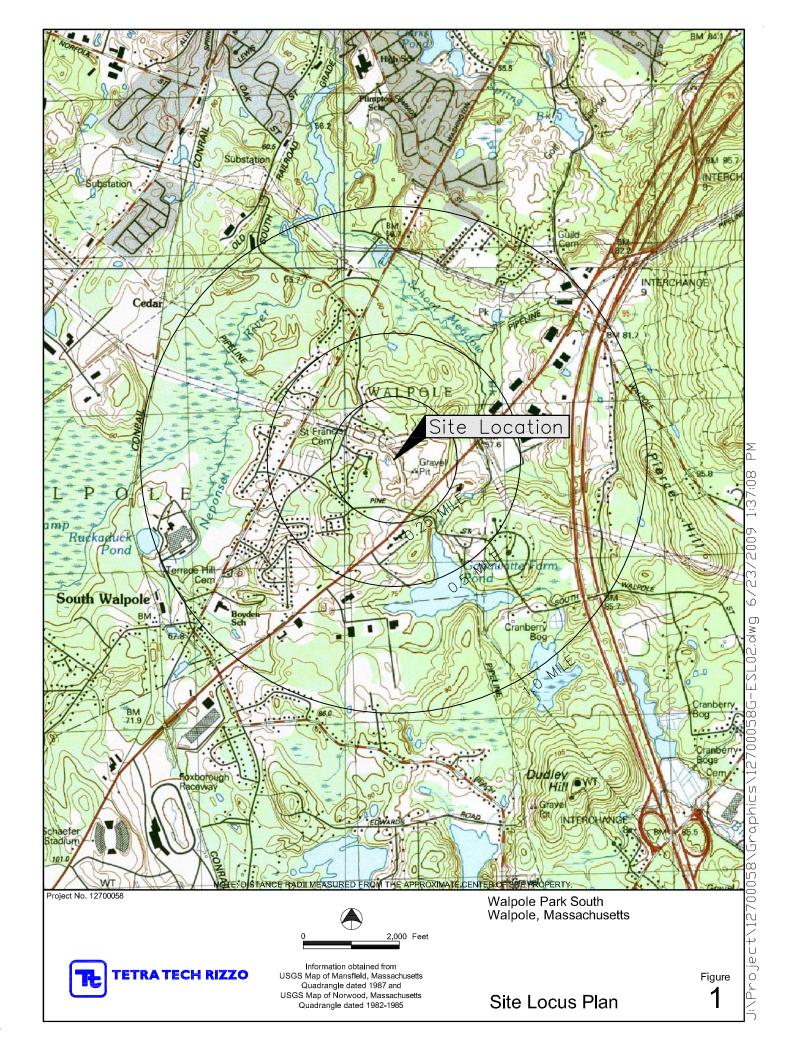
NA = Not Applicable; ND = Not Detected

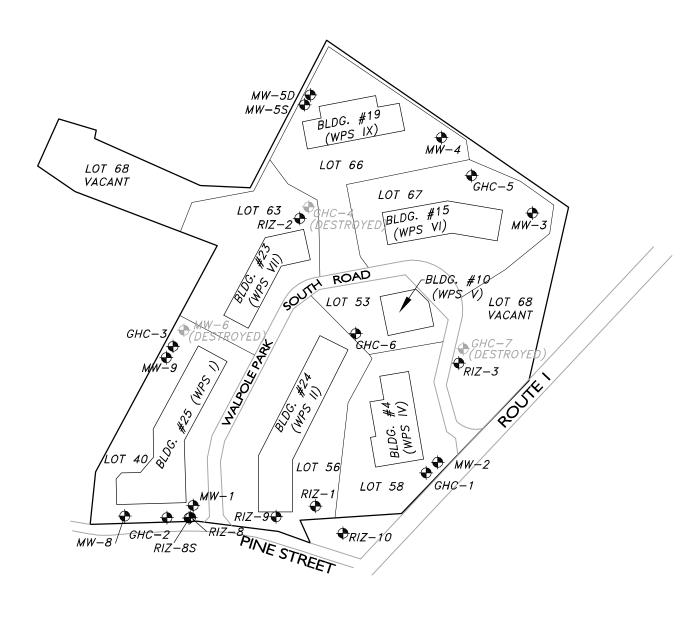
P:\Pre-FY2008\12700000\12700058\Risk Assessment\RA_RAO_Jan 2011\12700058-Walpole Soil & GW data_2010.xlsGW_DATA-2010 RA

ocation:				Walpole Pk S.		Walpole Pk S.		Walpole Pk S.	Walpole Pk S.		Walpole Pk S.	Walpole Pk S.															
mple Name:				RIZ-3	RIZ-3-051408	RIZ-3-GW	RIZ-3	RIZ-3	RIZ-3	RIZ-3	RIZ-8	RIZ-8-042808	RIZ-8-GW	RIZ-8	RIZ-8	RIZ-8	RIZ-8	RIZ-8S-042808	RIZ-8S	RIZ-8S	RIZ-9	RIZ-9-042808	RIZ-9-GW	RIZ-9	RIZ-9	RIZ-9	RIZ-9
oratory:	Method 2	Method 2	Method 2	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Alpha	ALPHA	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average
oratory I.D.:	Standard		Standard	L0718979-06	L0806993-01	SA87371-03	L0907670-06	L0918777-04	L1008812-02		L0718979-01	L0806023-04	SA87371-02	L0907670-02	L0918777-02	L1008812-07		L0806023-05	L0907670-03		L0718979-03	L0806023-02	SA87371-06	L0907670-08	L0918777-05	L1008812-05	
mple Date:	GW-1	GW-2	GW-3	20-Dec-07	14-May-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	21-Dec-09	11-Jun-10		28-Apr-08	10-Jun-09		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10	
nsultant:				TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR	
	70	50	00.000	0.75	0.50	4.0	0.50	0.5	٥٠	0.0	0.75	0.50	1.0	0.50	٥٠	0.5	0.0	0.50	0.50	0.0	0.75	0.50		0.50	2.5	٥٠	2.0
roform	70	50	20,000	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.50	<0.50	0.3	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3
yl tert-butyl ether	70	50,000	50,000	<1.0	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<1.0	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.50	<0.50	0.3	<1.0	<0.50	<1.0	<0.50	<0.5	<0.5	0.3
ene	1,000	6,000	50,000	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	<0.75	<0.50	<1.0	<0.50	<0.5	<5	0.7	<0.50	0.71	0.5	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3
um, Dissolved	2,000	NA	50,000	25.6	44.0	86.2	13	177	161	84.5	50.8	25.0	27.6	26	31	<10	27.6	54.0	51	52.5	15.3	21.0	14.8	15	<10	<10	12.7
l, Dissolved	15	NA	10	<2.0	<10.0	<7.5	<10	<10	<10	4.1	<2.0	<10.0	<7.5	<10	<10	<10	4.1	<10.0	<10	5.0	<2.0	<10.0	<7.5	<10	<10	<10	4.1
el, Dissolved	100	NA	200	<2.0		<5.0	<25	<25	<25	8.2	4.8	<25.0	<5.0	<25	<25	<25	9.6	<25.0	<25	12.5	<2.0	<25.0	<5.0	<25	<25	<25	8.9
lium, Dissolved	2	NA	400	<2.0		<5.0	<2.0	<2	<2	ND	<2.0	<2.0	<5.0	<2.0	<2	<2	ND	<2.0	<2.0	ND	<2.0	<2.0	<5.0	<2.0	<2	<2	ND
c, Dissolved	5,000	NA	900	<20.0		21.0	~50	<50	<50	21.2	<20.0	<50.0	26.4	<50	<50	<50	22.7	<50.0	<50	25.0	<20.0	<50.0	20.0	<50	~ 5 0	<50	21.7

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

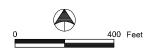

NA = Not Applicable; ND = Not Detected


Table 3				Positive Grounds	water Analytical Da	ata (µg/L) - Walpo	le Park South, Wa	alpole, Massachu	setts										Groundwate	r Summary S	Statistics (µg/L)	
Location:				Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.	Walpole Pk S.		Walpole Pk S.										
Sample Name:			l I	RIZ-10	RIZ-10-042808	RIZ-10-GW	RIZ-10	RIZ-10	RIZ-10	RIZ-10	RIZ-10	GHC-6	GHC-6-042808	GHC-6-GW	GHC-6	GHC-6	GHC-6	GHC-6				
Laboratory:	Method 2	Method 2	Method 2	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Alpha	Well Average	Alpha	Alpha	Spectrum	Alpha	Alpha	Alpha	Well Average	Number	Number	Minimum	Maximum
Laboratory I.D.:	Standard	Standard	Standard	L0718979-02	L0806023-01	SA87371-01	L0818397-01	L0907670-01	L0918777-06	L1008812-06	_	L0718979-04	L0806023-06	SA87371-08	L0907670-05	L0918777-03	L1008812-04	_	of Times	of Times	Concentration	Concentration
Sample Date:	GW-1	GW-2	GW-3	19-Dec-07	28-Apr-08	11-Nov-08	11-Dec-08	10-Jun-09	28-Dec-09	11-Jun-10		19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	28-Dec-09	11-Jun-10		Detected	Sought	Detected	Detected
Consultant:			l I	TTR	TTR	TTR	TTR	TTR	TTR	TTR		TTR	TTR	TTR	TTR	TTR	TTR			-		
Chloroform	70	50	20,000	< 0.75	< 0.50	<1.0		< 0.50	< 0.5	<0.5	0.3	< 0.75	< 0.50	<1.0	< 0.50	<0.5	<0.5	0.3	6	48	0.7	2.2
Methyl tert-butyl ether	70	50,000	50,000	1.2	< 0.50	<1.0		< 0.50	< 0.5	< 0.5	0.5	<1.0	< 0.50	<1.0	< 0.50	< 0.5	< 0.5	0.3	6	48	0.8	7.9
Toluene	1,000	6,000	50,000	<0.75	0.73	<1.0		<0.50	<0.5	<0.5	0.4	<0.75	<0.50	<1.0	<0.50	<0.5	<0.5	0.3	2	48	0.7	0.7
Barium, Dissolved	2,000	NA	50,000	95.8	62.0	88.4		148	99	107.0	100.0	45.9	59.0	36.8	66	39	63	51.6	44	48	7.0	177.0
Lead, Dissolved	15	NA	10	<2.0	<10.0	<7.5		<10	<10	<10	4.1	<2.0	<10.0	<7.5	<10	<10	<10	4.1	1	48	8.8	8.8
Nickel, Dissolved	100	NΔ	200	7.9	<25.0	<5.0		<25	<25	<25	10.1	<2.0	<25.0	<5.0	<25	-25	<25	8.0	2	46	4.8	7.9
Thallium, Dissolved	2	NΔ	400	<2.0	<2.0	11.6	<2.0	<2	-2	-20	ND*	<2.0	<2.0	<5.0	<2.0	-2	<2	ND	1	47	11.6	11.6
Zinc, Dissolved	5,000	NA	900	21.6	<50.0	36.3	~2.0	<50	<50	<50	26.3	<20.0	<50.0	21.6	<50	-50	<50	21.9	12	46	20.0	52.0
Ziric, Dissolved	3,000	INA	300	21.0	< 30.0	30.3		230	230	230	20.3	₹20.0	<50.0	21.0	250	230	<50	21.9	12	40	20.0	32.0

For compounds detected at least once above the detection limit, samples reported as not detected (ND) by the laboratory are assumed to have a concentration of one-half of the method detection limit for that sample.

Concentrations entered as < indicate that they were below the detection limit.

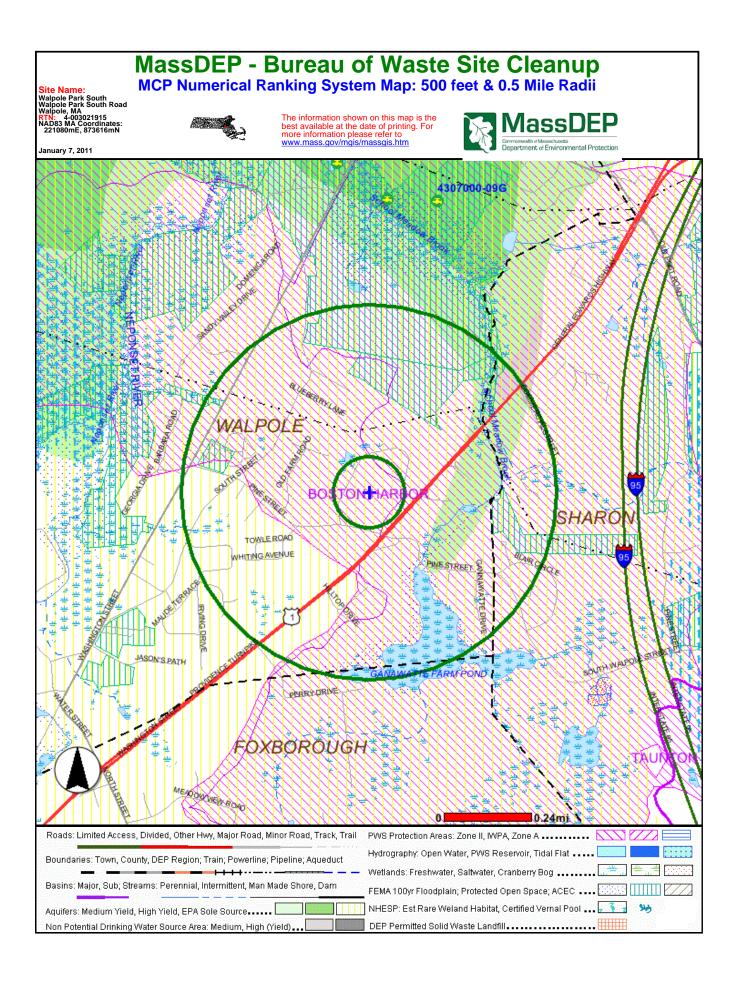
NA = Not Applicable; ND = Not Detected; * Thallium detected in RIZ-10 during the November 2008 round of sampling is considered anomalous and therefore, it is not considered to be a COC at the Site. See text for details.



LEGEND

- LOT BOUNDARIES

12700058P-ESP02



Walpole Park South Walpole, Massachusetts

Site Plan with Monitoring Well Locations

Site Plan by GeoHydroCycle, Inc. Dated 5/14/04 Map Output Page 1 of 1

Appendix A LSP Statement of Limitations and Conditions

Statement of Limitations and Conditions

Attachment to Opinion of Massachusetts Licensed Site Professional

Tetra Tech Rizzo

Name of Licensed Site Professional: Raymond C. Johnson

LSP Registration Number: 6118

Date of Opinion: January 10, 2011

Client to Whom Opinion was Walpole Park South Trust

Rendered:

Response Tracking No./Site No.: 4-3021915

This Statement of Limitations and Conditions is an integral part of, and is incorporated by reference into, the Opinion of Massachusetts Licensed Site Professional referenced above.

Limitations

1. Purpose of Opinion

- A. This Opinion is being provided in compliance with the requirements set forth in the Massachusetts Contingency Plan ("MCP"), 310 CMR 40.0000 et seq. Specifically, the LSP has prepared this Opinion at the request of the Client identified above as part of a Class A-2 Response Action Outcome Statement/Phase V Completion Statement. This stated purpose has been a significant factor in determining the scope and level of services required to render this Opinion.
- B. Should the purpose for which this Opinion is to be used change, this Opinion shall no longer be valid.

2. General

A. This Opinion was prepared for the sole and exclusive use of the Client, subject to the provisions of the MCP. No other party is entitled to rely in any way on the conclusions, observations, specifications, or data contained herein without the express written consent of Tetra Tech Rizzo and the LSP who rendered this opinion. Any use of this Opinion by anyone other than Client, or any use of this Opinion by Client or others for any purpose other than the stated purpose set forth above, without the LSP's review and the written authorization of Tetra Tech Rizzo and the LSP, shall be at the user's sole risk, and neither Tetra Tech Rizzo nor the LSP shall have any liability or responsibility therefor.

B. This Opinion was prepared pursuant to an Agreement between Tetra Tech Rizzo and the Client referenced above which defines the scope of work and sets out agreements regarding waivers of consequential damages, limitations on liability, and other important conditions and restrictions pursuant to which the Opinion is rendered. All uses of the Opinion are subject to and deemed acceptance of the conditions and restrictions contained in such Agreement. A copy of the Agreement or relevant excerpts from the Agreement will be made available upon requests to any authorized person seeking to use the Opinion.

3. Scope of Services

The observations and conclusions described in this Opinion are based solely on the Services provided pursuant to the Agreement with the Client and any approved additional services authorized by Client. Without limitation of any other applicable limitations or conditions, neither Tetra Tech Rizzo nor the LSP shall be liable for the existence of any condition, the discovery of which would have required the performance of services not authorized under the Agreement. To the best of the knowledge and belief of Tetra Tech Rizzo and the LSP who signed this Opinion, no inquiry of an attorney-at-law having being made, no laws, regulations, orders, permits or approvals are applicable to the response actions to which this opinion relates except, if and to the extent applicable, M.G.L. c. 21A, Sections 19-19J, 309 CMR, M.G.L. c. 21 E and 310 CMR 40.0000. Accordingly, this opinion is not intended to and does not address compliance with any other laws, regulation, orders, permits or approvals.

4. Changed Circumstances

The passage of time may result in changes in technology, economic conditions or regulatory standards, manifestations of latent conditions, or the occurrence of future events which would render this Opinion inaccurate or otherwise inapplicable. Neither Tetra Tech Rizzo nor the LSP shall be liable or responsible for the consequences of any such changed circumstances or conditions on the accuracy of this Opinion. In addition, under no circumstances shall the Client nor any other person or entity rely on the information or conclusions contained in this Opinion after six months from its date of submission without the express written consent of Tetra Tech Rizzo and the LSP. Reliance on the Opinion after such period of time shall be at the user's sole risk.

- **5.** Should Tetra Tech Rizzo or the LSP be required or requested to review or authorize others to use this Opinion after its date of submission, Tetra Tech Rizzo shall be entitled to additional compensation at then existing rates or such other terms as may be agreed upon between Tetra Tech Rizzo and the Client. Nothing herein contained shall be deemed to require Tetra Tech Rizzo or the LSP to undertake any such review or authorize others to use this Opinion.
- **6.** The conclusions stated in this Opinion are based upon:

Statement of Limitations and Conditions Attachment to Opinion of Massachusetts Licensed Site Professional

- Visual inspection of existing physical conditions;
- Review and interpretation of site history and site usage information which was made available or obtained within the scope of work authorized by the Client;
- Information provided by the Client;
- Information and/or analyses for designated substances or parameters provided by an independent testing service or laboratory on a limited number of samples; and
- A limited number of subsurface explorations made on dates indicated in documentation supporting this Opinion;

The information upon which the LSP has relied and presumed accurate, and upon which the LSP is entitled to reasonably rely. The LSP was not authorized and did not attempt to independently verify the accuracy or completeness of information or materials received from the Client and/or from laboratories and other third parties during the performance of its services. Neither Tetra Tech Rizzo nor the LSP shall be liable for any condition, information, or conclusion, the discovery of which required information not available to the LSP or for independent investigation of information provided to the LSP by the Client and/or independent third parties.

7. This Opinion is rendered for the limited purpose stated above, and is not and should not be deemed to be an opinion concerning the compliance of any past or present owner or operator of the site with any federal, state or local law or regulation. No warranty or guarantee, whether express or implied, is made by this opinion, and any implied warranties of merchantability or fitness for a particular purpose are expressly disclaimed. Without limiting the generality of the foregoing, no warranty or guarantee is made that all contamination at a site or sources or contamination has been detected or identified, that any action or recommended action will achieve all of its objectives, or that this Opinion or any action as to which this Opinion relates will be upheld by any audit conducted by the DEP or any other party.

Appendix A: Limitations

- 1. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the CLIENT. The work described in this report was carried out in accordance with the Terms and Conditions in our contract.
- In preparing this report, ENGINEER has relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to ENGINEER at the time of the site assessment. Although there may have been some degree of overlap in the information provided by these various sources, ENGINEER did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. Observations were made of the Site and of structures on the Site as indicated within the report. Where access to portions of the Site or to structures on the Site was unavailable or limited, ENGINEER renders no opinion as to the presence of hazardous materials or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the Site or structure. In addition, ENGINEER renders no opinion as to the presence of hazardous material or oil, or the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a Site was obstructed by objects or coverings on or over these surfaces.
- 4. ENGINEER did not perform testing or analyses to determine the presence or concentration of asbestos at the Site or in the environment at the Site.
- 5. It is ENGINEER's understanding that the purpose of this report is to assess the physical characteristics of the subject Site with respect to the presence on the Site of hazardous material or oil. This stated purpose has been a significant factor in determining the scope and level of services provided for in the Agreement. Should the purpose for which the Report is to be used or the proposed use of the site(s) change, this Report is no longer valid and use of this Report by CLIENT or others without ENGINEER's review and written authorization shall be at the user's sole risk. Should ENGINEER be required to review the Report after its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as agreed between ENGINEER and the CLIENT.
- 6. The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 7. Any water level readings made in test pits, borings, and/or observation wells were made at the times and under the conditions stated on the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

- 8. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the site assessment. Where such analyses have been conducted by an outside laboratory, ENGINEER has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 9. The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. As indicated within the report, some of these data may be preliminary screening level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.
- 10. Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the Site.
- 11. This Report was prepared for the exclusive use of the CLIENT. No other party is entitled to rely on the conclusions, observations, specifications, or data contained therein without the express written consent of ENGINEER.
- 12. The observations and conclusions described in this Report are based solely on the Scope of Services provided pursuant to the Agreement. ENGINEER has not performed any additional observations, investigations, studies, or testing not specifically stated therein. ENGINEER shall not be liable for the existence of any condition, the discovery of which required the performance of services not authorized under the Agreement.
- 13. The passage of time may result in significant changes in technology, economic conditions, or site variations that would render the Report inaccurate. Accordingly, neither the CLIENT, nor any other party, shall rely on the information or conclusions contained in this Report after six months from its date of submission without the express written consent of ENGINEER. Reliance on the Report after such period of time shall be at the user's sole risk. Should ENGINEER be required to review the Report after six months from its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as may be agreed upon between ENGINEER and the CLIENT.
- 14. ENGINEER has endeavored to perform its services based upon engineering practices accepted at the time they were performed. ENGINEER makes no other representations, express or implied, regarding the information, data, analysis, calculations, and conclusions contained herein.
- 15. The services provided by ENGINEER do not include legal advice. Legal counsel should be consulted regarding interpretation of applicable and relevant federal, state, and local statutes and regulations and other legal matters.

Appendix B

Data Usability Assessment Documentation

Appendix B - Data Usability As	sessment Summary Table	1	,		,		, ,					,	,	/ .	,		
Sample ID or Series	Parameters	Date Sampled	los los	Sedim	Site Characterization	FPS	Hazard Elimination	CAM Compliant (X)	Sample Ro	Method QA/QC Proc	QA/QC Ro.	Achieved? (Y/N) Trip Blanks OV.	Field Duplicate	Relative D.	(RPD)	Limite Reporting	Data Qualifications
RIZ-8	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		x	х		Υ	Υ	Y	Y	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc oritera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-10	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		х	х		Υ	Υ	Y	Υ	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-9	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		х	х		Y	Y	Y	Y	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are "difficult analytes". None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
GHC-6	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		x	х		Υ	Y	Y	Y	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc oritera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are 'difficult analytes'. None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-9	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		x	х		Υ	Υ	Υ	Y	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc oritera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are 'difficult analytes'. None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-3	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	X		х	х		Υ	Y	Y	Υ	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc critera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are 'difficult analytes'. None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-3	VOCs by 8260, EPH, MCP 14 Metals	19-Dec-07	х		x	х		Υ	Υ	Υ	Y	NA	NA		Y		LCS/LCSD % recoveries for Dichlorodifluoromethand, 1,4-Dioxane and Acetone are outside of the individual acceptanc oritera for the compounds, but within overall method allowances. The laboratory report indicates that these three compounds are 'difficult analytes'. None of these compounds are COCs at the Site. Metals samples were diluted due the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-10	VOCs by 524.2, MCP 14 Metals	28-Apr-08	Х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Υ		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-9	VOCs by 524.2, MCP 14 Metals	28-Apr-08	Х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Y		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-3	VOCs by 524.2, MCP 14 Metals	28-Apr-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Υ		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-8	VOCs by 524.2, MCP 14 Metals	28-Apr-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Y		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-8S	VOCs by 524.2, MCP 14 Metals	28-Apr-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Y		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
GHC-6	VOCs by 524.2, MCP 14 Metals	28-Apr-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Y		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
MW-2	VOCs by 524.2, MCP 14 Metals	28-Apr-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Y		Some metals samples were diluted due to the presence of non-target analytes. RDLs are at or below applicable MCP Method 1 standards.
RIZ-10	VOCs by 624, MCP 14 Metals	11-Nov-08	х		Х	х		Υ	Υ	Υ	Υ	Υ	NA		Υ		mound i dundado.
RIZ-8	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
RIZ-3	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
MW-9	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
MW-2	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
RIZ-9	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
MW-3	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
GHC-6	VOCs by 624, MCP 14 Metals	11-Nov-08	Х		х	Х		Υ	Υ	Υ	Υ	Υ	NA		Y		
RIZ-10	Thallium	11-Dec-08	Х		х	х		Υ	Υ	Y	Υ	NA	NA		Y		Sample received by laboratory beyoned recommended holding time for laboratory filtration. Not considered to be significant based on absence of turbidity or observed sediment in sample. Sample was diluted because of non-target analytes, but applicable MCP reporting limits were achieved.
RIZ-10	VOCs by 524.2, MCP 14 Metals	10-Jun-09	Х		Х	х		Υ	Υ	Υ	Υ	NA	NA		Y		Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.

Sample ID or Series	Parameters	Date Sampled	/	Soil	Secient	Site Characte	Tation	Hazard Elimi	CAM Complies	Sample R.	Method QA/OC	Followed? (YM) QA/QC Ro.	Achieved? (Y/N) Trip Blanks OV.	Field Duplicate C.	Relative Percent	Appropriate S	Data Qualifications
RIZ-8	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		х	х		Υ	Υ	Y	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
RIZ-8S	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		х	Х		Υ	Υ	Y	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
MW-9	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		х	Х		Υ	Υ	Υ	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
GHC-6	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		х	Х		Υ	Υ	Y	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
RIZ-3	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		х	Х		Υ	Υ	Y	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
MW-2	VOCs by 524.2, MCP 14 Metals	10-Jun-09		Х		Х	Х		Υ	Υ	Υ	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
RIZ-9	VOCs by 524.2, MCP 14 Metals	10-Jun-09		х		Х	Х		Υ	Υ	Y	Υ	NA	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
MW-9	VOCs by 524.2, MCP 14 Metals	21-Dec-09		х		Х	Х		Υ	Υ	Υ	Υ	Υ	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
RIZ-8	VOCs by 524.2, MCP 14 Metals	21-Dec-09		Х		Х	Х		Υ	Υ	Y	Υ	Υ	NA		Υ	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe
GHC-6	VOCs by 524.2, MCP 14 Metals	28-Dec-09		Х		Х	Х		Υ	Υ	Y	Y	Υ	NA		Υ	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe analytes. The applicable MCP reporting limits were achieved.
RIZ-3	VOCs by 524.2, MCP 14 Metals	28-Dec-09		Х		Х	Х		Υ	Y	Y	Y	Υ	NA		Y	Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe
RIZ-9	VOCs by 524.2, MCP 14	28-Dec-09		Х		Х	Х		Y	Y	Y	Y	Υ	NA		Y	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe
RIZ-10	Metals VOCs by 524.2, MCP 14	28-Dec-09		Х		х	Х		Y	Y	Y	Y	Υ	NA		Y	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe
MW-3	Metals VOCs by 524.2, MCP 14	28-Dec-09		X		Х	Х		Y	Y	Y	Y	Y	NA		Y	analytes. The applicable MCP reporting limits were achieved. Metals samples have high detection limits for Antimony and Thallium due to dilutions required by presence of non-targe
	Metals VOCs by 524.2, MCP 14	20 200 00															analytes. The applicable MCP reporting limits were achieved. CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method
MW-3	Metals	11-Jun-10		Х		Х	Х		N	Y	Y	Υ	Υ	NA		Υ	524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lithan Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-3	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	х		N	Υ	Υ	Υ	Υ	NA		Υ	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lithan Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
MW-2	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	х		N	Υ	Υ	Υ	Υ	NA		Υ	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lithan Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
GHC-6	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	х		N	Y	Υ	Y	Υ	NA		Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Methor 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lithan Method 8260. (Data is "non-CAM", nor "CAM non-compliant.")
RIZ-9	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	Х		N	Υ	Υ	Υ	Υ	NA		Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection lithan Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-10	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	х		N	Y	Y	Y	Υ	NA		Y	CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection li
RIZ-8	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	Х		N	Y	Y	Y	Υ	NA		Y	than Method 8260. (Data is "non-CAM", not "CAM non-compliant.") CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Method 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection li
MW-9	VOCs by 524.2, MCP 14 Metals	11-Jun-10		х		х	х		N	Y	Y	Y	Υ	NA		Y	than Method 8260. (Data is "non-CAM", not "CAM non-compliant.") CAM Compliant is N because VOC analysis was performed by EPA Method 524 rather than EPA Method 8260. Methor 524 was used to be consistent with the requirements of the annual BOH sampling and because it has lower detection li
	Ivietals																than Method 8260. (Data is "non-CAM", not "CAM non-compliant.")
RIZ-9 (9'-11')	VOCs by 8260 (High Range and Low Range), MCP 14 Metals	6-Dec-07	х			х	х		Υ	Y	Υ	Υ	NA	NA		Υ	LCS/LCSD % recoveries for Dichlorodifluorometh are below the individual acceptance critera for the compounds, but within overall method allowances.
RIZ-10 (44'-46')	VOCs by 8260 (High Range and Low Range), MCP 14 Metals	6-Dec-07	х			х	х		Y	Y	Υ	Υ	NA	NA		Υ	LCS/LCSD % recoveries for Dichlorodifluorometh are below the individual acceptance critera for the compounds, but within overall method allowances.
				\vdash				_									
		ļ		1				_									
							_	1									
						$=$ \mathbb{I}	Ŧ	$\exists F$									
		1						_									
		1		+		\vdash	-					-	 	1		1	
		1					\neg					Т					

Appendix B - Data Usability Ass	pendix B - Data Usability Assessment Summary Table															
Sample ID or Series	Parameters	Date Sampled	8	Ground	Sedimen	Site Characteriza:	EPCS	CAM Compile.	Sample Reco.	Method QA/QC Proces	QA/QC Require	Trip Blanks OK?	Field Duplicate OK	Relative Percent Difference	Appropriate Reposit	Data Qualifications
ļ				(
		<u> </u>														
		-	\dashv	一	\dashv	Ŧ										
		-			-	-										
		-														
		-				_										
							_									
					-	-										
							_									
						Ⅎ										
					Ŧ	1	_									
					#											
		1	\vdash	-	\dashv	+										
				_	#	4										
					_		\pm									
				1	干	1										
		-	\vdash	-	\dashv	+										
		1		_	#	1										
		1	\vdash	-	\dashv	+										
					4											
		1														
		-	H	一	7	Ŧ	_ [-1			
		1														
		4			\dashv		_									
		1				T †				i –	1					

Appendix B - Data Usability As:	sessment Summary Table															
Sample ID or Series	Parameters	Date Sampled	Soll	Groudwater	Sediment Site Char	Hazard Eliza	CAM Complian	Sample R.	Method QA/QC Procedur	QA/QC Require	Trip Blanks OK?	Field Duplicate OK?	Relative Percent Div.	Appropriate R	Limits? (Y/N)	Data Qualifications
		_														
		_														
		_														
		_														
						l L										

Appendix C

Public Notification Documentation

from Norfolk to CNH.

Dec. 23 ansported one d Post Road to

Transported m Main Street

wo-car motor it reported on No injuries.

ec. 24 ansported one Iltop Drive to

ansported one oute 1 South d Hospital. ansported one ain Street via d Hospital.

Transported n Main Street vood Hospital.

Dec. 25

CO detector low battering Main Street.

Assisted the d out of the ain Street. ansported one ain Street via

ws!

calendar e to sube-mail it

/est St.,

s by 12o, please

activation unintentional on Killeen Road. Smoke was from cooking. Alarms had resent prior to the Fire Department's arrival Investigation only.

10:01 p.m. Report of people being stuck in an elevator on Elm Street. They were selfrescued before the Fire Department arrived. Elevator removed from Building manager notified.

10:05 p.m. A small grease fire in the oven was reported on Endean Drive. The fire was out prior to the Fire Department's arrival. Smoke had to be ventilated from the home. After ventilation, the alarm was reset. No damage to the oven.

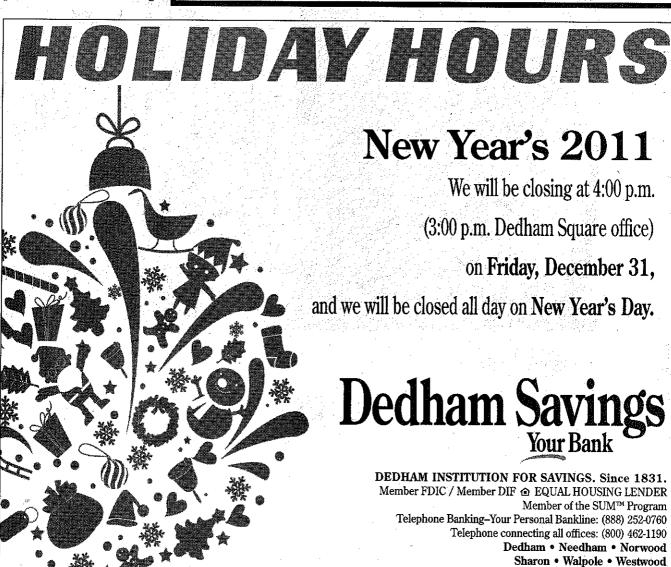
Sunday, Dec. 26

2:57 a.m. Responded to a report of a fire in the living

Norfolk a.m. Ambulance transported one person from Drake Circle via Domenica Road.

1:38 p.m. CO detector activation on Plain Street. No CO BLS = Basic Life Support CNH = Caritas Norwood

www.dedhamsavings.com


NOTICE OF A PUBLIC INVOLVEMENT PLAN MEETING

Walpole Park South Walpole Park South Road Walpole, Massachusetts RTN 3-21915

Walpole Park South received a petition from residents in Walpole requesting this location be designated as a Public Involvement Plan (PIP) site, in accordance with MGL c.21E § 14 (a). A PIP, dated April 6, 2005, was prepared for this Site indicating that meetings would be held to present major site documents to the public.

In accordance with the PIP, a public meeting will be held in the Main Meeting Room, Walpole Town Hall, 135 School Street, at 7:00 PM on January 13, 2011 to present the draft Phase V Completion Statement/Class B-1 Response Action Outcome Statement and to provide an opportunity for public comment. Copies of the draft report will be available at the meeting, and will also be placed in the public information repository at the Walpole Public Library on or before January 13, 2011. The public comment period for the RAO Statement will run through February 2, 2011.

Any questions regarding this meeting or the Public Involvement Plan should be directed to Raymond C. Johnson, P.G., L.S.P., Senior Vice President, Tetra Tech, Inc., 1 Grant Street, Framingham, MA 01701-9005, at 508-903-2000.

January 10, 2011

Mr. Christopher G. Timson, Chairman Board of Selectmen Town of Walpole 135 School Street Walpole, MA 02081

Re: Notice of Class A-2 Response Action Outcome Statement and Phase V Completion Report

Walpole Park South Walpole, Massachusetts

RTNs 4-3021915

Dear Mr. Timson:

On behalf of Walpole Park South, Tetra Tech, Inc. is providing this notification that a Class A-2 Response Action Outcome Statement and Phase V Completion Statement will be submitted to the Massachusetts Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about February 3, 2011.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library.

Please contact the undersigned if you have any questions.

Very truly yours,

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\12700000\12700058\12700058-003\RAO Statement\Town Notification Letter.doc

January 10, 2011

Ms. Robin Chapell, Health Agent Town of Walpole Board of Health 135 School Street Walpole, MA 02081

Re: Notice of Class A-2 Response Action Outcome Statement and Phase V

Completion Report Walpole Park South Walpole, Massachusetts RTNs 4-3021915

Dear Ms. Chapell:

On behalf of Walpole Park South, Tetra Tech, Inc. is providing this notification that a Class A-2 Response Action Outcome Statement and Phase V Completion Statement will be submitted to the Massachusetts Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about February 3, 2011.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library.

Please contact the undersigned if you have any questions.

Very truly yours,

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\12700000\12700058\12700058-003\RAO Statement\BOH Notification Letter.doc

Appendix D **Soil Boring Logs and Monitoring Well Construction Diagrams**

	Geo	Hyd	roCy(CLE, I	NC.		$\mathbf{E}_{\mathbf{i}}$	nvironme	ntal Drill	ing Log
	425 Newton	ville Avenue	Newton, MA 024	60		(617) 527-8074 (617) 527-8668				
	Project:	Walpol	e Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-1	Sheet 1 of 1
	Drilling	Location	_	_		first building toole Park Sout	to the west of the Route 1 h.		9/04 @ 14:50 9/04 @ 16:15	
	Drill Ri	g: Truck	Mounted l	Rig		Inspector: TV	/M and KAR			
			eter: 6.25"			4	- Steve and Tim		ter Depth @ Co	4
		Length:	plit Spoon			Temperature:	nny and windy 25°	Date/Time	Depth	Meas. Pt. TOC/Grnd
ď			Sample		Rock	Soil	Sample Description/	Stratigraphic	Mate	1
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled
			·						Road Box (0.0')	
		SS-1	(0-2')	24"		46/41/38/31	Dense, brown, f-c SAND, some Gravel,		Cement 1-0'	
							Topsoil.			
	5	SS-2	(5-7')	12"		28/38/38/20	Dense, brown, f. SAND, broken		Betonite 3-2'	7
		55-2	(3-7)	12		26/36/36/20	rock pieces.		2" PVC Riser	
									Pipe 11.5-0'	
in the	10	SS-3	(10-12')	8"		12/33/41/17	Dense, brown, f-c SAND, broken			
J			(10 10)				rock pieces, Saturated.			
									Sand 20-3'	
eres i	15	SS-4	(15-17')	4"	. "	6/10/12/15	Medium, brown, f-c SAND,			
i	-						broken rock pieces.		2" PVC 10-Slot	
es (d									Screen 20-5'	
	20						1			
							EOB = 20 feet.	-		4 1
										1
	25							,		
	-	ANSON PROPERTY.								
despera				·]
	30			·						1
s university										1
2000						<u>-</u>				-
	35									
		and some little	35 to 50 20 to 35 10 to 20	% % %		4-10 10-30 r	very loose Slight loose Low medium Medium		LAY 1/8" SILT 1/16"	
		trace	1 to 10	%	,		dense High very dense Very H	Silty CLA ligh CLAY	Y 1/32" 1/64"	

J GEO	HYD	ro C yo	CLE,]	INC.		E	nvironme	ntal Drill	ing Log
425 Newton	rville Avenue	Newton, MA 024	160		(617) 527-8074 (617) 527-8668				<i>U</i> - <i>O</i>
Project:	Walpol	le Park Sou	ıth				Project No.	Location No.	Sheet
T	- ·			1			GHC# 03027	GHC-2	1 of 1
Drilling	Locatio					e parking lot for the building		9/04 @ 13:00	
Deili D:	or Two-1-	on the Mounted	e southw	estern s		pole Park South Property.	Finished: 01/1	9/04 @ 14:40	
		eter: 6.25"			Inspector: TW Driller: TDS		Canana david	ton Donth @ Co	1_4:
20		Split Spoon				nny and windy	Date/Time	ter Depth @ Cer	Meas. Pt.
	Length:				Temperature:		1/19/04 @ 15:35	Depth 18.19	TOC/Grnd
	T	Sample		Rock	Soil	Sample Description/	Stratigraphic	Mater	1
Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	
									1
								Road Box	
								(0.0')	
								(0.0)	
	SS-1	(0-2')				Brown, f-m SAND, little Gravel.		Cement 2-0'	
		` ′						7	
								Betonite 5-2'	₩ ₩
5	SS-2	(5-7')	14"		12/38/48/60+	Dense, brown, f-c SAND, trace Gravel.		Botonic 3-2	₩ / ₩
								2" PVC Riser	
								Pipe 7-0'	
4 .,							·	1 ipe 7-0	
			·						
10	SS-3	(10-12')	0"		102/-/-/-	No Sample.			
		(10 12)			102/-/-	no sample.			·
									-
				,				G 100 51	
				,			· · · · · · · · · · · · · · · · · · ·	Sand 22-5'	
15	SS-4	(15-17')	12"		29/19/30/15	Medium, brown, f-m Sand, little Gravel,			-
	- 55	(15 17)	- 12		23/13/30/13	Saturated.			- ∰≡=₩₩
		· · · · · · · · · · · · · · · · · · ·				Sauraicu.		28 DVC 10 GL-4	
7.5								2" PVC 10-Slot	1 =
								Screen 22-7'	₩
20	SS-5	(20-22')	7"		55/80/-/-	Dense, brown, f-c SAND, trace Silt,	. ,		
	55.5	(20 22)			33/60/				
7						trace Gravel.			
						FOR - 22 foot			
						EOB = 22 feet.			{
T 25	<u></u>								{
						,			
				•					1 1
									4
 				·					4 1
30							·		4
									{
T ŀ									4 1
4 • •									4 1
				· · · ·					4 1
35							·		
		1							
MINOR and	COMPON	IENTS to 50%			ATIVE DENSITY	OVERALL Slight	PLASTICITY Claver SU.T.	1/40	I
and some		io 30% io 35%			4 very loose10 loose	Low	Clayey SILT SILT & CLA	1/4" Y 1/8"	
little		o 20%			-30 medium	Medium	CLAY & SIL		
trace	11	to 10%		30-		High	Silty CLAY	1/32"	Ī
				>:	50 very dense	Very High	CLAY	1/64"	

	Geo	Hyd	ROCYO	CLE,]	Inc.		Eı	nvironme	ntal Drill	ing Log
			Newton, MA 024			(617) 527-8074 (617) 527-8668				Lot
	Project:	Walpol	e Park Sou	ıth				Project No. GHC# 03027	Location No. GHC-3	Sheet 1 of 1
	Drilling	Locatio					parking lot for the building	Begun: 01/1	9/04 @ 13:10	1
	- '11 D'	m 1			estern s		pole Park South Property.	Finished: 01/1	9/04 @ 14:30	
			Mounted leter: 6.25"		·	Inspector: L Driller: TDS		1 Groundwe	ater Depth @ Co	mnletion
			Split Spoon			<u> </u>	nny and windy	Date/Time	Depth (a) Co	Meas. Pt.
		Length	24"			Temperature:	25°			TOC/Grnd
			Sample	· .	Rock	Soil	Sample Description/	Stratigraphic	Mate	
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled
								i d	Road Box	
									(0.0')	
									3	
		SS-1	(0-2')	24"		32/32/11/5	Mediun, brown, f. SAND, some Gravel,		Cement 1-0'	
							Topsoil.		Madina Pill 0 41	**************************************
									Native Fill 2-1'	
	5	SS-2	(5-7')	12"		14/26/20/11	Medium, brown, f. SAND, some Gravel.		Betonite 4-2'	7
									2" PVC Riser	
								,	Pipe 6-0'	
		-						\		√ ■ · ·
	10	SS-3	(10.120)	18"		12/12/19/15	Madium Lucum & CANTO little Count		Sand 16-4'	: =
	10	33-3	(10-12')	18		13/13/18/15	Medium, brown, f. SAND, little Gravel.			· 📜
									2" PVC 10-Slot	1
									Screen 16-6'	1 🗏
						·		,		
	15	SS-4	(15-17')	10"		13/100+/-/-	Dense, brown, f. SAND,			-
							broken rock pieces. EOB = 16 feet.	+	 	
							LOB = 10 Rec.			1 1
										1
	20									
									ļ	4
										-
	25									1
										1
						,				
T										4 1 1 .
	30				.					-
	30		•							4 .
I					-		1	·		
]
4]
ل	35	MINION	O (PO) ****	ro	L	L				
		MINOR C	OMPONEN' 35 to 50			RELATIVE 0-4		ALL PLASTICITY t Clayer Clayer	SILT 1/4"	
T		some	20 to 35	%		4-10	loose	HLY SSILT A	CLAY 1/8"	
		little trace	10 to 20 1 to 10				medium dense Medi			
			papara T	· •				High CLAY		

	GEO	HYD	roCy	CLE,	INC.		F	nvironme	ental Drill	ino I	ഹ
	l		Newton, MA 024			(617) 527-8074 (617) 527-8668				mg L	νg
	Project:	Walpol	le Park Sou	uth	· · · · · · · · · · · · · · · · · · ·	(017) 327-0008		Project No.	Location No.	Sheet	,
	Drilling	Location	n. I costo	din a fia	1.1 : 41			GHC# 03027	GHC-4	1 of	1
	Bumin	Locatio	II. Located	o m a ne South Pi	oid in the	nortneastern i	nost portion of the Walpole		19/04 @ 11:20		
	Deill Ri	g: Truck	Mounted	Dia	roperty.	IIngmostow TV	TA A	Finished: 01/1	9/04 @ 12:50		
	Drill H	de Diam	eter: 6.25"	rug		Inspector: TV		T .			
			Split Spoor			Driller: TDS		1	ater Depth @ 🗞	7	
		r Length:		1		weather: St	nny and windy	Date/Time	Depth	Meas.	
	Bampic	T Lengur.			T	Temperature:		1/19/04 @ 15:05	11.87	TOC/G	rnd
	Danth		Sample		Rock	Soil	Sample Description/	Stratigraphic	Mate		
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled	
		1									
1						-				1	
					l				Road Box		
									(0.0')	N	
							}			1	
۷		SS-1	(0-2')				Light-brown, f. SAND, trace c. Sand.		Cement 1-0'		
							1			- 123	e leva
									Betonite 2-1'	J00000 /	00000
							1		Belomic 2-1	<i> </i>	
	5	SS-2	(5-7')	16"		17/20/17/16	Medium, brown, f-c SAND, little	1		H/\square	
3558							Gravel.	1	OR DATE D	$H \equiv$	
							Gravei.		2" PVC Riser	∤ <u> </u>	
1000							,		Pipe 3-0'	∤	
I	10	SS-3	(10-12')	14"		16/17/10/0	.		Sand 13-2'		
	10	33-3	(10-12)	14"		16/17/18/3	Medium, dark-brown, f-m SAND,				
							Saturated.				
									2" PVC 10-Slot		
									Screen 13-3'		
							EOB = 13 feet.				
286	15		·	·					·]	
								1	·	1	
	- 1							1		1 .	
					-			1		1	
										1	
	20									1	
										1	
7		-								1	
4	· .									1 1	
	Ī							* .		1	
7	25										
1	Ì									4	
	1									4.	
	Ì						·			4	
ı										4 1	
	30						·			1 1	
	H									1	
	ŀ									1 1	
	ŀ]		1	
	ļ.						,]]	·
7	,]	
1	35		<u>l</u>								_ '
		R COMPO			B	ELATIVE DENS		ASTICITY			
7	and		to 50%			0-4 very lo	ose Slight	Clayey SILT	1/4"		
	some little		to 35%			4-10 loose 10-30 mediur	Low	SILT & CLAY	1/8"		
	trace		to 20% to 10%			10-30 mediur 30-50 dense	n Medium High	CLAY & SILT	1/16"		1
	440		10/0		1.	>50 very de		Silty CLAY CLAY	1/32" 1/64"		- 1
_	-					,		~~	A/OT		1

$\mathbf{J}\mathbf{G}_{\mathrm{E}}$	OHYD	ROCY	CLE,	INC.		E	nvironme	ntal Drill	ing Log
7		Newton, MA 02			(617) 527-8074				00
Proje	ct: Walpo	le Park So	uth		(617) 527-8668		Project No.	Location No.	Sheet
7							GHC# 03027	GHC-5	1 of 1
Drilli	ng Locatio	n: Locate	d in nort	hwestern	portion of the	e parking lot for the building		9/04 @ 09:00	
15.211	D: 70 1	on th	e southy	vestern s		pole Park South Property.	Finished: 01/1	9/04 @ 11:10	
Drill .	Kig: Truck	Mounted	Rig		Inspector: T\		·		
		neter: 6.25"			Driller: TDS		Groundwa	ter Depth @ Co	mpletion
		Split Spoor	1			unny and windy	Date/Time	Depth	Meas. Pt.
Samp	ler Length			Ι	Temperature	·			TOC/Grnd
n		Sample	1	Rock	Soil	Sample Description/	Stratigraphic	Mate	
Dept	h No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled
								Road Box (0.0')	€
	SS-1	(0-2')				Brown, f-c SAND, trace Gravel, trace		Cement 2-0'	
						Silt.		Comone 2-0	
7									
						1		Native Fill 6-2'	/ / /
5	SS-2	(5-7')	9"		9/7/6/16	Very loose, Grey, f-c SAND, trace		Nauve Fill 0-2	}
		()			3,7,0,10	•		A	 /
						Gravel, trace Silt.		2" PVC Riser	6000 00000
	-					· ·		Pipe 10-0'	
			-			4			18888 188888
								Betonite 8-6'	
10	SS-3	(10-12')	17"		11/5/9/14	Very loose, Grey-brown, f SAND, trace			
						m Sand, trace c Sand, trace Silt.			
7									
						1			18 🖃 📟
15	SS-4	(15-17')	13"		7/14/14/21	Loose, Brown, f-c SAND, trace Gravel,		·	
						trace Silt, Saturated.			
-						Samuelou.			
							, ·	G140.0t	/ 🗐 📗
7					*			Sand 40-8'	
20	SS-5	(20-22')	17"		7/12/21/10	ACT D CONT			
20	33-3	(20-22)	17		7/12/21/18	Medium, Brown, f-c SAND, trace			
,	·					Gravel, trace Silt, Saturated.	·		
						1			
	-					1			
25	SS-6	(25-27')	14"		6/19/31/34	Medium, Grey, f-c SAND, trace Silt,			
						Saturated.			
]			•				
ľ								2" PVC 10-Slot	ľ⊟ I
		,						Screen 40-10'	
30	SS-7	(30-32')			25/32/46/38	Dense, Grey-brown, f SAND, trace			
				. 1		m Sand, trace c Sand, trace Silt,			
						Saturated.			
						Dense, Grey-brown, f SAND, trace			
35	SS-8	(35-37')	17"		24/38/46/66	m Sand, trace c Sand, trace Silt, Moist.			
		OMPONENT					ATT DI ACTUCIONE		
	and	35 to 509			0-4	very loose Sligh	t Clayey	SILT 1/4"	
	some	20 to 359			4-10	loose Low		CLAY 1/8"	,
1	little	10 to 20%			10-30	medium Medi			
	trace	1 to 109	%		30-50	dense High	Silty Cl		
					>50	very dense Very	High CLAY	1/64"	İ

-					(617) 527-8668				
roject:	Walpol	ļ.					Project No.	Boring No.	Sheet
				,	***************************************		GHC# 03027	GHC-5	2 of
		Sample		Rock	Soil		Stratigraphic	Mate	rials
epth	No.	Depth	Recov.	RQD	Blows per 6"	Sample Description	Description	Insta	alled
						·		. 6	
- 1								2" PVC 10-Slot	
						Dense, Brown, f SAND, little Silt, trace		Screen 40-10'	
		(10.10)		-		Gravel, trace m Sand, trace c Sand,			
40	SS-9	(40-42')	12"		28/48/29/19	Moist.	 		
ŀ						EOB = 40 feet.			-
f				1	•			 	-1
ŀ									-
45									-
					-				-
t						1			-
				1				1	-
ľ								†	-
50					,				
				* **		, , , , ,			┥
								1	
L									1
					4,1				1 1
55]							1] [
L						i e e			7
-									7
1									
60									╛┪╽
F					:				1
-			-						_
· -			-						1 1 1
65									4 1
" F									-
F						•			4
- t				- 1					4
<u> </u>								 	-
70									-
-				27 ·					-
									-
								 	-
		·							
75									- I I
									-
									1
							:		<u> </u>
L									7
80							est of the second]_]
		OMPONENT				RELATIVE DENSITY	OVERALL PLAST	ICITY	
	and	35 to 50%			•	0-4 very loose	Slight	Clayey SILT 1/	4"
	some	20 to 35%				4-10 loose			/8"
	little trace	10 to 20%				10-30 medium 30-50 dense			16"
							High	Silty CLAY 1/3	

	GEO	Hyd	roCyc	CLE,	INC.		E	invironme	ntal Drill	ling Log
4			Newton, MA 024			(617) 527-8074				
	Project:	Walpo	le Park Sou	ıth		(617) 527-8668		Project No.	Location No.	Sheet
4								GHC# 03027	GHC-6	1 of 1
	Drilling	Location				cnic tables in tl	ne center of the Walpole Park		9/04 @ 11:15	
				Proper	ty.			Finished: 01/1	9/04 @ 12:50	•
	Drill Ri	g: Truck	Mounted 1	Rig		Inspector: LC	В			
T	Drill Ho	ole Dian	neter: 6.25"			Driller: TDS -		Groundwa	ater Depth @ Co	mpletion
	Sampler	Type: S	Split Spoon	l		Weather: Sur		Date/Time	Depth	Meas. Pt.
		Length				Temperature:		1/19/04 @ 15:20	8.71	TOC/Grnd
		T S	Sample		Rock	Soil	Sample Description/	Stratigraphic		erials
ı	Depth	No.	1	Γ.	1 .		Detector Readings	Description	1	alled
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	THE	alleu
		1	1		1				ļ	
						1			Road Box	1 .1
					l				(0.0')	1
									()	1
ŀ		66.1	(0.00)	04"	 	10/15/04/00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0 10	
		SS-1	(0-2')	24"	-	19/15/24/39	Medium, brown, f-m SAND,		Cement 1-0'	
		 				ļ	some Gravel, Topsoil.		i	424 444
T									Native Fill 2-1'	
		L							Betonite 3-2'	Y Y []
	5	SS-2	(5-7')	20"		9/23/26/34	Medium, brown, f-c SAND, some			7/=
			 		 		Gravel, broken rock pieces.		2" PVC Riser	-/ =
П					 		laraver, broken rock pieces.			1 = 1
									Pipe 4-0'	
										」/ 目
					1			,	Sand 19-3'	
	10	SS-3	(10-12')	24"		7/8/12/14	Loose, brown, f-c SAND, little gravel.			
							Saturated.			
					 				2" PVC 10-Slot	
Ŧ				<u></u>	 	<u> </u>				- =
					 				Screen 19-4'	- - -
	15	SS-4	(15-17')	4"		60+/-/-/-	Dense, brown, f-m SAND, broken			
					İ		rock, Saturated.			
	-									
7					 					
	20						TOP 10.5 /			
	20						EOB = 19 feet.			-
										_
	ľ							1		_
L]
							· t			7
- FT	25							1		-
1					 					-
	1								<u> </u>	
	1									_
T	- 4									_
1										_] 1
	30									_
	ľ									7
1	ł				<u> </u>					-
4	ł			-	 -					-
	-				ļ					_
7	Į.	,								_
L	35							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1	MINOR C	OMPONENT	rs		RELATI	VE DENSITY OVERA	ALL PLASTICITY		
		and	35 to 50			0-4	very loose Slight		LT 1/4"	
T		some	20 to 359			4-10	loose Low	SILT & C		
		little	10 to 209			10-30	medium Mediu			·
		trace	1 to 10	%		30-50	dense High	Silty CLA		
						>50	very dense Very I	High CLAY	1/64"	

	Geo]	Hydi	ROCYC	CLE, I	NC.		E	nvironme	ntal Drilli	ng Log
			Newton, MA 0246	•		(617) 527-8074 (617) 527-8668				
	Project:	Walpole	Park Sou	th				GHC# 03027	GHC-7	Sheet 1 of 1
	Drilling	Location		in a gra South Pr		in the southea	stern portion of the Walpole	Begun: 01/19 Finished: 01/19	9/04 @ 09:1 0 9/04 @ 10:45	
			Mounted I			Inspector: LC				
1			eter: 6.25"			Driller: TDS -			ter Depth @ Co	Meas. Pt.
	Sampler Sampler	Type: S	plit Spoon			Temperature:	nny and windy	Date/Time 1/19/04 @ 15:13	Depth 16.81	TOC/Grnd
4	Sampler	Lengui.	Sample		Rock	Soil	Sample Description/	Stratigraphic	Mater	
	Depth	No.	Depth	Recov.	RQD	Blows per 6"	Detector Readings	Description	Insta	lled
No.										
4										ŧ
									Road Box	
									(0.0')	Λ
٦						•			·	
		SS-1	(0-2')	15"		143/172/-/-	Very dense, brown, f-m SAND, trace		Cement 1-0'	
							Gravel.			4 1 1 1
7										4
									27.1. 77.11.6.11	4/
	5	SS-2	(5-7')	15"		8/9/10/10	Loose, brown, f. SAND.		Native Fill 6-1'	4 1 4 1
						<u> </u>				80000
						<u> </u>				-‱ ‱
					<u> </u>		4		D-4i4- 9 61	_
					-		l		Betonite 8-6'	1 /
	10	SS-3	(10-12')	16"		7/9/12/10	Medium, brown, f. SAND.			- /=
				ļ	<u> </u>				2" PVC Riser	-/ 目 □
					<u> </u>		4		Pipe 10-0'	┪
		<u> </u>	-	 	 	-	-		1 ipe 10-0	-
	15	SS-4	(15-17')	16"	 	3/6/3/3	Loose, brown, f. SAND, Saturated.			1 🗐 🛚
	1.13	33-4	(13-17)	10	1	310/3/3	Loose, blown, i. SAND, Saturated.			-
							<u> </u>			1,=
				 		7			Sand 25-8'	7 🗐 🛮
	-				<u> </u>					
	20	SS-5	(20-22')	24"		10/10/31/16	Medium, brown, f-m SAND.		:	
	,				,			•	·	
٦	l								2" PVC 10-Slot	
	1								Screen 25-10'	
										_
	25	SS-6	(25-27')	24"		18/30/12/13	Medium, brown, f-c SAND, some			
	1						Gravel.			_
							EOB = 25 feet.			_
			ļ		_					\dashv \mid \mid
	1			<u> </u>	<u> </u>	 				-
	30									-
			<u> </u>	<u> </u>	_	-	4	•		-
	1			<u> </u>	 	.	┥			-
		-	 	 	1		-			\dashv $\mid \cdot \mid$
	35			 	1		1		-	-
	33	MINOP (COMPONEN	JTS	1	אַ אַ אַ אַ אַ אַ אַ אַ אַ אַ אַ אַ אַ א	I VE DENSITY OVE	RALL PLASTICITY		
		and	35 to 5			0-4	very loose Sligh	ht Clayey S		
	,	some	20 to 3	5%		4-10	loose Low			
		little	10 to 2			10-30 30-50	medium Med dense High			
		trace	1 10 1	V /0		>50 >50		High CLAY	1/64"	
-	•					-	- · · · · · · · · · · · · · · · · · · ·			

	R I Z Z A S S A TECH C	0 C I	ATES			W	ELL	NUMBER RIZ-1 PAGE 1 OF 1
CLIEN	IT Walp	ole Pa						
	ECT NUM					PROJECT LOCATION Walpole, Massac		
						GROUND ELEVATION GROUND WATER LEVELS:	HOLES	51 2 E <u>2"</u>
					er			
LOGG	ED BY	Dimitri	Gounis		CHECKED BY	AT END OF DRILLING		
NOTE	s	1	ı		I	AFTER DRILLING		1
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MA	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		50 25 100	11-15-52- 93 (67) 42-30 11-42-40- 45 (82)		Tan medium to fine sand, 12.0 12.5 boulder Tan fine sand with some part of the sand with some part o	plasticity with gravel and very course sand, wet,	0.8	Backfill: Cuttings PVC Riser Bentonite Filter Pack PVC Screen
- 25 - 30					Be	ottom of hole at 32.0 feet.		

	RIZZ(ASS) RATECH C	0 C I	ATES			V	/ELL	NUMBER RIZ-2 PAGE 1 OF 1
	NT Walpo		rk South Tru			PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massac	husetts	
DATE DRILL DRILL LOGG	STARTE LING CON LING MET	D 10 ITRAC HOD Dimitri	TOR Soil Hollow Ste	Explora m Aug		GROUND ELEVATION GROUND WATER LEVELS: AT TIME OF DRILLING	HOLE S	
o DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MAT	TERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		33	50		Tan madium to fine sand ar	nd gravel, dry, no odor	0	Backfill: Cuttings Bentonite PVC Riser
- 5 		0		ο · · · ·	Gravel and cobbles off augo fine dry sand 7.0	er, some angular gravel, some tan medium to		
10		33	6-12-22-12 (34)		Tan coarse sand and grave	l with fine sand, wet, no odor	0	Filter Pack PVC Screen
 _ 15 _ 		25	70		Tan coarse sand and grave odor, auger refusal at 15.5' 17.0	el with fines, slightly plastic/cohesive, wet, no	0	
GENERAL BH/TP/WELL BORING LOGS.GPJ GINT US.GDT 3/15/06 2 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					Bot	tom of hole at 27.0 feet.		

WELL NUMBER RIZ-3 RIZZO PAGE 1 OF 2 ASSOCIATES A TETRA TECH COMPANY CLIENT Walpole Park South Trust PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachusetts PROJECT NUMBER DATE STARTED 10/14/05 COMPLETED 10/14/05 GROUND ELEVATION HOLE SIZE 2" GROUND WATER LEVELS: DRILLING CONTRACTOR Soil Exploration DRILLING METHOD Hollow Stem Auger AT TIME OF DRILLING _---LOGGED BY Dimitri Gounis CHECKED BY AT END OF DRILLING _---**NOTES** AFTER DRILLING _---SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG (mdd) RECOVERY DEPTH (ft) MATERIAL DESCRIPTION WELL DIAGRAM Ы 0 Brown uniform medium sand fill, moist, no odor, off auger 3.0 5 5.0 Brown uniform medium to fine sand, moist, no odor 5-7-8-6 (15)Backfill: Cuttings 10 **PVC Riser** Brown/tan coarse sand and fine sand with gravel, wet, no odor 6-7-9-12 50 0 (16)15 Brown/tan coarse sand and fine sand with some gravel, wet, no odor 1-6-11-12 33 0 (17)Bentonite 20 Brown/tan coarse sand with some fines, wet, no odor 3-6-8-21 0 (14)**PVC Screen** 25 Filter Pack 15-20-23-Brown/tan coarse sand to very corase sand and gravel with some fines, 27 wet, no odor (43)Brown/tan coarse sand to very corase sand and gravel with fines, wet, no 7-11-9-11 83 0 (20)

GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06

WELL NUMBER RIZ-3

RIZZO

GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06

PROJECT NUMBER PROJECT LOCATION Walpole, Massachusetts PROJECT LOCATION Walpole, Massachusetts A	ASSOCIATES A TETRA TECH COMPANY			PAGE 2 OF 2				
HEDGO WELL DIAGRAM MATERIAL DESCRIPTION (a) Wounding prevents acurate sample from this depth, no soil desc. End or boring at 40', no refusal.								
				WELL DIAGRAM				
		42.0	0					

	RIZZ(ASS)	0 C I	ATES			BORING NUMBER RIA PAGE 1	
CLIEN	NT Walpo	ole Pa	rk South Tru	ust		PROJECT NAME Walpole Park South	
	ECT NUM				COMPLETED 10/14/05	PROJECT LOCATION Walpole, Massachusetts GROUND ELEVATION HOLE SIZE 2"	
					ation		
DRILL	DRILLING METHOD Hollow Stem Auger AT TIME OF DRILLING						
	GGED BY Dimitri Gounis CHECKED BY AT END OF DRILLING TES AFTER DRILLING						
NOTE						AFTER DRILLING	
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
					Brown medium to fine sand	d and gravel, dry, no odor, off auger	0
5		75	25-30-27- 23 (57)		Brown medium to fine sand	d and gravel, dry, no odor	0
		33	17-27-27- 29 (54)		Brown medium to fine sand Auger refusal at 13' 12.0	d and gravel with some coarse sand few orange mottles, moist, no odor.	0
GENERAL BH / TP / WELL BORING LOGS.GPJ. GINT US.GDT 3/15/06 12 12 1						Bottom of hole at 27.0 feet.	

	RIZZ ASS RATECH C	0 C I	ATES			BORING NUMBER RI	
PROJ	ECT NUM	IBER					
						GROUND ELEVATION HOLE SIZE _6"	
					er	GROUND WATER LEVELS: AT TIME OF DRILLING	
					CHECKED BY		
NOTE	s	•	•			AFTER DRILLING	
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
		50	8-9-12-9 (21)	l****	Brown medium to fine uni	form sand, moist, no odor	0
5		25	16-18-20-		Brown medium to fine uni	form sand with angular gravel, dry, no odor	
-		25	25 (38)		7.0		0
10		0	6-21-45-30 (66)		No recovery, brown mediu	um to fine uniform sand with angular gravel off auger	0
 		83	6-9-11-7 (20)		Brown/tan medium sand u	uniform with little gravel, moist, no odor	0
 20						Bottom of hole at 20.0 feet.	
١٥٥.٥٥ الا ١٥٠.٥٥ الله							
LOGO.GFJ GI							
WELL BURING							
GENERAL BH / 1P / WELL BORING LOGS.GPJ GINI US.GD 3/19/08							
S S S							

	RIZZ ASS	0 C I	ATES			BORING NUMBER RIZ	
PROJ	IECT NUI	/IBER					
DRILI	LING CO	NTRAC	TOR Geo	search	COMPLETED <u>2/16/06</u>	GROUND ELEVATION HOLE SIZE 6" GROUND WATER LEVELS: AT TIME OF DRILLING	
	GED BY				CHECKED BY	AT END OF DRILLING AFTER DRILLING	
O DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
		100	6-10-9-10 (19)		12" loamy top soil, 12" brown	medium to coarse sand and gravel with some fines, moist to wet, no odor.	0
 <u>5</u> 		33	10-9-8-7 (17)		Brown medium to fine sand a	nd gravel with some organic material (plant), wet at bottom of spoon	2.9
10		83	3-9-10-13		Tan uniform medium to fine s	and, moist, no odor, boring ended due to proximity to overhead utilities, no	0
-			(19)		12.0	Bottom of hole at 12.0 feet.	
GENERAL DITTEN WELL BONING ECOS. O'S GINT GO. GDT STAND							
פבואבאטר בי							

	RIZZ (ASS (0 C I	ATES			BORING NUMBER RIA	
PROJ DATE DRILI	ESTARTE	IBER O	16/06 CTOR <u>Geo</u>	search	COMPLETED <u>2/16/06</u>	GROUND ELEVATION HOLE SIZE 6" GROUND WATER LEVELS:	
LOGO		Chris I	Nitchie		CHECKED BY		
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
					Tan to light brown medi	ium sand and gravel with some fines, wet (snow melt), no odor	
_ 5 		25	5-5-6-7 (11)		Brown medium to coars	se sand with fines and some gravel, wet (snow melt), no odor	0
10		42	14-43-63- 30 (106)		Tan/Brown medium to o	caorse sand with fines and gravel, wet, no odor. Likely near top of water table	0
 15	-		(106)	<u> </u>	12.0		
		50	51		Tan/Brown uniform coa refusal at 18' 17.0	rse sand with some fines transitioning to angular gravel with fines. Auguer	0
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06					17.0	Bottom of hole at 18.0 feet.	

WELL NUMBER RIZ-8 PAGE 1 OF 1

PROJ	ECT NUM	BER .	rk South Tru 12700058 //5/07			PROJECT LOCATION Walpole, Massachusetts	2"
			TOR Geos			GROUND WATER LEVELS:	
			Hollow Ster			AT TIME OF DRILLING 24'	
				CHECKED BY			
	S		шоу			AFTER DRILLING	
IVOIL			<u> </u>			ALLENDRILLING	
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION (교 d) 이 다	VELL DIAGRAM
	S-1	50	6-6-8-5 (14)		<u> </u>	gravei	Flush Mounted Road
-	S-2	90	5-3-4-7 (7)			.0	Box
_						Dry, light tan, well sorted fine sand	
10	S-3	80	6-13-21-18	Sample taken and submitted for VOC		0.0 Dry, light tan, well sorted fine sand	
-			(34)	and MCP-14 analysis		Dry, gray, large gravel, little sand	
-	S-4	80	12-23-23- 30 (46)	from 9'-11' (RIZ-8-9'-11')		4.0 6.0 Dry, Brown, poorly sorted coarse sand, some silt, rocky	✓2" PVC Capped Riser
20			11-18-15-		•.•ত্যু•	9.0 Dry, tan, poorly sorted coarse and fine sand, some 0.1	
	S-5	80	17		<u></u>	Dry, tan, poorly sorted coarse and fine sand, some 0.1 gravel, rocky	
_			(33)			4.0	
	S-6	50	14-23-27-			Wet, brown, large gravel and rocks with coarse 0.1	
	'		21 (50)		• • • • •	sand. Auger refusal at 27', bedrock	
30							■Bentonite Seal
_						[73]	8.3
_							
_							
_							
40							
_							
_							
-							
-							
50_							
-							
-							Sand Filter
-							Pack
60							
-							
-							割
-							
							13
70_							
-							✓2" Machine
							Slotted Well Screen
_							2" PVC Plug

Tt TI	ETRA TECH R	IZZO	V	VELL NUMBER RIZ-8S PAGE 1 OF 1
CLIENT Wa	alpole Park South 1	Trust	PROJECT NAME Walpole Park South	1
PROJECT N	JMBER <u>1270005</u>	8	PROJECT LOCATION Walpole, Mass	sachusetts
			GROUND ELEVATION	HOLE SIZE 2"
DRILLING C	ONTRACTOR Ge	eosearch	GROUND WATER LEVELS:	
DRILLING M	ETHOD Hollow S	item Auger	AT TIME OF DRILLING N/A	
LOGGED BY	Luke Tulley	CHECKED BY	AT END OF DRILLING	
NOTES			AFTER DRILLING	
DEPTH (ft) SAMPLE TYPE NI IMBER	GRAPHIC	MATE	ERIAL DESCRIPTION	WELL DIAGRAM
0				Flush Mounted Road Box
5 -				
10 _				■ Bentonite Seal
15				Sand Filter Pack 2" Machine Slotted Well Screen

WELL NUMBER RIZ-9 PAGE 1 OF 1

CLIEN	IT Walp	ole Pa	rk South Tru	st		PROJECT NAME Walpole Park South				
PROJ	ECT NUM	MBER .	12700058			PROJECT LOCATION Walpole, Massachu	ATION Walpole, Massachusetts			
DATE	STARTE	D 12	2/6/07	COMPLETED	12/6/0	7 GROUND ELEVATION	HOLE S	SIZE _2"		
DRILL	ING CON	NTRAC	TOR Geos	search		GROUND WATER LEVELS:				
DRILL	ING MET	HOD	Hollow Ster	m Auger		AT TIME OF DRILLING 14'				
LOGG	ED BY _	Luke 1	Γulley	CHECKED BY		AT END OF DRILLING				
NOTE	s					AFTER DRILLING				
о ДЕРТН (#)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM		
-	S-1	50	3-2-3-4 (5)		<u> </u>	gravel	0	Flush Mounted Road Box		
 5 -	S-2	15	9-10-12-18			4.0	0			
	5-2	15	(22)		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9.0	0			
10	S-3	80	3-5-9-10 (14)	Sample taken and submitted for VOC and MCP-14 analysis from 9'-11'		Dry, tan uniform coarse sand with some fines transitioning to angular gravel with fines	0	Capped Riser		
				(RIZ-9-9'-11')	••••••	14.0 Wet, tan, well sorted coarse sand with angular		-		
_ 15 _	S-4	50	34-19-13-7 (32)			gravel. Soft bedrock at 16'.	0	-		
20								■ Bentonite Seal		
0 LOGS.GPJ 0								Sand Filter Pack		
GENERAL BH / TP / WELL BORING LOGS. GP.J. GINT US.GDT 12/11/07 S								2" Machine Slotted Well Screen		
GENERAL 35						Bottom of hole at 35.0 feet.		2" PVC Plug		

WELL NUMBER RIZ-10 PAGE 1 OF 1

TETRA TECH RIZZO

CLIENT _Walpole Park South Trust PROJECT NUMBER _12700058 DATE STARTED _12/6/07						PROJECT NAME Walpole Park South	PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachusetts		
						PROJECT LOCATION Walpole, Massach			
						7 GROUND ELEVATION			
			Hollow Ster						
LOGGED BY Luke Tulley CHECKED BY									
NOTE	S	Ι			1	AFTER DRILLING		T	
о ОЕРТН (#)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM	
	S-1	50	5-7-7-8 (14)			Dry, tan/brown, poorly sorted coarse sand and gravel	0	Mounted Road Box	
 	S-2	75	5-7-7-4 (14)			Dry, tan, well sorted medium to fine sand, trace gravel	0	-	
10	S-3	80	2-3-3-4 (6)			Dry, tan, well sorted medium to fine sand, trace gravel	0	-	
	S-4	85	3-4-3-4 (7)			Dry, tan, well sorted medium to fine sand 16.0	0	-	
20	S-5	25	5-8-15-13 (23)		<u>;</u> ,,,,,		0	-	
	S-6	12	_			23.0 24.0 Dry, tan, poorly sorted medium to fine sand and large angular gravel Boulder	0	-	
30	S-7	30	9-23		\$	Dry, tan, poorly sorted coarse sand and angular gravel	0		
 						30.0		■ Bentonite Seal	
40	S-8	50	11-16-11- 20 (27)			Wet, brown, poorly sorted coarse to fine sand and 41.0 gravel, rocky	0	Sand Filter Pack 2" Machine Slotted Well	
 	S-9	15	-	and Mor - 14 analysis		Wet, brown, poorly sorted coarse to fine sand and gravel Bottom of hole at 46.0 feet	0	Screen 2" PVC Plug	
 40	S-9	15		Sample taken and submitted for VOC and MCP-14 analysis from 44-46' (RIZ-10-44'-46')	<u>.</u>	Wet, brown, poorly sorted coarse to fine sand and 46.0 gravel Bottom of hole at 46.0 feet.	0	2" PVC F	

Appendix E

Laboratory Certificates of Analysis

ANALYTICAL REPORT

Lab Number: L0718979

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: Ray Johnson

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Report Date: 01/03/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L0718979

Lab Number:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 **Report Date:** 01/03/08

Alpha Sample ID	Client ID	Sample Location
L0718979-01	RIZ-8	WALPOLE, MA
L0718979-02	RIZ-10	WALPOLE, MA
L0718979-03	RIZ-9	WALPOLE, MA
L0718979-04	GHC-6	WALPOLE, MA
L0718979-05	MW-9	WALPOLE, MA
L0718979-06	RIZ-3	WALPOLE, MA
L0718979-07	MW-3	WALPOLE, MA

Project Number: 12700058 Report Date: 01/03/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A

A res	ponse to questions E and F is required for "Presumptive Certainty" status	
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L0718979

Lab Number:

Project Name: WALPOLE PARK SOUTH

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question E:

The WG307181-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane and the LCS % recovery for 1,4-Dioxane are below the individual acceptance criteria for the compounds, but within the overall method allowances. These are both difficult analytes.

The WG307181-1/2 LCS/LCSD % RPD for 1,4-Dioxane is above the method acceptance criteria.

The WG307363-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane are below and the LCSD % recoveries for Acetone (a difficult analyte) and 1,4-Dioxane are above the individual acceptance criteria for the compounds, but within the overall method allowances.

Metals

L0718979-01 through -07 were diluted 4x for the analysis of all 6020A analytes due to non-target analyte interference.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ALPHA WOODS HOLE LABS

Date: 01/03/08

ORGANICS

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-01 Date Collected: 12/19/07 11:10

Client ID: RIZ-8

Date Received: 12/21/07 Field Prep: Sample Location: WALPOLE, MA Field Filtered

Matrix: Water Anaytical Method: 60,8260B 12/27/07 17:23 Analytical Date:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/07 11:10

Client ID: RIZ-8 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

p/m-Xylene ND ug/l 1.0 1 o-Xylene ND ug/l 1.0 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Dibromomethane ND ug/l 5.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 5.0 1 Tetrahydrofuran ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 2.5 1 1,2-Dibromoethane <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Mothyl tent bulyl ether ND ug/l 1.0 1 p/m-Xylane ND ug/l 1.0 1 c/xylane ND ug/l 1.0 1 c/xylane ND ug/l 1.0 1 c/xylane ND ug/l 5.0 1 Dibromomethane ND ug/l 5.0 1 Syrene ND ug/l 5.0 1 Dichorodifuoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Burance ND ug/l 5.0 1 2-Burance ND ug/l 5.0 1 4-Mothyl-2-pentanone ND ug/l 5.0 1 2-Burance ND ug/l 5.0 1 1 Carbon disulfide ND ug/l 5.0 1 2-Burance ND ug/l<	Volatile Organics by MCP 8260B					
ND	1,4-Dichlorobenzene	ND		ug/l	2.5	1
o-Xylene ND ugfl 1.0 1 cis-1,2-Dichloroethene ND ugfl 0.50 1 Dibromomethane ND ugfl 5.0 1 1,2-3-Trichloropropane ND ugfl 5.0 1 Styrene ND ugfl 5.0 1 Dichlorodiffuoromethane ND ugfl 5.0 1 Acetone ND ugfl 5.0 1 Carbon disulfide ND ugfl 5.0 1 2-Butanone ND ugfl 5.0 1 4-Methyl-2-pentanone ND ugfl 5.0 1 4-Hextonice ND ugfl 5.0 1 2-Busanone ND ugfl 5.0 1 1-Hextonice ND ugfl 5.0 1 1-Hextonice ND ugfl 2.5 1 1-Lacibinomethane ND ugfl 2.5 1 1,2-Dibromoethane	Methyl tert butyl ether	ND		ug/l	1.0	1
Dibromomethane ND	p/m-Xylene	ND		ug/l	1.0	1
Dibromomethane ND	o-Xylene	ND		ug/l	1.0	1
1,2,3-Trichloropropane ND Ug/l 1,0 1	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene	Dibromomethane	ND		ug/l	5.0	1
Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 2.5 1	1,2,3-Trichloropropane	ND		ug/l	5.0	1
Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Errandoromethane ND ug/l 2.5 1 Bromochloromethane ND ug/l 2.5 1 1-zerbaydrofuran ND ug/l 2.5 1 1-zerbaydrofuran <td>Styrene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>1</td>	Styrene	ND		ug/l	1.0	1
Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 2.5 1 1-2-Dibromorpane ND ug/l 2.5 1 1,2-Dibromorpane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 uer-Butylbenzene ND ug/l 0.50 1 uer-Butylbenzene ND ug/l 0.50 1 uer-Butylbenzene ND ug/l 0.50 1 p-Chl	Dichlorodifluoromethane	ND		ug/l	5.0	1
2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 2.5 1 1-2-Dibromoethane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,1,1,2-Tetrachloroptrapane ND ug/l 2.5 1 1,1,1,2-Tetrachloroptrapane ND ug/l 2.5 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 <t< td=""><td>Acetone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1</td></t<>	Acetone	ND		ug/l	5.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 10 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1	Carbon disulfide	ND		ug/l	5.0	1
2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 10 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 -Chlorotoluene ND ug/l 2.5 1 -Chlorotoluene ND ug/l 2.5 1 <	2-Butanone	ND		ug/l	5.0	1
Bromochloromethane ND ug/l 2.5 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1
Tetrahydrofuran ND ug/l 10 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 ec-Butylbenzene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 Hexac	2-Hexanone	ND		ug/l	5.0	1
2,2-Dichloropropane ND ug/l 2,5 1 1,2-Dibromoethane ND ug/l 2,0 1 1,3-Dichloropropane ND ug/l 2,5 1 1,1,1,2-Tetrachloroethane ND ug/l 0,50 1 Bromobenzene ND ug/l 0,50 1 Bromobenzene ND ug/l 0,50 1 sec-Butylbenzene ND ug/l 0,50 1 tert-Butylbenzene ND ug/l 2,5 1 o-Chlorotoluene ND ug/l 2,5 1 p-Chlorotoluene ND ug/l 2,5 1 Hexachlorobutadiene ND ug/l 2,5 1 Hexachlorobutadiene ND ug/l 0,50 1 sopropylbenzene ND ug/l 0,50 1 Naphthalene ND ug/l 0,50 1 n-Propylbenzene ND ug/l 2,5 1 <t< td=""><td>Bromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>1</td></t<>	Bromochloromethane	ND		ug/l	2.5	1
1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 sopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 2.5 1 <tr< td=""><td>Tetrahydrofuran</td><td>ND</td><td></td><td>ug/l</td><td>10</td><td>1</td></tr<>	Tetrahydrofuran	ND		ug/l	10	1
1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1	2,2-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td>1</td>	1,2-Dibromoethane	ND		ug/l	2.0	1
ND	1,3-Dichloropropane	ND		ug/l	2.5	1
n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Bromobenzene	ND		ug/l	2.5	1
tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	n-Butylbenzene	ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	sec-Butylbenzene	ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	tert-Butylbenzene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	o-Chlorotoluene	ND		ug/l	2.5	1
Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	p-Chlorotoluene	ND		ug/l	2.5	1
Sopropylbenzene ND ug/l 0.50 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Hexachlorobutadiene	ND		ug/l	0.60	1
Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Isopropylbenzene	ND		ug/l	0.50	1
n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	p-Isopropyltoluene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Naphthalene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	n-Propylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
·	1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether ND ug/l 2.5 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
	Ethyl ether	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/07 11:10

Client ID: RIZ-8 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
					,
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	103		70-130				
Toluene-d8	95		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	105		70-130				

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/07 12:40

Client ID: RIZ-10 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 12/27/07 18:01

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/07 12:40

Client ID: RIZ-10 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	1.2		ug/l	1.0	<u>'</u>
p/m-Xylene	ND		ug/l	1.0	<u>'</u>
o-Xylene	ND		ug/l	1.0	 1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
o-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.60	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: Date Collected: 12/19/07 12:40

Client ID: RIZ-10 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Result	Qualifier	Units	RDL	Dilution Factor
ND		/1	2.0	1
		•		1
				1
		<u> </u>		1
	Result ND ND ND ND	ND ND ND	ND ug/l ND ug/l ND ug/l	ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	97		70-130				
Toluene-d8	96		70-130				
4-Bromofluorobenzene	99		70-130				
Dibromofluoromethane	99		70-130				

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-03 Date Collected: 12/19/07 13:40

Client ID: RIZ-9

Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water Anaytical Method: 60,8260B 12/27/07 18:40 Analytical Date:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-03 Date Collected: 12/19/07 13:40

Client ID: RIZ-9 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	ND		ug/l	1.0	1
p/m-Xylene	ND		ug/l	1.0	1
o-Xylene	ND		ug/l	1.0	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
o-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.60	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-03 Date Collected: 12/19/07 13:40

Client ID: RIZ-9 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-04 Date Collected: 12/19/07 16:00

Client ID: GHC-6 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 12/27/07 19:18

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-04 Date Collected: 12/19/07 16:00

Client ID: GHC-6 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter Result Qualifier Units **RDL Dilution Factor** Volatile Organics by MCP 8260B 1,4-Dichlorobenzene ND 2.5 ug/l 1 ND 1.0 1 Methyl tert butyl ether ug/l ND p/m-Xylene ug/l 1.0 1 o-Xylene ND ug/l 1.0 1 ND cis-1,2-Dichloroethene ug/l 0.50 1 Dibromomethane ND 5.0 ug/l 1 1,2,3-Trichloropropane ND ug/l 5.0 1 ND 1.0 1 Styrene ug/l Dichlorodifluoromethane ND 5.0 1 ug/l ND 5.0 Acetone ug/l 1 Carbon disulfide ND 5.0 ug/l 1 2-Butanone ND 5.0 1 ug/l 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 10 1 ND 1 2,2-Dichloropropane ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 ND 0.50 sec-Butylbenzene ug/l 1 ND 2.5 1 tert-Butylbenzene ug/l ND o-Chlorotoluene ug/l 2.5 1 p-Chlorotoluene ND 2.5 1 ug/l ND 1,2-Dibromo-3-chloropropane ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND 0.50 1 ug/l Naphthalene ND ug/l 2.5 1 ND n-Propylbenzene ug/l 0.50 1 1,2,3-Trichlorobenzene ND 2.5 ug/l 1 1,2,4-Trichlorobenzene ND 2.5 1 ug/l 1,3,5-Trimethylbenzene ND ug/l 2.5 1 ND 1,2,4-Trimethylbenzene 2.5 1 ug/l Ethyl ether ND 2.5 1 ug/l

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-04 Date Collected: 12/19/07 16:00

Client ID: GHC-6 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	96		70-130				
Toluene-d8	97		70-130				
4-Bromofluorobenzene	99		70-130				
Dibromofluoromethane	102		70-130				

12/20/07 09:00

Field Filtered

12/21/07

Date Collected:

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-05

Client ID: MW-9

Sample Location: WALPOLE, MA

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 12/27/07 19:57

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-05 Date Collected: 12/20/07 09:00

Client ID: MW-9 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	5.1		ug/l	1.0	1
p/m-Xylene	ND		ug/l	1.0	1
o-Xylene	ND		ug/l	1.0	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
o-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.60	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1

1

250

ug/l

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-05 Date Collected: 12/20/07 09:00

Client ID: MW-9 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter Qualifier Units **RDL Dilution Factor** Result Volatile Organics by MCP 8260B Isopropyl Ether ND 2.0 ug/l 1 Ethyl-Tert-Butyl-Ether ND ug/l 2.0 1 Tertiary-Amyl Methyl Ether ND ug/l 2.0 1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	98		70-130			
Toluene-d8	95		70-130			
4-Bromofluorobenzene	98		70-130			
Dibromofluoromethane	101		70-130			

ND

1,4-Dioxane

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-06 Date Collected: 12/20/07 10:30

Client ID: RIZ-3

Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 20:36

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-06 Date Collected: 12/20/07 10:30

Client ID: RIZ-3 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	ND		ug/l	1.0	1
p/m-Xylene	ND		ug/l	1.0	1
o-Xylene	ND		ug/l	1.0	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
o-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.60	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-06 Date Collected: 12/20/07 10:30

Client ID: RIZ-3 Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-07 Date Collected: 12/20/07 11:25

Client ID: MW-3

Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/28/07 21:58

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-07 Date Collected: 12/20/07 11:25

Client ID: MW-3 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter Result Qualifier Units **RDL Dilution Factor** Volatile Organics by MCP 8260B 1,4-Dichlorobenzene ND 2.5 ug/l 1 1.7 1.0 1 Methyl tert butyl ether ug/l ND p/m-Xylene ug/l 1.0 1 o-Xylene ND ug/l 1.0 1 ND cis-1,2-Dichloroethene ug/l 0.50 1 Dibromomethane ND 5.0 ug/l 1 1,2,3-Trichloropropane ND ug/l 5.0 1 ND 1.0 1 Styrene ug/l Dichlorodifluoromethane ND 5.0 1 ug/l ND 5.0 Acetone ug/l 1 Carbon disulfide ND 5.0 ug/l 1 2-Butanone ND 5.0 1 ug/l 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 10 1 ND 1 2,2-Dichloropropane ug/l 2.5 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 ND 0.50 sec-Butylbenzene ug/l 1 ND 2.5 1 tert-Butylbenzene ug/l ND o-Chlorotoluene ug/l 2.5 1 p-Chlorotoluene ND 2.5 1 ug/l ND 1,2-Dibromo-3-chloropropane ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND 0.50 1 ug/l Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 ND 2.5 1,2,3-Trichlorobenzene ug/l 1 1,2,4-Trichlorobenzene ND 2.5 1 ug/l 1,3,5-Trimethylbenzene ND ug/l 2.5 1 ND 1,2,4-Trimethylbenzene 2.5 1 ug/l Ethyl ether ND 2.5 1 ug/l

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-07 Date Collected: 12/20/07 11:25

Client ID: MW-3 Date Received: 12/21/07
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	107		70-130					
Toluene-d8	94		70-130					
4-Bromofluorobenzene	97		70-130					
Dibromofluoromethane	107		70-130					

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/27/07 12:14

Result	Qualifie	r U	nits	RDL
B for sample(s):	01-06	Batch:	WG:	307181-3
ND		ı	ug/l	5.0
ND			ug/l	0.75
ND			ug/l	0.75
ND			ug/l	0.50
ND			ug/l	1.8
ND		ı	ug/l	0.50
ND		ı	ug/l	0.75
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	2.5
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	2.5
ND		ı	ug/l	2.0
ND		ı	ug/l	0.50
ND		ı	ug/l	0.50
ND		ı	ug/l	0.75
ND		ı	ug/l	0.50
ND		ı	ug/l	2.5
ND		ı	ug/l	1.0
ND		ı	ug/l	1.0
ND		ı	ug/l	1.0
ND		ı	ug/l	0.50
ND		ı	ug/l	0.75
ND		ı	ug/l	0.50
ND		ı	ug/l	2.5
ND		ı	ug/l	2.5
ND		ı	ug/l	2.5
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	DB for sample(s): 01-06 Batch: ND ND ND ND ND ND ND ND ND N	ND ug/l ND

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/27/07 12:14

arameter	Result	Qualifie	r U	nits	RDL
olatile Organics by MCP	8260B for sample(s):	01-06	Batch:	WG:	307181-3
Methyl tert butyl ether	ND		ı	ug/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND		(ug/l	5.0
Styrene	ND		ı	ug/l	1.0
Dichlorodifluoromethane	ND		ı	ug/l	5.0
Acetone	ND		ı	ug/l	5.0
Carbon disulfide	ND		ı	ug/l	5.0
2-Butanone	ND		ı	ug/l	5.0
4-Methyl-2-pentanone	ND		ı	ug/l	5.0
2-Hexanone	ND		ı	ug/l	5.0
Bromochloromethane	ND		ı	ug/l	2.5
Tetrahydrofuran	ND		ı	ug/l	10
2,2-Dichloropropane	ND		(ug/l	2.5
1,2-Dibromoethane	ND		ı	ug/l	2.0
1,3-Dichloropropane	ND		ı	ug/l	2.5
1,1,1,2-Tetrachloroethane	ND		ı	ug/l	0.50
Bromobenzene	ND		ı	ug/l	2.5
n-Butylbenzene	ND		ı	ug/l	0.50
sec-Butylbenzene	ND		ı	ug/l	0.50
tert-Butylbenzene	ND		ı	ug/l	2.5
o-Chlorotoluene	ND		ı	ug/l	2.5
p-Chlorotoluene	ND		ı	ug/l	2.5
1,2-Dibromo-3-chloropropane	ND		ı	ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND		ı	ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND		ı	ug/l	0.50

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/27/07 12:14

olatile Organics by MCP 8260B for sample(s): 01-06 Batch: WG307181-3
1,2,3-Trichlorobenzene ND ug/l 2.5
1,2,4-Trichlorobenzene ND ug/l 2.5
1,3,5-Trimethylbenzene ND ug/l 2.5
1,2,4-Trimethylbenzene ND ug/l 2.5
Ethyl ether ND ug/l 2.5
Isopropyl Ether ND ug/l 2.0
Ethyl-Tert-Butyl-Ether ND ug/l 2.0
Tertiary-Amyl Methyl Ether ND ug/l 2.0
1,4-Dioxane ND ug/l 250

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	104		70-130					
Toluene-d8	94		70-130					
4-Bromofluorobenzene	98		70-130					
Dibromofluoromethane	107		70-130					

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/28/07 13:00

arameter	Result	Qual	lifier	Units	RDL
olatile Organics by MCP 826	0B for sample(s):	07	Batch:	WG307	363-3
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND			ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/28/07 13:00

Parameter	Result	Qua	lifier	Units	RDL
olatile Organics by MCP 8260B fc	or sample(s):	07	Batch:	WG3073	363-3
Methyl tert butyl ether	ND			ug/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropane	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND			ug/l	0.50

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 12/28/07 13:00

arameter	Result	Qual	ifier	Units	RDL
olatile Organics by MCP 8260B for	sample(s):	07	Batch:	WG3073	363-3
1,2,3-Trichlorobenzene	ND			ug/l	2.5
1,2,4-Trichlorobenzene	ND			ug/l	2.5
1,3,5-Trimethylbenzene	ND			ug/l	2.5
1,2,4-Trimethylbenzene	ND			ug/l	2.5
Ethyl ether	ND			ug/l	2.5
Isopropyl Ether	ND			ug/l	2.0
Ethyl-Tert-Butyl-Ether	ND			ug/l	2.0
Tertiary-Amyl Methyl Ether	ND			ug/l	2.0
1,4-Dioxane	ND			ug/l	250

	Acceptance						
Surrogate	%Recovery	Qualifier Criteria	_				
1,2-Dichloroethane-d4	108	70-130					
Toluene-d8	95	70-130					
4-Bromofluorobenzene	94	70-130					
Dibromofluoromethane	107	70-130					

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by MCP 8260B Associated	sample(s): 01-06	Batch: WG307181	-1 WG307181-2		
Methylene chloride	99	101	70-130	2	25
1,1-Dichloroethane	100	100	70-130	0	25
Chloroform	102	104	70-130	2	25
Carbon tetrachloride	89	98	70-130	10	25
1,2-Dichloropropane	95	97	70-130	2	25
Dibromochloromethane	86	92	70-130	7	25
1,1,2-Trichloroethane	91	87	70-130	4	25
Tetrachloroethene	99	103	70-130	4	25
Chlorobenzene	96	98	70-130	2	25
Trichlorofluoromethane	105	108	70-130	3	25
1,2-Dichloroethane	97	100	70-130	3	25
1,1,1-Trichloroethane	99	102	70-130	3	25
Bromodichloromethane	93	98	70-130	5	25
trans-1,3-Dichloropropene	84	86	70-130	2	25
cis-1,3-Dichloropropene	94	95	70-130	1	25
1,1-Dichloropropene	99	102	70-130	3	25
Bromoform	82	89	70-130	8	50
1,1,2,2-Tetrachloroethane	84	85	70-130	1	25
Benzene	97	99	70-130	2	25
Toluene	95	97	70-130	2	25
Ethylbenzene	97	98	70-130	1	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Asso	ociated sample(s): 01-06	Batch: WG307181-1	WG307181-2		
Chloromethane	78	83	70-130	6	50
Bromomethane	91	89	70-130	2	50
Vinyl chloride	83	88	70-130	6	25
Chloroethane	111	106	70-130	5	25
1,1-Dichloroethene	102	104	70-130	2	25
trans-1,2-Dichloroethene	96	99	70-130	3	25
Trichloroethene	96	100	70-130	4	25
1,2-Dichlorobenzene	99	97	70-130	2	25
1,3-Dichlorobenzene	98	101	70-130	3	25
1,4-Dichlorobenzene	98	98	70-130	0	25
Methyl tert butyl ether	100	98	70-130	2	25
p/m-Xylene	101	104	70-130	3	25
o-Xylene	101	102	70-130	1	25
cis-1,2-Dichloroethene	97	100	70-130	3	25
Dibromomethane	93	94	70-130	1	25
1,2,3-Trichloropropane	86	88	70-130	2	25
Styrene	100	102	70-130	2	25
Dichlorodifluoromethane	60	65	70-130	8	50
Acetone	95	92	70-130	3	50
Carbon disulfide	90	91	70-130	1	25
2-Butanone	87	90	70-130	3	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associated	d sample(s): 01-06	Batch: WG307181-	1 WG307181-2		
4-Methyl-2-pentanone	93	99	70-130	6	50
2-Hexanone	84	86	70-130	2	50
Bromochloromethane	100	106	70-130	6	25
Tetrahydrofuran	91	94	70-130	3	25
2,2-Dichloropropane	100	105	70-130	5	50
1,2-Dibromoethane	90	91	70-130	1	25
1,3-Dichloropropane	88	90	70-130	2	25
1,1,1,2-Tetrachloroethane	88	93	70-130	6	25
Bromobenzene	98	97	70-130	1	25
n-Butylbenzene	95	96	70-130	1	25
sec-Butylbenzene	96	98	70-130	2	25
tert-Butylbenzene	98	98	70-130	0	25
o-Chlorotoluene	94	94	70-130	0	25
p-Chlorotoluene	95	96	70-130	1	25
1,2-Dibromo-3-chloropropane	74	87	70-130	16	50
Hexachlorobutadiene	96	101	70-130	5	25
Isopropylbenzene	103	106	70-130	3	25
p-Isopropyltoluene	102	102	70-130	0	25
Naphthalene	90	97	70-130	7	25
n-Propylbenzene	96	96	70-130	0	25
1,2,3-Trichlorobenzene	100	105	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L0718979

01/03/08

Report Date:

arameter	LCS %Recover	у	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B A	Associated sample(s):	01-06	Batch:	WG307181-1	WG307181-2		
1,2,4-Trichlorobenzene	103			106	70-130	3	25
1,3,5-Trimethylbenzene	97			96	70-130	1	25
1,2,4-Trimethylbenzene	97			97	70-130	0	25
Ethyl ether	103			103	70-130	0	25
Isopropyl Ether	100			100	70-130	0	25
Ethyl-Tert-Butyl-Ether	101			94	70-130	7	25
Tertiary-Amyl Methyl Ether	96			100	70-130	4	25
1,4-Dioxane	53			113	70-130	72	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	99	100	70-130
Toluene-d8	98	95	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	102	102	70-130

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associated	d sample(s): 07 Ba	tch: WG307363-1	WG307363-2		
Methylene chloride	99	100	70-130	1	25
1,1-Dichloroethane	103	99	70-130	4	25
Chloroform	108	105	70-130	3	25
Carbon tetrachloride	111	101	70-130	9	25
1,2-Dichloropropane	94	91	70-130	3	25
Dibromochloromethane	94	92	70-130	2	25
1,1,2-Trichloroethane	88	92	70-130	4	25
Tetrachloroethene	104	98	70-130	6	25
Chlorobenzene	96	91	70-130	5	25
Trichlorofluoromethane	118	110	70-130	7	25
1,2-Dichloroethane	104	109	70-130	5	25
1,1,1-Trichloroethane	111	107	70-130	4	25
Bromodichloromethane	102	100	70-130	2	25
trans-1,3-Dichloropropene	88	86	70-130	2	25
cis-1,3-Dichloropropene	100	98	70-130	2	25
1,1-Dichloropropene	108	101	70-130	7	25
Bromoform	95	93	70-130	2	50
1,1,2,2-Tetrachloroethane	82	84	70-130	2	25
Benzene	100	95	70-130	5	25
Toluene	94	88	70-130	7	25
Ethylbenzene	97	92	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

Report Date: 01/03/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associated	sample(s): 07 Bar	tch: WG307363-1	WG307363-2		
Chloromethane	80	76	70-130	5	50
Bromomethane	82	75	70-130	9	50
Vinyl chloride	88	83	70-130	6	25
Chloroethane	105	100	70-130	5	25
1,1-Dichloroethene	111	104	70-130	7	25
trans-1,2-Dichloroethene	102	97	70-130	5	25
Trichloroethene	103	97	70-130	6	25
1,2-Dichlorobenzene	94	93	70-130	1	25
1,3-Dichlorobenzene	96	91	70-130	5	25
1,4-Dichlorobenzene	97	93	70-130	4	25
Methyl tert butyl ether	106	117	70-130	10	25
p/m-Xylene	102	96	70-130	6	25
o-Xylene	101	94	70-130	7	25
cis-1,2-Dichloroethene	102	106	70-130	4	25
Dibromomethane	100	105	70-130	5	25
1,2,3-Trichloropropane	82	92	70-130	11	25
Styrene	99	95	70-130	4	25
Dichlorodifluoromethane	66	63	70-130	5	50
Acetone	118	147	70-130	22	50
Carbon disulfide	89	87	70-130	2	25
2-Butanone	100	112	70-130	11	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

Report Date: 01/03/08

arameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associate	d sample(s): 07	Batch:	WG307363-1	WG307363-2		
4-Methyl-2-pentanone	101		116	70-130	14	50
2-Hexanone	85		98	70-130	14	50
Bromochloromethane	103		108	70-130	5	25
Tetrahydrofuran	99		114	70-130	14	25
2,2-Dichloropropane	111		108	70-130	3	50
1,2-Dibromoethane	92		93	70-130	1	25
1,3-Dichloropropane	88		93	70-130	6	25
1,1,1,2-Tetrachloroethane	95		91	70-130	4	25
Bromobenzene	97		92	70-130	5	25
n-Butylbenzene	98		91	70-130	7	25
sec-Butylbenzene	98		91	70-130	7	25
tert-Butylbenzene	100		93	70-130	7	25
o-Chlorotoluene	93		87	70-130	7	25
p-Chlorotoluene	94		89	70-130	5	25
1,2-Dibromo-3-chloropropane	83		85	70-130	2	50
Hexachlorobutadiene	106		101	70-130	5	25
Isopropylbenzene	106		99	70-130	7	25
p-Isopropyltoluene	104		97	70-130	7	25
Naphthalene	93		96	70-130	3	25
n-Propylbenzene	96		89	70-130	8	25
1,2,3-Trichlorobenzene	100		104	70-130	4	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L0718979

Report Date:

e: 01/03/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associate	ed sample(s): 07 Batch:	WG307363-1	WG307363-2		
1,2,4-Trichlorobenzene	102	100	70-130	2	25
1,3,5-Trimethylbenzene	98	90	70-130	9	25
1,2,4-Trimethylbenzene	95	90	70-130	5	25
Ethyl ether	103	116	70-130	12	25
Isopropyl Ether	101	104	70-130	3	25
Ethyl-Tert-Butyl-Ether	104	107	70-130	3	25
Tertiary-Amyl Methyl Ether	105	114	70-130	8	25
1,4-Dioxane	130	144	70-130	10	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	106	109	70-130
Toluene-d8	93	95	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	109	109	70-130

METALS

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-01

Client ID: RIZ-8

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 12/19/07 11:10
Date Received: 12/21/07
Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 60	00/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0508		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:31	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0048		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	вм
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	ВМ

12/19/07 12:40

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Date Collected:

Lab ID: L0718979-02

Client ID: Date Received: 12/21/07

Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nesuit	Qualifier	Office	INDL	- 40101		7a.y = 0 a			Allalyst
Dissolved Metals by	/ MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0958		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:36	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0079		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	0.0216		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	ВМ

12/19/07 13:40

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 Report Date: 01/03/08

SAMPLE RESULTS

Date Collected:

Lab ID: L0718979-03

Client ID: RIZ-9

Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600	00/7000 serie	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0153		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:38	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	ВМ

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

SAMPLE RESULTS

Lab ID: L0718979-04

Client ID: GHC-6

Sample Location: WALPOLE, MA

ND

Zinc. Dissolved

Matrix: Water

Date Collected: 12/19/07 16:00

Date Received: 12/21/07
Field Prep: Field Filtered

Dilution Analytical Date Date Prep **Factor Prepared** Analyzed Method Method Qualifier **Units RDL Parameter** Result **Analyst** Dissolved Metals by MCP 6000/7000 series Antimony, Dissolved ND 0.0020 64,6020A mg/l 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A BM Arsenic, Dissolved ND 0.0020 4 01/02/08 23:12 EPA 3005A 64,6020A ВМ mg/l 12/30/07 09:30 64,6020A ВМ Barium, Dissolved 0.0459 0.0020 4 01/02/08 23:12 EPA 3005A mg/l 12/30/07 09:30 64,6020A Beryllium, Dissolved ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A BM ND 0.0020 4 01/02/08 23:12 EPA 3005A 64,6020A ВМ Cadmium, Dissolved mg/l 12/30/07 09:30 Chromium, Dissolved ND 0.0020 64,6020A ВМ mg/l 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A 64,6020A Lead, Dissolved ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A BM Mercury, Dissolved ND mg/l 0.0002 1 12/28/07 16:35 12/31/07 10:40 EPA 7470A 64,7470A DM 64,6020A ND 4 ВМ Nickel, Dissolved 0.0020 01/02/08 23:12 EPA 3005A mg/l 12/30/07 09:30 Selenium, Dissolved ND mg/l 0.004 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A 64,6020A BM 64,6020A Silver, Dissolved ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A ВМ Thallium, Dissolved ND 0.0020 4 01/02/08 23:12 EPA 3005A 64,6020A BM mg/l 12/30/07 09:30 Vanadium, Dissolved ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:12 EPA 3005A 64,6020A ВМ

mg/l

0.0200

4

12/30/07 09:30

64,6020A

ВМ

01/02/08 23:12 EPA 3005A

12/20/07 09:00

Field Filtered

12/21/07

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L0718979-05

Client ID: MW-9

Sample Location: WALPOLE, MA Field Prep:

Matrix: Water

_					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Dissolved Metals by	/ MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0070		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	вм
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:42	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	вм
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	0.0259		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	ВМ

12/20/07 10:30

Field Filtered

12/21/07

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Date Collected:

Date Received:

Field Prep:

Lab ID: L0718979-06

Client ID: RIZ-3

Sample Location: WALPOLE, MA

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600	00/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0256		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:44	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	ВМ

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

SAMPLE RESULTS

Lab ID: L0718979-07

Client ID: MW-3

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 12/20/07 11:25

Date Received: 12/21/07
Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	1100.00									
Dissolved Metals by	/ MCP 60	00/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Barium, Dissolved	0.0152		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:45	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	ВМ

Project Name: WALPOLE PARK SOUTH Lab Number: L0718979

Project Number: 12700058 **Report Date:** 01/03/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	_	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MC	P 6000/7000 series	for sample	e(s): 01-0	07 Batch:	WG307204-	1		
Mercury, Dissolved	ND	mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:25	64,7470A	DM

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by M	ICP 6000/7000 series	for sampl	e(s): 01-	07 Batch:	WG307274-1	ſ		
Antimony, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Arsenic, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Barium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Beryllium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Cadmium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Chromium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Lead, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Nickel, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Selenium, Dissolved	ND	mg/l	0.001	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Silver, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Thallium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Vanadium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ
Zinc, Dissolved	ND	mg/l	0.0050	1	12/30/07 09:30	01/02/08 22:12	64,6020A	ВМ

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979

Report Date: 01/03/08

Parameter	LCS %Recovery	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s)	: 01-07	Batch:	WG307204-2 WG307204-3		
Mercury, Dissolved	98		98	80-120	0	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s)	: 01-07	Batch:	WG307274-2 WG307274-3		
Antimony, Dissolved	95		98	80-120	3	20
Arsenic, Dissolved	101		100	80-120	1	20
Barium, Dissolved	97		100	80-120	3	20
Beryllium, Dissolved	89		86	80-120	3	20
Cadmium, Dissolved	104		105	80-120	1	20
Chromium, Dissolved	101		104	80-120	3	20
Lead, Dissolved	102		105	80-120	3	20
Nickel, Dissolved	102		106	80-120	4	20
Selenium, Dissolved	100		98	80-120	2	20
Silver, Dissolved	95		97	80-120	2	20
Thallium, Dissolved	95		99	80-120	4	20
Vanadium, Dissolved	98		101	80-120	3	20
Zinc, Dissolved	102		102	80-120	0	20

Lab Number: L0718979

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Report Date: 01/03/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0718979-01A	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-01B	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-01C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-02A	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-02B	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-02C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-03A	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-03B	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-03C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SB-6020S,MCP-SB-6020S,MCP-SB-6020S,MCP-SB-6020S,MCP-ZN-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-04A	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-04B	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-04C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-SE-6020S,MCP-ZN-6020S
L0718979-05A	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-05B	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04

Project Name: WALPOLE PARK SOUTH

Lab Number: L0718979 Project Number: 12700058 **Report Date:** 01/03/08

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0718979-05C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-SC-6020S,MCP-SC-6020S,MCP-SC-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-06A	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-06B	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-06C	Plastic 500ml HNO3 preserved	А	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-CD-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-SC-6020S,MCP-SC-6020S,MCP-SC-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-07A	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-07B	Vial HCI preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04
L0718979-07C	Plastic 500ml HNO3 preserved	А	<2	2.2 C	Y	Absent	MCP-7470S,MCP-AG-6020S,MCP-AS-6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-SC-6020S,MCP-SC-6020S,MCP-V-6020S,MCP-ZN-6020S
L0718979-07N	Vial HCl preserved	Α	N/A	2.2 C	Υ	Absent	MCP-8260-04

Container Comments

L0718979-07B

Project Name:WALPOLE PARK SOUTHLab Number:L0718979Project Number:12700058Report Date:01/03/08

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD- Laboratory Control Sample Duplicate: Refer to LCS.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NI - Not Ignitable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND - Not detected at the reported detection limit for the sample.

RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHLab Number:L0718979Project Number:12700058Report Date:01/03/08

REFERENCES

Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.

Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

PLEASE ANSWER QUESTIONS ABOVE! IS YOUR PROJECT MA MCP or CT RCP? VNO:01-01 (rev. 30-JUL-07)	CHAIN OF CUSTODY ALPHA MESTBORO MA TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TEL: 508-892-9300 TOMMA OF OI Address:
Container Type Preservative Relinquished By: Date/Time Date/Jime Date/Jime	CHAIN OF CUSTODY Project Information Project Information Project Information Project Information Project Information Project Mame: Walfele Rock South Project Name: Walfele Rock MA Project Manager: Ray Townson ALPHA Quote #: 200 i ALPHA Quote
PX CB Received By: 2014 Sumal	Date Rec'd in La Report Informa Gran ANALYSIS
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side.	b: 12/2/ ALPHA Job #: \(\Lambda \) A \(\text{PP4} \) ASPMITION Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required on Preservation Sample Specific Comments

ANALYTICAL REPORT

Lab Number: L0806023

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: lan Cannan

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Report Date: 05/05/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L0806023

Lab Number:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 **Report Date:** 05/05/08

Alpha Sample ID	Client ID	Sample Location
L0806023-01	RIZ-10-042808	WALPOLE, MA
L0806023-02	RIZ-9-042808	WALPOLE, MA
L0806023-03	MW-3-042808	WALPOLE, MA
L0806023-04	RIZ-8-042808	WALPOLE, MA
L0806023-05	RIZ-8S-042808	WALPOLE, MA
L0806023-06	GHC-6-042808	WALPOLE, MA
L0806023-07	MW-2-042808	WALPOLE, MA
L0806023-08	TRIP BLANK-042808	WALPOLE, MA

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHLab Number:L0806023Project Number:12700058-003Report Date:05/05/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

MCP Related Narratives:

Metals

L0806023-01 through -07 were diluted for the analysis of all analytes by method 6020A due to high concentrations of target and non-target analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/05/08

ORGANICS

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-01
 Date Collected:
 04/28/08 09:10

 Client ID:
 RIZ-10-042808
 Date Received:
 04/29/08

Sample Location: WALPOLE, MA Field Prep: Not Specified

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 10:04

Analyst: MM

Volatile Organics by GC/MS 524.2 ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chioroform ND ug/l 0.50 1 Chiorotorm ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 L2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tichloroflouromethane ND ug/l 0.50 1 Tichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.5	Volatile Organics by GC/MS 524.2					
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorothane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 dis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ehym-Xylene ND ug/l 0.50 1	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0,73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-	Trichlorofluoromethane	ND		ug/l	0.50	1
Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Interpretation of the companies of the com	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1 Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene 0.73 ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	0.73		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
·	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-01
 Date Collected:
 04/28/08 09:10

 Client ID:
 RIZ-10-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds				
Unknown Alkene	2.6	J	ug/l	1
Unknown Hydrocarbon	0.90	J	ug/l	1
Acetone	0.78	J	ug/l	11

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 09:10

Client ID:RIZ-10-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

		Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	88		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-02
 Date Collected:
 04/28/08 10:12

 Client ID:
 RIZ-9-042808
 Date Received:
 04/29/08

Sample Location: WALPOLE, MA Field Prep: Not Specified

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 10:38

Analyst: MM

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-02
 Date Collected:
 04/28/08 10:12

 Client ID:
 RIZ-9-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Not Specified

Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene ND	Dilution Factor	RDL	Units	Qualifier	Result	Parameter
1,4-Dichlorobenzene ND ug/l 0.50 Styrene ND ug/l 0.50 o-Xylene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 betwicklichtene ND ug/l 0.50 betwicklichtene ND ug/l 0.50 lsopropylbenzene ND ug/l 0.50 lsopropylbenzene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene						Volatile Organics by GC/MS 524.2
Styrene ND ug/l 0.50 o-Xylene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 2,2-Dichloropropane ND ug/l 0.50 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 Ibsopropylbenzene ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene <td>1</td> <td>0.50</td> <td>ug/l</td> <td></td> <td>ND</td> <td>1,3-Dichlorobenzene</td>	1	0.50	ug/l		ND	1,3-Dichlorobenzene
o-Xylene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 2,2-Dichloropropane ND ug/l 0.50 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylteluzene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tet-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trich	1	0.50	ug/l		ND	1,4-Dichlorobenzene
1,1-Dichloropropene ND ug/l 0.50 2,2-Dichloropropane ND ug/l 0.50 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2	1	0.50	ug/l		ND	Styrene
2,2-Dichloropropane ND ug/l 0.50 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 <	1	0.50	ug/l		ND	o-Xylene
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 P-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 Brom	1	0.50	ug/l		ND	1,1-Dichloropropene
1,2,3-Trichloropropane ND ug/l 0.50 Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 Dibromomethane	1	0.50	ug/l		ND	2,2-Dichloropropane
Bromochloromethane ND ug/l 0.50 n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 P-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibrom	1	0.50	ug/l		ND	1,1,1,2-Tetrachloroethane
n-Butylbenzene ND ug/l 0.50 Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 P-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 N-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromo	1	0.50	ug/l		ND	1,2,3-Trichloropropane
Dichlorodifluoromethane ND ug/l 0.50 Hexachlorobutadiene ND ug/l 0.50 Isopropylbenzene ND ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	Bromochloromethane
Hexachlorobutadiene ND	1	0.50	ug/l		ND	n-Butylbenzene
Isopropylbenzene ND	1	0.50	ug/l		ND	Dichlorodifluoromethane
p-Isopropyltoluene ND ug/l 0.50 Naphthalene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Dibromobenzene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50	1	0.50	ug/l		ND	Hexachlorobutadiene
Naphthalene ND ug/l 0.50 n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	Isopropylbenzene
n-Propylbenzene ND ug/l 0.50 sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	p-Isopropyltoluene
sec-Butylbenzene ND ug/l 0.50 tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	Naphthalene
tert-Butylbenzene ND ug/l 0.50 1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 pibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	n-Propylbenzene
1,2,3-Trichlorobenzene ND ug/l 0.50 1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	sec-Butylbenzene
1,2,4-Trichlorobenzene ND ug/l 0.50 1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	tert-Butylbenzene
1,2,4-Trimethylbenzene ND ug/l 0.50 1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	1,2,3-Trichlorobenzene
1,3,5-Trimethylbenzene ND ug/l 0.50 Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	1,2,4-Trichlorobenzene
Bromobenzene ND ug/l 0.50 o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	1,2,4-Trimethylbenzene
o-Chlorotoluene ND ug/l 0.50 p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	1,3,5-Trimethylbenzene
p-Chlorotoluene ND ug/l 0.50 Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	Bromobenzene
Dibromomethane ND ug/l 0.50 1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	o-Chlorotoluene
1,2-Dibromoethane ND ug/l 0.50 1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	p-Chlorotoluene
1,2-Dibromo-3-chloropropane ND ug/l 0.50	1	0.50	ug/l		ND	Dibromomethane
	1	0.50	ug/l		ND	1,2-Dibromoethane
1.3 Dichloropropage	1	0.50	ug/l		ND	1,2-Dibromo-3-chloropropane
1,3-Dictilioroproparie ND ug/i 0.30	1	0.50	ug/l		ND	1,3-Dichloropropane
Methyl tert butyl ether ND ug/l 0.50	1	0.50	ug/l		ND	Methyl tert butyl ether

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-02 Date Collected: 04/28/08 10:12

Client ID:RIZ-9-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	116		80-120	
4-Bromofluorobenzene	87		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-03 Date Collected: 04/28/08 11:20

Client ID:MW-3-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 11:10

Analyst: MM

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-03
 Date Collected:
 04/28/08 11:20

 Client ID:
 MW-3-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Not Specified

Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene ND ug/l 0.50 1 1,4-Dichlorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 I-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Hexachlorobutaen	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropthane ND ug/l 0.50 1 1,2,3-Trichloropthane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 NButylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadilene ND ug/l 0.50 1 Bopropylbenzene ND ug/l 0.50 1 p-Isopropylbeluzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1	Volatile Organics by GC/MS 524.2					
Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropyllouzene ND ug/l 0.50 1 Isopropyllouzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1	1,3-Dichlorobenzene	ND		ug/l	0.50	1
o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylibenzene ND ug/l 0.50 1 Isopropylibenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50	1,4-Dichlorobenzene	ND		ug/l	0.50	1
1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodiffluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 <t< td=""><td>Styrene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Styrene	ND		ug/l	0.50	1
2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 <t< td=""><td>o-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	o-Xylene	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	1,1-Dichloropropene	ND		ug/l	0.50	1
1,2,3-Trichloropropane ND	2,2-Dichloropropane	ND		ug/l	0.50	1
Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Let-Butylbenzene ND ug/l 0.50 1 Let-Butylbe	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 Letr-Butylbenzene ND ug/l 0.50 1 Letr-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 O-Chlorotoluene ND ug/l 0.50 1	1,2,3-Trichloropropane	ND		ug/l	0.50	1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1<	Bromochloromethane	ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1	n-Butylbenzene	ND		ug/l	0.50	1
Sopropylbenzene ND	Dichlorodifluoromethane	ND		ug/l	0.50	1
p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50	Hexachlorobutadiene	ND		ug/l	0.50	1
Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50	Isopropylbenzene	ND		ug/l	0.50	1
n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Isopropyltoluene	ND		ug/l	0.50	1
sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Naphthalene	ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1 o-Chlorotoluene ND ug/l 0.50 1	n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	sec-Butylbenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene	ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene	ND		ug/l	0.50	1
1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane	ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane	ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane	ND		ug/l	0.50	1
	Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-03 Date Collected: 04/28/08 11:20

Client ID:MW-3-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	90		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 12:15

Client ID:RIZ-8-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 11:43

Analyst: MM

Volatile Organics by GC/MS 524.2 ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 L2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tichlorofobanzene ND ug/l 0.50 1 Tichloroethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 L1,2-Dichloropthane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 tetras-1,3-Dichloropropene ND ug/l 0.50 1 gis-1,3-Dichloropropene ND ug/l 0.50	Volatile Organics by GC/MS 524.2					
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorothane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylsenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 sis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 <	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,	Trichlorofluoromethane	ND		ug/l	0.50	1
Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Interpretation of the control o	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
·	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-04
 Date Collected:
 04/28/08 12:15

 Client ID:
 RIZ-8-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Field Filtered

Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene ND ug/l 0.50 1 1,4-Dichlorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 I-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Hexachlorobutaen	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropthane ND ug/l 0.50 1 1,2,3-Trichloropthane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 NButylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadilene ND ug/l 0.50 1 Bopropylbenzene ND ug/l 0.50 1 p-Isopropylbeluzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1	Volatile Organics by GC/MS 524.2					
Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropyllouzene ND ug/l 0.50 1 Isopropyllouzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1	1,3-Dichlorobenzene	ND		ug/l	0.50	1
o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylibenzene ND ug/l 0.50 1 Isopropylibenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50	1,4-Dichlorobenzene	ND		ug/l	0.50	1
1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodiffluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 <t< td=""><td>Styrene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Styrene	ND		ug/l	0.50	1
2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Ibopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 <t< td=""><td>o-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	o-Xylene	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	1,1-Dichloropropene	ND		ug/l	0.50	1
1,2,3-Trichloropropane ND	2,2-Dichloropropane	ND		ug/l	0.50	1
Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Let-Butylbenzene ND ug/l 0.50 1 Let-Butylbe	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 Letr-Butylbenzene ND ug/l 0.50 1 Letr-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 O-Chlorotoluene ND ug/l 0.50 1	1,2,3-Trichloropropane	ND		ug/l	0.50	1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1<	Bromochloromethane	ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1	n-Butylbenzene	ND		ug/l	0.50	1
Sopropylbenzene ND	Dichlorodifluoromethane	ND		ug/l	0.50	1
p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50	Hexachlorobutadiene	ND		ug/l	0.50	1
Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50	Isopropylbenzene	ND		ug/l	0.50	1
n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Isopropyltoluene	ND		ug/l	0.50	1
sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Naphthalene	ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1 o-Chlorotoluene ND ug/l 0.50 1	n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	sec-Butylbenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene	ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene	ND		ug/l	0.50	1
1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane	ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane	ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane	ND		ug/l	0.50	1
	Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-04 Date Collected: 04/28/08 12:15

Client ID:RIZ-8-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	91		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

SAMPLE RESULTS

 Lab ID:
 L0806023-05
 Date Collected:
 04/28/08 12:30

 Client ID:
 RIZ-8S-042808
 Date Received:
 04/29/08

Client ID:RIZ-8S-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 05/01/08 12:17

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	11

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-05
 Date Collected:
 04/28/08 12:30

 Client ID:
 RIZ-8S-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	11

Tentatively Identified Compounds				
Unknown Alkane	0.62	J	ug/l	11
Unknown Alkane	2.7	J	ug/l	1
Unknown Hydrocarbon	4.3	J	ug/l	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-05 Date Collected: 04/28/08 12:30

Client ID: RIZ-8S-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

 Tentatively Identified Compounds

 Unknown Hydrocarbon
 0.64
 J
 ug/l
 1

 Pentane
 1.2
 J
 ug/l
 1

Surrogate % Recovery Qualifier Criteria

1,2-Dichlorobenzene-d4 116 80-120

4-Bromofluorobenzene 87 80-120

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-06 Date Collected: 04/28/08 14:36

Client ID:GHC-6-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 12:50

Volatile Organics by GC/MS 524.2 ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 L2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tichlorofobanzene ND ug/l 0.50 1 Tichloroethane ND ug/l 0.50 1 Tichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Intans-1,3-Dichloropropene ND ug/l 0.50	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Ly-Eichloroethane ND ug/l 0.50 1 Eromodichloromethane ND ug/l 0.50 1 Eromodichloropropene ND ug/l 0.50 1 Bromodichm ND ug/l 0.50 1	Volatile Organics by GC/MS 524.2					
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 <t< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorothane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylsenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 sis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 <	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <t< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,	Trichlorofluoromethane	ND		ug/l	0.50	1
Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Interpretation of the control o	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
·	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-06
 Date Collected:
 04/28/08 14:36

 Client ID:
 GHC-6-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-06 Date Collected: 04/28/08 14:36

Client ID:GHC-6-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	117		80-120	
4-Bromofluorobenzene	88		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 14:52

Client ID:MW-2-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 13:23

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	2.2		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

 Lab ID:
 L0806023-07
 Date Collected:
 04/28/08 14:52

 Client ID:
 MW-2-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lo806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-07 Date Collected: 04/28/08 14:52

Client ID:MW-2-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Field Filtered

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	118		80-120	
4-Bromofluorobenzene	87		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-08 Date Collected: 04/23/08 18:00

Client ID:TRIP BLANK-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Matrix: Water
Anaytical Method: 16,524.2
Analytical Date: 05/01/08 09:31

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

SAMPLE RESULTS

 Lab ID:
 L0806023-08
 Date Collected:
 04/23/08 18:00

 Client ID:
 TRIP BLANK-042808
 Date Received:
 04/29/08

 Sample Location:
 WALPOLE, MA
 Field Prep:
 Not Specified

Parameter Result Qualifier Units **RDL Dilution Factor** Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene ND 0.50 ug/l 1 ND 1 1,4-Dichlorobenzene ug/l 0.50 ND Styrene ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND 0.50 ug/l 1 ND 2,2-Dichloropropane ug/l 0.50 1 ND 1 1,1,1,2-Tetrachloroethane ug/l 0.50 ND 1 1,2,3-Trichloropropane ug/l 0.50 ND Bromochloromethane ug/l 0.50 1 ND n-Butylbenzene ug/l 0.50 1 Dichlorodifluoromethane ND 0.50 ug/l 1 Hexachlorobutadiene ND ug/l 0.50 1 ND 1 Isopropylbenzene ug/l 0.50 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND 0.50 ug/l 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 ND 1,2,4-Trichlorobenzene ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 ND 1,3,5-Trimethylbenzene ug/l 0.50 1 ND Bromobenzene ug/l 0.50 1 ND 1 o-Chlorotoluene ug/l 0.50 ND 1 p-Chlorotoluene ug/l 0.50 Dibromomethane ND ug/l 0.50 1 ND 0.50 1 1,2-Dibromoethane ug/l 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1 ND Methyl tert butyl ether ug/l 0.50 1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-08 Date Collected: 04/23/08 18:00

Client ID:TRIP BLANK-042808Date Received:04/29/08Sample Location:WALPOLE, MAField Prep:Not Specified

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS 524.2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	113		80-120	
4-Bromofluorobenzene	95		80-120	

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

Parameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524.2	2 for sample(s)	: 01,04-08	Batch:	WG319665-8
Methylene chloride	ND		ug/l	0.50
1,1-Dichloroethane	ND		ug/l	0.50
Chloroform	ND		ug/l	0.50
Carbon tetrachloride	ND		ug/l	0.50
1,2-Dichloropropane	ND		ug/l	0.50
Dibromochloromethane	ND		ug/l	0.50
1,1,2-Trichloroethane	ND		ug/l	0.50
Tetrachloroethene	ND		ug/l	0.50
Chlorobenzene	ND		ug/l	0.50
Trichlorofluoromethane	ND		ug/l	0.50
1,2-Dichloroethane	ND		ug/l	0.50
1,1,1-Trichloroethane	ND		ug/l	0.50
Bromodichloromethane	ND		ug/l	0.50
trans-1,3-Dichloropropene	ND		ug/l	0.50
cis-1,3-Dichloropropene	ND		ug/l	0.50
Bromoform	ND		ug/l	0.50
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50
Benzene	ND		ug/l	0.50
Toluene	ND		ug/l	0.50
Ethylbenzene	ND		ug/l	0.50
p/m-Xylene	ND		ug/l	0.50
Chloromethane	ND		ug/l	0.50
Bromomethane	ND		ug/l	0.50
Vinyl chloride	ND		ug/l	0.50
Chloroethane	ND		ug/l	0.50
1,1-Dichloroethene	ND		ug/l	0.50
trans-1,2-Dichloroethene	ND		ug/l	0.50
cis-1,2-Dichloroethene	ND		ug/l	0.50
Trichloroethene	ND		ug/l	0.50
1,2-Dichlorobenzene	ND		ug/l	0.50
1,3-Dichlorobenzene	ND		ug/l	0.50

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

arameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524.2	for sample(s)	: 01,04-08	Batch:	WG319665-8
1,4-Dichlorobenzene	ND		ug/l	0.50
Styrene	ND		ug/l	0.50
o-Xylene	ND		ug/l	0.50
1,1-Dichloropropene	ND		ug/l	0.50
2,2-Dichloropropane	ND		ug/l	0.50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50
1,2,3-Trichloropropane	ND		ug/l	0.50
Bromochloromethane	ND		ug/l	0.50
n-Butylbenzene	ND		ug/l	0.50
Dichlorodifluoromethane	ND		ug/l	0.50
Hexachlorobutadiene	ND		ug/l	0.50
Isopropylbenzene	ND		ug/l	0.50
p-lsopropyltoluene	ND		ug/l	0.50
Naphthalene	ND		ug/l	0.50
n-Propylbenzene	ND		ug/l	0.50
sec-Butylbenzene	ND		ug/l	0.50
tert-Butylbenzene	ND		ug/l	0.50
1,2,3-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trimethylbenzene	ND		ug/l	0.50
1,3,5-Trimethylbenzene	ND		ug/l	0.50
Bromobenzene	ND		ug/l	0.50
o-Chlorotoluene	ND		ug/l	0.50
p-Chlorotoluene	ND		ug/l	0.50
Dibromomethane	ND		ug/l	0.50
1,2-Dibromoethane	ND		ug/l	0.50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50
1,3-Dichloropropane	ND		ug/l	0.50
Methyl tert butyl ether	ND		ug/l	0.50

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

Analyst: MM

Parameter Result Qualifier Units RDL

Volatile Organics by GC/MS 524.2 for sample(s): 01,04-08 Batch: WG319665-8

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

	Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	87		80-120	

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

Result	Qualifier	Unit	s RDL	
for sample(s):	02-03	Batch:	WG320296-4	
ND		ug/l	0.50	
ND				
ND				
ND				
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
ND		ug/l	0.50	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND	ND ug/l 0.50 ND ug/l

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

Result	Qualifier	Unit	s RDL
for sample(s)	: 02-03	Batch:	WG320296-4
ND		ug/l	0.50
	For sample(s) ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/l ND

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 05/01/08 08:25

Analyst: MM

Parameter Result Qualifier Units RDL

Volatile Organics by GC/MS 524.2 for sample(s): 02-03 Batch: WG320296-4

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichlorobenzene-d4	114		80-120		
4-Bromofluorobenzene	87		80-120		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number:

L0806023

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	99 107 106	08 Batch: WG319665- - -	-7 70-130	<u>-</u>	
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	107 106	-	70-130	-	
Chloroform Carbon tetrachloride 1,2-Dichloropropane	106	-			
Carbon tetrachloride 1,2-Dichloropropane			70-130	-	
1,2-Dichloropropane		-	70-130	-	
	103	-	70-130	-	
Dibromochloromethane	106	-	70-130	-	
	96	-	70-130	-	
1,1,2-Trichloroethane	98	-	70-130	-	
Tetrachloroethene	112	-	70-130	-	
Chlorobenzene	108	-	70-130	-	
Trichlorofluoromethane	93	-	70-130	-	
1,2-Dichloroethane	109	-	70-130	-	
1,1,1-Trichloroethane	108	-	70-130	-	
Bromodichloromethane	102	-	70-130	-	
trans-1,3-Dichloropropene	86	-	70-130	-	
cis-1,3-Dichloropropene	90	-	70-130	-	
Bromoform	90	-	70-130	-	
1,1,2,2-Tetrachloroethane	90	-	70-130	-	
Benzene	111	-	70-130	-	
Toluene	116	-	70-130		
Ethylbenzene	110		70-130	-	
p/m-Xylene	110	-	70-130	-	

WALPOLE PARK SOUTH

Project Number: 12700058-003

Project Name:

Lab Number:

L0806023

Report Date:

05/05/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s): 01,04-0	8 Batch: WG319665	5-7		
Chloromethane	101	-	70-130	-	
Bromomethane	103	-	70-130	-	
Vinyl chloride	107	-	70-130	-	
Chloroethane	106	-	70-130	-	
1,1-Dichloroethene	100	-	70-130	-	
trans-1,2-Dichloroethene	103	-	70-130	-	
cis-1,2-Dichloroethene	111	-	70-130	-	
Trichloroethene	101	-	70-130	-	
1,2-Dichlorobenzene	95	-	70-130	-	
1,3-Dichlorobenzene	99	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	109	-	70-130	-	
1,1-Dichloropropene	107	-	70-130	-	
2,2-Dichloropropane	93	-	70-130	-	
1,1,1,2-Tetrachloroethane	101	-	70-130	-	
1,2,3-Trichloropropane	91	-	70-130	-	
Bromochloromethane	106	-	70-130	-	
n-Butylbenzene	102	-	70-130	-	
Dichlorodifluoromethane	106	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

nrameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
platile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	Batch: WG319665	5-7		
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Lab Number: L0806023

Report Date: 05/05/08

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

LCS **LCSD** %Recovery Limits %Recovery %Recovery Parameter

RPD **RPD Limits**

Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 Batch: WG319665-7

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Volatile Organics by GC/MS 524.2 Associated	d sample(s): 02	2-03 Batch: WG320296-3		
Methylene chloride	99	-	70-130	-
1,1-Dichloroethane	107	-	70-130	-
Chloroform	106	-	70-130	-
Carbon tetrachloride	103	-	70-130	-
1,2-Dichloropropane	106	-	70-130	-
Dibromochloromethane	96	-	70-130	-
1,1,2-Trichloroethane	98	-	70-130	-
Tetrachloroethene	112	-	70-130	-
Chlorobenzene	108	-	70-130	-

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2 Assoc	iated sample(s): 02-03	Batch: WG320296-3			
Trichlorofluoromethane	93	-	70-130	-	
1,2-Dichloroethane	109	-	70-130	-	
1,1,1-Trichloroethane	108	-	70-130	-	
Bromodichloromethane	102	-	70-130	-	
trans-1,3-Dichloropropene	86	-	70-130	-	
cis-1,3-Dichloropropene	90	-	70-130	-	
Bromoform	90	-	70-130	-	
1,1,2,2-Tetrachloroethane	90	-	70-130	-	
Benzene	111	-	70-130	-	
Toluene	116	-	70-130	-	
Ethylbenzene	110	-	70-130	-	
p/m-Xylene	113	-	70-130	-	
Chloromethane	101	-	70-130	-	
Bromomethane	103	-	70-130	-	
Vinyl chloride	107	-	70-130	-	
Chloroethane	106	-	70-130	-	
1,1-Dichloroethene	100	-	70-130	-	
trans-1,2-Dichloroethene	103	-	70-130	-	
cis-1,2-Dichloroethene	111	-	70-130	-	
Trichloroethene	101	-	70-130	-	
1,2-Dichlorobenzene	95	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2 A	ssociated sample(s): 02-03	Batch: WG320296-3			
1,3-Dichlorobenzene	99	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	109	-	70-130	-	
1,1-Dichloropropene	107	-	70-130	-	
2,2-Dichloropropane	93	-	70-130	-	
1,1,1,2-Tetrachloroethane	101	-	70-130	-	
1,2,3-Trichloropropane	91	-	70-130	-	
Bromochloromethane	106	-	70-130	-	
n-Butylbenzene	102	-	70-130	-	
Dichlorodifluoromethane	106	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	

Lab Number:

L0806023

05/05/08

Project Number: 12700058-003

WALPOLE PARK SOUTH

Project Name:

Report Date:

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2 Ass	sociated sample(s): 02-03	Batch: WG320296-3			
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 01	,04-08 QC	Batch ID: WG3	19665-1 QC	Sample: L080	5753-01 Cli	ent ID: M	1S Sample
Methylene chloride	ND	4	3.9	98	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.2	106	-	-	70-130	-	20
Chloroform	ND	4	4.4	109	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.4	110	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.2	105	-	-	70-130	-	20
Dibromochloromethane	ND	4	3.9	97	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	4.0	101	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.7	117	-	-	70-130	-	20
Chlorobenzene	ND	4	4.6	114	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.1	103	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.4	109	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.6	114	-	-	70-130	-	20
Bromodichloromethane	ND	4	4.2	105	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.4	85	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.6	90	-	-	70-130	-	20
Bromoform	ND	4	3.8	96	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	3.9	98	-	-	70-130	-	20
Benzene	ND	4	4.5	112	-	-	70-130	-	20
Toluene	ND	4	4.8	121	-	-	70-130	-	20
Ethylbenzene	ND	4	4.8	120	-	-	70-130	-	20
p/m-Xylene	ND	8	9.7	121	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Foun	MSD d %Recovery	Recovery Limits	/ RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 01	,04-08 QC	Batch ID: WG:	319665-1	QC Sample: L080	5753-01 (Client ID: M	1S Sample
Chloromethane	ND	4	4.3	107	-	-	70-130	-	20
Bromomethane	ND	4	4.0	101	-	-	70-130	-	20
Vinyl chloride	ND	4	4.7	118	-	-	70-130	-	20
Chloroethane	ND	4	4.6	115	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.3	107	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2	104	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	4.5	112	-	-	70-130	-	20
Trichloroethene	ND	4	4.2	106	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	4.0	101	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	4.1	104	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	4.0	101	-	-	70-130	-	20
Styrene	ND	4	4.6	115	-	-	70-130	-	20
o-Xylene	ND	4	4.7	118	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	4.5	112	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	3.8	95	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	4.3	109	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.9	98	-	-	70-130	-	20
Bromochloromethane	ND	4	4.2	105	-	-	70-130	-	20
n-Butylbenzene	ND	4	4.3	108	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	4.8	120	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1	102	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS	524.2 Associated	sample(s): 01	,04-08 QC	Batch ID: WG	319665-1 Q0	C Sample: L080	5753-01 CI	ient ID: M	IS Sample
Isopropylbenzene	ND	4	4.5	113	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	4.5	113	-	-	70-130	-	20
Naphthalene	ND	4	3.6	89	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.9	123	-	-	70-130	-	20
sec-Butylbenzene	ND	4	4.8	120	-	-	70-130	-	20
tert-Butylbenzene	ND	4	4.9	123	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.7	92	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.7	92	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.6	114	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.9	122	-	-	70-130	-	20
Bromobenzene	ND	4	4.4	110	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.7	118	-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.4	111	-	-	70-130	-	20
Dibromomethane	ND	4	4.1	102	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.9	98	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.7	92	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.0	100	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	3.6	90	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

MS MSD Recov	ery
--------------	-----

Parameter Native Sample MS Added MS Found %Recovery MSD Found %Recovery Limits RPD RPD Limits

Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 QC Sample: L0805753-01 Client ID: MS Sample

	MS	;	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101				80-120	
4-Bromofluorobenzene	104				80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Four	MSD nd %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 02-	03 QC Bate	ch ID: WG3202	296-1 QC	Sample: L080602	3-02 Client IE	: RIZ-	9-042808
Methylene chloride	ND	4	4.5	113	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.6	116	-	-	70-130	-	20
Chloroform	ND	4	4.6	115	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.7	119	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.6	115	-	-	70-130	-	20
Dibromochloromethane	ND	4	4.1	103	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	4.3	107	-	-	70-130	-	20
Tetrachloroethene	ND	4	5.0	124	-	-	70-130	-	20
Chlorobenzene	ND	4	4.5	113	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.2	106	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.5	113	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.8	119	-	-	70-130	-	20
Bromodichloromethane	ND	4	4.5	112	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.6	91	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.9	98	-	-	70-130	-	20
Bromoform	ND	4	3.8	95	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	3.8	96	-	-	70-130	-	20
Benzene	ND	4	5.0	125	-	-	70-130	-	20
Toluene	ND	4	5.2	130	-	-	70-130	-	20
Ethylbenzene	ND	4	4.7	117	-	-	70-130	-	20
p/m-Xylene	ND	8	9.6	120	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

Parameter	Native Sample	MS Added M	IS Found	MS %Recovery N	/ISD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 02-03	3 QC Batc	h ID: WG32029	6-1 QC Sa	mple: L080602	3-02 Client I	D: RIZ-9	9-042808
Chloromethane	ND	4	4.4	110	-	-	70-130	-	20
Bromomethane	ND	4	4.2	106	-	-	70-130	-	20
Vinyl chloride	ND	4	4.9	122	-	-	70-130	-	20
Chloroethane	ND	4	4.9	123	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.6	114	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.5	113	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	4.5	113	-	-	70-130	-	20
Trichloroethene	ND	4	4.5	112	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.9	97	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	4.0	99	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.9	97	-	-	70-130	-	20
Styrene	ND	4	4.6	114	-	-	70-130	-	20
o-Xylene	ND	4	4.6	116	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	4.7	118	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.3	108	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	4.2	106	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.9	98	-	-	70-130	-	20
Bromochloromethane	ND	4	4.4	111	-	-	70-130	-	20
n-Butylbenzene	ND	4	4.1	103	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	4.9	122	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1	102	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

arameter	Native Sample	MS Added M	IS Found %	MS %Recovery M	/ISD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS	S 524.2 Associated	sample(s): 02-03	3 QC Batch	n ID: WG32029	6-1 QC Sa	mple: L080602	3-02 Client I	D: RIZ-	9-042808
Isopropylbenzene	ND	4	4.4	111	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	4.3	109	-	-	70-130	-	20
Naphthalene	ND	4	3.3	83	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.8	120	-	-	70-130	-	20
sec-Butylbenzene	ND	4	4.7	117	-	<u>-</u>	70-130	-	20
tert-Butylbenzene	ND	4	4.8	120	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.6	90	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.5	87	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.4	110	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.8	119	-	-	70-130	-	20
Bromobenzene	ND	4	4.3	108	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.6	115	-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.3	108	-	-	70-130	-	20
Dibromomethane	ND	4	4.4	111	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.8	96	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.2	81	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.3	107	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	4.3	107	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

MS MSD	Recovery
--------	----------

Parameter Native Sample MS Added MS Found %Recovery MSD Found %Recovery Limits RPD RPD Limits

Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-1 QC Sample: L0806023-02 Client ID: RIZ-9-042808

	MS	M	SD	Acceptance	
Surrogate	% Recovery Qua	alifier % Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	98			80-120	
4-Bromofluorobenzene	103			80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

rameter	Native S	ample Duplicate S	Sample Units	RPD	RPD Limits
platile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	QC Batch ID: WG31966	5-2 QC Sample:	L0805753-02 Client IE	D: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

arameter	N	lative Sar	nple Duplicate S	ample Units	s RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s): 0	01,04-08	QC Batch ID: WG319665	5-2 QC Sample:	L0805753-02 Client	ID: DUP Sample
Ethylbenzene		ND	ND	ug/l	NC	20
p/m-Xylene		ND	ND	ug/l	NC	20
Chloromethane		ND	ND	ug/l	NC	20
Bromomethane		ND	ND	ug/l	NC	20
Vinyl chloride		ND	ND	ug/l	NC	20
Chloroethane		ND	ND	ug/l	NC	20
1,1-Dichloroethene		ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene		ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene		ND	ND	ug/l	NC	20
Trichloroethene		ND	ND	ug/l	NC	20
1,2-Dichlorobenzene		ND	ND	ug/l	NC	20
1,3-Dichlorobenzene		ND	ND	ug/l	NC	20
1,4-Dichlorobenzene		ND	ND	ug/l	NC	20
Styrene		ND	ND	ug/l	NC	20
o-Xylene		ND	ND	ug/l	NC	20
1,1-Dichloropropene		ND	ND	ug/l	NC	20
2,2-Dichloropropane		ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane		ND	ND	ug/l	NC	20
1,2,3-Trichloropropane		ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-2 QC Sample: L0805753-02 Client ID: D Bromochloromethane ND ND ug/l NC n-Butylbenzene ND ND ug/l NC Dichlorodifluoromethane ND ND ug/l NC Hexachlorobutadiene ND ND ND ug/l NC Isopropylbenzene ND ND ND ug/l NC P-Isopropyltoluene ND ND ND ug/l NC Naphthalene ND ND ND ug/l NC n-Propylbenzene ND ND ND ug/l NC sec-Butylbenzene ND ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ND ug/l NC 1,2,4-Trimethylbenzene ND ND ND ug/l NC	20 20 20 20 20 20 20 20
n-Butylbenzene ND ND ug/l NC Dichlorodifluoromethane ND ND ug/l NC Hexachlorobutadiene ND ND ug/l NC Isopropylbenzene ND ND ug/l NC p-Isopropyltoluene ND ND ug/l NC Naphthalene ND ND ug/l NC n-Propylbenzene ND ND ug/l NC sec-Butylbenzene ND ND ug/l NC tert-Butylbenzene ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ND ug/l NC	20 20 20 20 20 20 20
Dichlorodifluoromethane ND ND ND Ug/l NC Isopropylbenzene ND ND ND ND Ug/l NC Isopropylbenzene ND ND ND Ug/l NC NC Naphthalene ND ND ND Ug/l NC NC Naphthalene ND ND ND Ug/l NC NC NC Naphthalene ND ND ND Ug/l NC NC Sec-Butylbenzene ND ND ND Ug/l NC Sec-Butylbenzene ND ND ND Ug/l NC Itert-Butylbenzene ND ND ND Ug/l NC	20 20 20 20 20 20
Hexachlorobutadiene ND ND ug/l NC Isopropylbenzene ND ND ug/l NC p-Isopropyltoluene ND ND ug/l NC Naphthalene ND ND ug/l NC n-Propylbenzene ND ND ug/l NC sec-Butylbenzene ND ND ug/l NC tert-Butylbenzene ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ug/l NC	20 20 20 20
Isopropylbenzene ND ND ug/l NC p-Isopropyltoluene ND ND ND ug/l NC Naphthalene ND ND ND ug/l NC n-Propylbenzene ND ND ND ug/l NC sec-Butylbenzene ND ND ND ug/l NC tert-Butylbenzene ND ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ND ug/l NC	20 20 20
p-Isopropyltoluene ND ND ug/l NC Naphthalene ND ND ND ug/l NC n-Propylbenzene ND ND ND ug/l NC sec-Butylbenzene ND ND ND ug/l NC tert-Butylbenzene ND ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ND ug/l NC	20 20
Naphthalene ND ND ND ug/l NC n-Propylbenzene ND ND ND ug/l NC sec-Butylbenzene ND ND ND ug/l NC tert-Butylbenzene ND ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ND ug/l NC NC ND ND ug/l NC NC ND ND ug/l NC NC ND ND ug/l NC	20
n-Propylbenzene ND ND ug/l NC sec-Butylbenzene ND ND ug/l NC tert-Butylbenzene ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND Ug/l NC	
sec-Butylbenzene ND ND ug/l NC tert-Butylbenzene ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ug/l NC	00
tert-Butylbenzene ND ND ug/l NC 1,2,3-Trichlorobenzene ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ug/l NC	20
1,2,3-Trichlorobenzene ND ND ug/l NC 1,2,4-Trichlorobenzene ND ND ug/l NC	20
1,2,4-Trichlorobenzene ND ND ug/l NC	20
	20
1,2,4-Trimethylbenzene ND ND ug/l NC	20
·	20
1,3,5-Trimethylbenzene ND ND ug/l NC	20
Bromobenzene ND ND ug/l NC	20
o-Chlorotoluene ND ND ug/l NC	20
p-Chlorotoluene ND ND ug/l NC	20
Dibromomethane ND ND ug/l NC	20
1,2-Dibromoethane ND ND ug/l NC	20

WALPOLE PARK SOUTH Bar

Report Date:

Lab Number: L0806023 **Report Date:** 05/05/08

Parameter Native Sample Duplicate Sample Units **RPD RPD Limits** Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-2 QC Sample: L0805753-02 Client ID: DUP Sample 1,2-Dibromo-3-chloropropane ND ND NC 20 ug/l 1,3-Dichloropropane 20 ND ND ug/l NC Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	115		115		80-120	
4-Bromofluorobenzene	87		88		80-120	

Project Name:

Project Number:

12700058-003

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

Report Date: 05/05/08

rameter	Na	ative Sample	Duplicate Sa	mple Units	RPD	RPD Limits
latile Organics by GC/MS 524.2	Associated sample(s): 02	2-03 QC Batch ID:	WG320296-2	QC Sample: L0806023-	-03 Client ID:	MW-3-042808
Methylene chloride		ND	ND	ug/l	NC	20
1,1-Dichloroethane		ND	ND	ug/l	NC	20
Chloroform		ND	ND	ug/l	NC	20
Carbon tetrachloride		ND	ND	ug/l	NC	20
1,2-Dichloropropane		ND	ND	ug/l	NC	20
Dibromochloromethane		ND	ND	ug/l	NC	20
1,1,2-Trichloroethane		ND	ND	ug/l	NC	20
Tetrachloroethene		ND	ND	ug/l	NC	20
Chlorobenzene		ND	ND	ug/l	NC	20
Trichlorofluoromethane		ND	ND	ug/l	NC	20
1,2-Dichloroethane		ND	ND	ug/l	NC	20
1,1,1-Trichloroethane		ND	ND	ug/l	NC	20
Bromodichloromethane		ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene		ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene		ND	ND	ug/l	NC	20
Bromoform		ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane		ND	ND	ug/l	NC	20
Benzene		ND	ND	ug/l	NC	20
Toluene		ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date: 05/05/08

arameter	Native Sample	Duplicate Sa	ample Units	RPD	RPD Limits
platile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID	WG320296-2	QC Sample: L0806023-03	3 Client ID:	MW-3-042808
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023

Report Date: 05/05/08

arameter	rameter		Sample	Duplicate Sa	ample Uı	nits	RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s):	02-03	QC Batch ID:	WG320296-2	QC Sample:	L0806023-03	Client ID:	MW-3-042808
Bromochloromethane		N	ID	ND	ι	ıg/l	NC	20
n-Butylbenzene		N	ID	ND	ι	ıg/l	NC	20
Dichlorodifluoromethane		N	ID	ND	ι	ıg/l	NC	20
Hexachlorobutadiene		N	ID	ND	ι	ıg/l	NC	20
Isopropylbenzene		N	ID	ND	ι	ıg/l	NC	20
p-Isopropyltoluene		N	ID	ND	ι	ıg/l	NC	20
Naphthalene		N	ID	ND	ι	ıg/l	NC	20
n-Propylbenzene		N	ID	ND	U	ıg/l	NC	20
sec-Butylbenzene		N	ID	ND	ι	ıg/l	NC	20
tert-Butylbenzene		N	ID	ND	U	ıg/l	NC	20
1,2,3-Trichlorobenzene		N	ID	ND	ι	ıg/l	NC	20
1,2,4-Trichlorobenzene		N	ID	ND	ι	ıg/l	NC	20
1,2,4-Trimethylbenzene		N	ID	ND	ι	ıg/l	NC	20
1,3,5-Trimethylbenzene		N	ID	ND	l	ıg/l	NC	20
Bromobenzene		N	ID	ND	l	ıg/l	NC	20
o-Chlorotoluene		ND		ND	l	ıg/l	NC	20
p-Chlorotoluene		ND		ND	l	ıg/l	NC	20
Dibromomethane		ND		ND	ι	ıg/l	NC	20
1,2-Dibromoethane		N	ID	ND	ι	ıg/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L0806023

Report Date:

05/05/08

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Assoc	iated sample(s): 02-03 QC Batch ID:	WG320296-2 QC S	ample: L0806023	-03 Client ID:	MW-3-042808
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

				Acceptance			
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria		
1,2-Dichlorobenzene-d4	112		111		80-120		
4-Bromofluorobenzene	90		88		80-120		

METALS

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 09:10

Client ID: RIZ-10-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ries							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:2	8 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.062		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:4	8 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:2	8 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 17:2	8 EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 10:12

Client ID: RIZ-9-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:3	4 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.021		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:5	5 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:34	4 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 17:59	9 EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-03 Date Collected: 04/28/08 11:20

Client ID: MW-3-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:4	0 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.010		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:5	7 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:4	0 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 18:0	3 EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: L0806023-04 Date Collected: 04/28/08 12:15

Client ID: RIZ-8-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:4	5 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.025		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:5	8 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:4	5 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 18:0	6 EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 12:30

Client ID: RIZ-8S-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:0	7 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.054		mg/l	0.010	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00 (05/02/08 18:1	0 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 14:0	0 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	0 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 18:1	0 EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:0	7 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	0 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 18:1	0 EPA 3005A	60,6010B	AI

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 14:36

Client ID: GHC-6-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:1:	3 EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Barium, Dissolved	0.059		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 14:02	2 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:13	3 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 18:14	4 EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

SAMPLE RESULTS

Lab ID: Date Collected: 04/28/08 14:52

Client ID: MW-2-042808 Date Received: 04/29/08
Sample Location: WALPOLE, MA Field Prep: Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	y MCP 60	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:18	8 EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Barium, Dissolved	0.031		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	05/01/08 18:00	05/02/08 14:04	4 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND		mg/l	0.025	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:18	8 EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	04/30/08 12:00	05/02/08 18:1	7 EPA 3005A	60,6010B	AI

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01	-07 Batch	: WG320004-	1		
Arsenic, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00	05/02/08 15:41	60,6010B	Al
Beryllium, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/30/08 12:00	05/02/08 15:41	60,6010B	Al
Chromium, Dissolved	ND	mg/l	0.01	1	04/30/08 12:00	05/02/08 15:41	60,6010B	Al
Lead, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Nickel, Dissolved	ND	mg/l	0.025	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Vanadium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	04/30/08 12:00	05/02/08 15:41	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCF	9 6000/7000 series	for sample	e(s): 01	I-07 Batch:	WG320013-	1		
Antimony, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	ВМ
Thallium, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	ВМ

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units		ilution actor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MC	CP 6000/7000 series	for sampl	e(s): 01-0	7 Batch:	: WG320203-	1		
Mercury, Dissolved	ND	mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:25	64,7470A	RC

Project Name:WALPOLE PARK SOUTHLab Number:L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

L0806023

Lab Number:

Lab Control Sample Analysis Batch Quality Control

Project Number: 12700058-003 Report Date: 05/05/08

Parameter	LCS %Recovery		LCSD ecovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07	Batch:	WG320004-2 WG320004-3		
Arsenic, Dissolved	107		106	80-120	1	20
Barium, Dissolved	94		92	80-120	2	20
Beryllium, Dissolved	97		95	80-120	2	20
Cadmium, Dissolved	108		106	80-120	2	20
Chromium, Dissolved	95		95	80-120	0	20
Lead, Dissolved	97		95	80-120	2	20
Nickel, Dissolved	96		95	80-120	1	20
Selenium, Dissolved	103		103	80-120	0	20
Silver, Dissolved	94		92	80-120	2	20
Vanadium, Dissolved	98		96	80-120	2	20
Zinc, Dissolved	96		93	80-120	3	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07	Batch:	WG320013-2 WG320013-3		
Antimony, Dissolved	93		96	80-120	3	20
Thallium, Dissolved	96		97	80-120	1	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07	Batch:	WG320203-2 WG320203-3		
Mercury, Dissolved	109		105	80-120	4	20

Project Name:

WALPOLE PARK SOUTH

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0806023-01A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-01B	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-01C	Plastic 500ml HNO3 preserved	Α	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SE-6010S
L0806023-02A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-02B	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-02C	Plastic 500ml HNO3 preserved	Α	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SE-6010S
L0806023-03A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-03B	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-03C	Plastic 500ml HNO3 preserved	Α	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SE-6010S
L0806023-04A	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-04B	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-04C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SE-6010S
L0806023-05A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2

Lab Number: L0806023

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 **Report Date:** 05/05/08

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0806023-05B	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-05C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SE-6010S
L0806023-06A	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-06B	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-06C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SB-6010S,MCP-SE-6010S
L0806023-07A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-07B	Vial HCl preserved	Α	NA	4 C	Υ	Absent	524.2
L0806023-07C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG-6010S,MCP-AS-6010S,MCP-NI-6010S,MCP-PB-6010S,MCP-TL-6020S,MCP-V-6010S,MCP-SB-6020S,MCP-7470S,MCP-BE-6010S,MCP-ZN-6010S,MCP-BA-6010S,MCP-SB-6010S,MCP-SE-6010S
L0806023-08A	Vial HCI preserved	Α	NA	4 C	Υ	Absent	524.2

Container Comments

L0806023-01A	IR Gun
L0806023-01B	IR Gun
L0806023-01C	IR Gun
L0806023-02A	IR Gun
L0806023-02B	IR Gun
L0806023-02C	IR Gun
L0806023-03A	IR Gun
L0806023-03B	IR Gun
L0806023-03C	IR Gun

Project Name: WALPOLE PARK SOUTH Lab Number: L0806023

Project Number: 12700058-003 **Report Date:** 05/05/08

Container Information

Container ID Container Type Cooler pH Temp Pres Seal Analysis

Container Comments

L0806023-04A	IR Gun
L0806023-04B	IR Gun
L0806023-04C	IR Gun
L0806023-05A	IR Gun
L0806023-05B	IR Gun
L0806023-05C	IR Gun
L0806023-06A	IR Gun
L0806023-06B	IR Gun
L0806023-06C	IR Gun
L0806023-07A	IR Gun
L0806023-07B	IR Gun
L0806023-07C	IR Gun
L0806023-08A	IR Gun

Project Name:WALPOLE PARK SOUTHLab Number:L0806023Project Number:12700058-003Report Date:05/05/08

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD- Laboratory Control Sample Duplicate: Refer to LCS.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NI - Not Ignitable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND - Not detected at the reported detection limit for the sample.

RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHLab Number:L0806023Project Number:12700058-003Report Date:05/05/08

REFERENCES

- Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

0 1 10 See reverse side.	Min Merilly 1954	30/be/p	in Branch	JUL-07)	β
3	Received By: Date/Time	Date/Time	Bolindaished By:	PROJECT TO THE PROJEC	MA MCP or CT BC
completely. Samples can not be logged in and turnaround time clock		Preservative		PLEASE ANSWER QUESTIONS ABOVE!	PLEASEANSWE
Dioaso print clouds locals locals	0	T.			
	-	•	0 4	Tup Blue - 047 804	\$
			, N /452	40 +240 - p-MW	7
			N36	80 82ho - 9-2H9	6
			6 1230	R12 85 - 042808	S
			1215	808240-8-518	4
			1/10	MW-3-042808	W
			/012	812.9-041808	ี่ง
~	×	6w /x	016 NP 87.h	812-10-042868	6003. I
Sample Specific Comments s		l	Date Time	Sample ID	(Lab Use Only)
(Please specify below)	nce	Sample Sampler's	Collection		
Preservation of Lab to do	TY C				
~5	ANA Meta SCY.		ents/Detection Limits:	Other Project Specific Requirements/Comments/Detection Limits:	Other Project Sp
	LYS			These samples have been previously analyzed by Alpha	☐ These samples ha
SAMPLE HANDLING T	NS (dis)	Time:	Date Due: Time:	lan. cannon alphatich cu	Email: /47.
ence Protocols) Hequirea?	☐ Yes XNo Are CT RCP (Heasonable Confidence Protocols) Hequired?	ال	Vetandard & . DRIISH	905 2001	Fax: JO8
puired?			Turn-Arcund Time	15035	Phone: Say
SONABLE CONFIDENCE PROTOCOLS	MAMCPPRESUMPTIVECERTAINTYCTREASONABLECONFIDENCEPROTOCOLS		ALPHA Quote #:	, he MA	Manie
	ma mcp cAm Gw	Pay Tohnyu-	Project Manager: Jan Cannon	6.14	Address: O. 6
	State /Fed Program Criteria	1 CON	Project #: 12 7 0005 8	Tetalah Rive	Client: Tetula
	ADEX GARRIER DELIVERANCE C	A NA	Project Location: Walpole	n	Client Information
Same as Client into PO#:	EMAIL Deliverables	ak South	Project Name: While pole Park	TEL: 508-822-9300 FAX: 508-822-3268	۵۵
Billing Information	Deliverables		Project Information	MANSFIELD, MA	WESTBORO, MA N
ALPHA JOB #: LOSO 60005	Date Rec'd in Lab: 47 AL	PAGEOF	CHAIN OF CUSTODY	CHAIN OF	
					shadin

Report Date: 26-Nov-08 14:04

\checkmark	Final Report
	Re-Issued Report
	Revised Report

Laboratory Report

Tetra Tech Rizzo One Grant Street - P.O. Box 9005 Framingham, MA 01701

Attn: Ray Johnson

Project: Walpole Park South-Walpole, MA

Project 12700058

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA87371-01	RIZ-10-GW	Ground Water	11-Nov-08 14:35	12-Nov-08 17:15
SA87371-02	RIZ-8-GW	Ground Water	11-Nov-08 13:50	12-Nov-08 17:15
SA87371-03	RIZ-3-GW	Ground Water	11-Nov-08 15:40	12-Nov-08 17:15
SA87371-04	MW-9-GW	Ground Water	11-Nov-08 11:50	12-Nov-08 17:15
SA87371-05	MW-2-GW	Ground Water	11-Nov-08 09:50	12-Nov-08 17:15
SA87371-06	RIZ-9-GW	Ground Water	11-Nov-08 11:00	12-Nov-08 17:15
SA87371-07	MW-3-GW	Ground Water	11-Nov-08 08:35	12-Nov-08 17:15
SA87371-08	GHC-6-GW	Ground Water	11-Nov-08 09:20	12-Nov-08 17:15
SA87371-09	Trip Blank 111108	Aqueous	11-Nov-08 00:00	12-Nov-08 17:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D.
President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please note that this report contains 43 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report

indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

The samples were received 3.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended 70%-130% recovery range, a range has been set based on historical control limits.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 624

Laboratory Control Samples:

8111076-BSD1

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

1,1,1-Trichloroethane

1,1-Dichloroethene

Carbon tetrachloride

Trichlorofluoromethane (Freon 11)

Vinyl chloride

8111194-BSD1

Analyte out of acceptance range.

2-Hexanone (MBK)

Vinyl chloride

EPA 624

Spikes:

8111194-MS1 Source: SA87191-03

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene

Benzene

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

8111194-MSD1 Source: SA87191-03

Analyte out of acceptance range.

Toluene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene

Benzene

Tetrachloroethene

trans-1,2-Dichloroethene

Trichloroethene

8111291-MS1 Source: SA87501-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

8111291-MSD1 Source: SA87501-01

Analyte out of acceptance range.

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Benzene

Bromodichloromethane

Bromoform

Chlorobenzene

Chloroform

cis-1,3-Dichloropropene

Dibromochloromethane

Ethylbenzene

Toluene

trans-1,3-Dichloropropene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

SW846 6010B

SW846 6010B

Duplicates:

8111042-DUP1 Source: SA87401-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Lead

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cei
olatile O	organic Compounds										
olatile C	Organic Compounds by GCMS										
repared	by method SW846 5030 Water N	ЛS									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	u u	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	u u	"	"	"	Х
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	X
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
1-87-3	Chloromethane	BRL		μg/l	2.0	1	н	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	H .	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	u u	"	Х
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"		"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	и	"	"	"	Х
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	п	"	"	"	>
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	u u			"	>
6-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u			"	
6-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	>
-87-5		BRL		μg/l	1.0	1	"	"	"		>
	1,2-Dichloropropane	BRL		μg/l	1.0	1	п				, >
	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	п				>
	trans-1,3-Dichloropropene	BRL			1.0	1	"	"	"		<i>,</i>
0-41-4	Ethylbenzene			μg/l		•	"		,,		
11-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"				
34-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"			
10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l "	10.0	1					
5-09-2	Methylene chloride	BRL		μg/l 	10.0	1					X
0-42-5	Styrene	BRL		μg/l	1.0	1					
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	"		"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
8-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	>
I-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	X
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	>
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	п	"	"	"	X
79601-23-1	m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	X
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
50-00-4	4-Bromofluorobenzene	105		70-13	30 %		"	"	"	"	
	Toluene-d8	100		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	107		70-13			"	u u	"	"	
	Dibromofluoromethane	106		70-13			п	"	"		
	letals by EPA 200/6000 Series Meth			- /-							
	Filtration	Field Filtered	i	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble M	letals by EPA 6000/7000 Series Met		•	1		•					
				ua/l	5 0	1	SW846 6010B	21 Nov 00	21-Nov-08	Q111040	
140-22-4	Silver	BRL BRL		μg/l μg/l	5.0 4.0	1	300040 00101	∠ I-INUV-U8	∠ 1-INUV-U8	"	
	Arsenic										

Sample Identification RIZ-10-GW SA87371-01

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 14:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	letals by EPA 6000/7000 Serie	es Methods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08 8	111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	u u		"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	11.6		μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	36.3		μg/l	7.5	1	u u		"	"	
Soluble M	letals by EPA 200 Series Metl	hods									
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08 8	111043	Χ

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds										
/olatile C	Organic Compounds by GCMS										
repared	by method SW846 5030 Water N	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	18-Nov-08	18-Nov-08	8111291	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Χ
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Χ
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Χ
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Χ
7-66-3	Chloroform	BRL		μg/l	1.0	1	u u	"	"	"	Χ
4-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Χ
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Χ
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Χ
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	u u	"	u u	u u	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	W .	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	W .	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	u u	"	u u	u u	Χ
00-42-5	Styrene	BRL		μg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	W .	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Χ
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	u u	"	u u	u u	Χ
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	W .	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	W .	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	W .	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	W .	"	"	"	Х
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	86		70-13	30 %		"	"	"	"	
	Toluene-d8	97		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	107		70-13			"	"	"	"	
	Dibromofluoromethane	112		70-13			"	"	"	"	
	Ietals by EPA 200/6000 Series Meth										
	•	Field Filtere	d	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111030	
olubla N	Filtration Ietals by EPA 6000/7000 Series Met		u	11//		'	L. 7. 200.770003A	1-7 1404-00	. - 140 V-00	0111009	
	•				F 0	4	CM046 C040D	04 Nav. 00	04 Nav. 00	0111040	
440-22-4		BRL		µg/l	5.0	1	SW846 6010B	∠1-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l "	4.0	1			-		
440-39-3	Barium	27.6		μg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-8-GW SA87371-02

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 13:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	Metals by EPA 6000/7000 Series Met	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	26.4		μg/l	7.5	1	"	"	"	"	
Soluble M	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 15:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile C	Organic Compounds						<u> </u>				
/olatile C	Organic Compounds by GCMS										
repared	by method SW846 5030 Water N	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	u u	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	u u	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	u u	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	u u	"	"	"	Х
4-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	W .	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	W .	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	W .	"	"	"	Х
00-42-5	Styrene	BRL		μg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	W .	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	W .	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	W .	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	W .	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	W .	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	W .	"	"	"	Х
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	104		70-13	30 %		"	"	"	"	
	Toluene-d8	99		70-13			"	"	"	"	
	1,2-Dichloroethane-d4	114		70-13			"	"	"	"	
	Dibromofluoromethane	109		70-13			"	"	"		
	Ietals by EPA 200/6000 Series Meth				*						
	•	Field Filtere	Н	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111030	
olubla M	Filtration Ietals by EPA 6000/7000 Series Met		u	11/7		'	L. 7. 200.770003A	1-7 1404-00	. - 140 4-00	5111009	
	•				F 0	4	CM046 C040D	04 Nav. 00	04 Nav. 00	0111040	
440-22-4		BRL		µg/l	5.0	1	SW846 6010B	∠1-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l "	4.0	1			-		
440-39-3	Barium	86.2		μg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-3-GW SA87371-03

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 15:40

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	Metals by EPA 6000/7000 Series Me	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	24-Nov-08	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	21-Nov-08	"	
7440-66-6	Zinc	21.0		μg/l	7.5	1	"		"	"	
Soluble N	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	X

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 11:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Volatile (Organic Compounds						<u> </u>				
/olatile C	Organic Compounds by GCMS										
repared	by method SW846 5030 Water M	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Χ
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	п	· ·	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Χ
4-83-9	Bromomethane	BRL		μg/l	2.0	1	п	· ·	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	H .	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	п	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	п	· ·	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	п	"	"	"	Х
7-66-3	Chloroform	2.2		μg/l	1.0	1	п	"	"	"	Х
4-87-3	Chloromethane	BRL		μg/l	2.0	1	H .	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	п	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	п	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	n .	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	n .	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	п	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	n .	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	n .	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	п	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	n .	"	"	"	Х
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	u u	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	n .	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	n .	"	"	"	Х
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n .	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	2.7		μg/l	1.0	1	n .	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	u u	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		μg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	n .	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	n .	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	u	"	"	"	Х
Surrogata	recoveries:			*							
60-00-4	4-Bromofluorobenzene	103		70-13	30 %		"	"	"		
	Toluene-d8	100		70-13			"	"	"		
	1,2-Dichloroethane-d4	113		70-13			"	u u	"	"	
	Dibromofluoromethane	110		70-13				"	"	"	
	Ietals by EPA 200/6000 Series Meth			.0 10							
JIUDIC IV	·	Field Filtered	4	N/A		1	EPA 200.7/3005A	14-Nov 09	14-Nov 09	8111030	
olubla N	Filtration Letals by EPA 6000/7000 Series Met		u	111/73		ı	LI A 200.1/3003A	1 -1 -1104-00	1 -1 -1104-00	0111039	
	Ietals by EPA 6000/7000 Series Met					4	014104000405	04 N= 05	04 N 00	0444040	
440-22-4		BRL		μg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l	4.0	1	"	"	"		
440-39-3	Barium	18.6		μg/l	5.0	1	"	"	"	"	

Sample Identification MW-9-GW SA87371-04

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 11:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	1etals by EPA 6000/7000 Series Me	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	u	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	34.7		μg/l	7.5	1	"	"	"	"	
Soluble M	1 EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 09:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds by GCMS										
repared	d by method SW846 5030 Water N	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	"	"	"	"	X
5-25-2	Bromoform	BRL		μg/l	1.0	1	u u	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	X
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	II .	"	"	"	X
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	II .	"	"	"	Х
6-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	II .	"	"	"	
6-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	II .	"	"	"	X
-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	n n	"	"	"	>
061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	u u	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	II .	"	"	"	X
0-41-4	Ethylbenzene	BRL		μg/l	1.0	1	n n	"	"	"	X
1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	II .	"	"	"	
34-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	
8-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	n n	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	u u	"	"	"	X
0-42-5	Styrene	BRL		μg/l	1.0	1	u u	"	"	"	
-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	n n	"	"	"	X
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
8-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"		"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"		"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)			μg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	II .	"	"	"	X
	¹m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
urronate	recoveries:			<u> </u>							
urrogate 60-00-4	4-Bromofluorobenzene	104		70-13	30 %		"	"	"	"	
	Toluene-d8	99		70-13			"	"	"		
	1,2-Dichloroethane-d4	111		70-13			"		"		
	Dibromofluoromethane	109		70-13			"			"	
	Tetals by EPA 200/6000 Series Meth			, , ,	/•						
11.	Filtration	Field Filtered	l	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble M	Tetals by EPA 6000/7000 Series Met					•			2. 30		
40-22-4	Silver	BRL		μg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l	4.0	1	"	"	"	"	
	AISCHIU	DIVE		M3''	7.0						

Sample Identification MW-2-GW SA87371-05

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 09:50

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	Metals by EPA 6000/7000 Series Met	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	u	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	u	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	u	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	28.0		μg/l	7.5	1	"	"	"	"	
Soluble N	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 11:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds by GCMS										
repared	l by method SW846 5030 Water I	MS									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		μg/l	1.0	1	п	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	u u	"	"	"	X
5-25-2	Bromoform	BRL		μg/l	1.0	1	п	"	"	"	Х
1-83-9	Bromomethane	BRL		μg/l	2.0	1	п	"	"	"	Х
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
8-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
' -66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
6-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	X
-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	W	"	"	"	>
6-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	W	"	"	"	
6-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	н	"	"	"	>
-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	H .	"	"	"	>
061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	H .	"	"	"	>
061-02-6	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	н	"	"	"	>
0-41-4	Ethylbenzene	BRL		μg/l	1.0	1	H .	"	"	"	>
1-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	H .	"	"	"	
34-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	W	"	"	"	
8-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	п	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	п	"	"	"	X
0-42-5	Styrene	BRL		μg/l	1.0	1	п	"	"	"	
-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	п	"	"	"	>
7-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
8-88-3	Toluene	BRL		μg/l	1.0	1	"		"	"	Х
-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	>
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	"		"	"	>
-01-6	Trichloroethene	BRL		μg/l	1.0	1	"		"	"	>
-69-4	Trichlorofluoromethane (Freon 11			μg/l	1.0	1	"	"	"	"	>
-01-4	Vinyl chloride	BRL		μg/l	1.0	1	п	"	"	"	>
	¹ m,p-Xylene	BRL		μg/l	2.0	1	п	"	"	"	X
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"		"	"	×
urrogato	recoveries:										
60-00-4	4-Bromofluorobenzene	101		70-13	80 %		"	"	"		
	Toluene-d8	99		70-13			"	"	"		
	1.2-Dichloroethane-d4	111		70-13 70-13			"	u u	"	"	
	Dibromofluoromethane	109		70-13			"			"	
	Ietals by EPA 200/6000 Series Meth			.0 70							
	Filtration	Field Filtered	d	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Tetals by EPA 6000/7000 Series Me		-	*		•					
	•	BRL		μg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
40 22 4				μq/I	5.0	1	344040 00100	∠ 1-1NUV-UO	Z I TINUV-UO	0111042	
140-22-4	Silver Arsenic	BRL		μg/l	4.0	1	"			"	

Sample Identification RIZ-9-GW SA87371-06

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 11:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	1etals by EPA 6000/7000 Series Me	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	u	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	u	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	24-Nov-08	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	21-Nov-08	"	
7440-66-6	Zinc	20.0		μg/l	7.5	1	"	"	"	"	
Soluble N	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Χ

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 08:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
Volatile C	Organic Compounds										
olatile C	Organic Compounds by GCMS										
repared	d by method SW846 5030 Water N	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	17-Nov-08	17-Nov-08	8111194	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	X
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	"	"	"	"	X
5-25-2	Bromoform	BRL		μg/l	1.0	1	u u	"	"	"	X
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
3-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
1-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	n n	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	X
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
6-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	
6-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	n .	"	"	"	>
-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	>
	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	>
10-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"		"	"	>
1-78-6	•	BRL		μg/l	10.0	1	"				,
34-04-4	2-Hexanone (MBK)	BRL		μg/l	1.0	1	"	"	"	"	
8-10-1	Methyl tert-butyl ether	BRL		μg/l	10.0	1	"				
i-09-2	4-Methyl-2-pentanone (MIBK)	BRL			10.0	1		"	"		>
	Methylene chloride	BRL		μg/l	1.0	1	"	"	"	"	
0-42-5	Styrene			μg/l		1	"	"	"	"	,
)-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0		,	,			X
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1					X
8-88-3	Toluene	BRL		μg/l "	1.0	1					X
-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1					>
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1					X
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	•	"	"	"	>
5-69-4	Trichlorofluoromethane (Freon 11)			μg/l	1.0	1	"	"	"	"	X
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	X
79601-23-	-1m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	X
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	81		70-13	30 %		"	"	"	"	
037-26-5	Toluene-d8	95		70-13	80 %		"	"	"	"	
7060-07-0	1,2-Dichloroethane-d4	127		70-13	80 %		u u	"	"	"	
368-53-7	Dibromofluoromethane	119		70-13	80 %		"	"	"	"	
oluble N	Metals by EPA 200/6000 Series Meth	ods									
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Metals by EPA 6000/7000 Series Met	hods									
40-22-4	·	BRL		μg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l	4.0	1	"	"	"	"	
	Barium	11.4		μg/l	5.0	1					

Sample Identification MW-3-GW SA87371-07

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 08:35

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	Metals by EPA 6000/7000 Series Met	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	u	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	8.8		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	u	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	34.5		μg/l	7.5	1	"	"	"	"	
Soluble M	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 09:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
Volatile C	Organic Compounds						<u> </u>				
/olatile C	Organic Compounds by GCMS										
repared	by method SW846 5030 Water N	//S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
1-43-2	Benzene	BRL		μg/l	1.0	1	u u	"	"	"	Χ
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	u u	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	u u	"	"	"	Х
4-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	u u	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	u u	"	"	"	Х
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		μg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1	u u	"	"	"	Χ
9-01-6	Trichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	Х
Surrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	84		70-13	30 %		"		"		
	Toluene-d8	95		70-13			"	"	"		
	1,2-Dichloroethane-d4	127		70-13			u u	"	"	"	
	Dibromofluoromethane	120		70-13			u u	"	"	"	
	Ietals by EPA 200/6000 Series Meth										
	•	Field Filtered	d	N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111030	
olubla N	Filtration Ietals by EPA 6000/7000 Series Met		u	11//		'	L. 7. 200.770003A	1-7 1404-00	141404-00	5111009	
	•			/!	F 0	4	C/V/046 6040D	21 Nov 00	21 Nov 00	0111040	
440-22-4		BRL		µg/l	5.0	1	SW846 6010B	∠1-Nov-08	21-Nov-08	8111042	
	Arsenic	BRL		μg/l "	4.0	1			-		
440-39-3	Barium	36.8		μg/l	5.0	1	"	"	"	"	

Sample Identification GHC-6-GW SA87371-08

Client Project # 12700058

<u>Matrix</u> Ground Water Collection Date/Time 11-Nov-08 09:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	Metals by EPA 6000/7000 Series Me	thods									
7440-41-7	Beryllium	BRL		μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		μg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		μg/l	5.0	1	"	"	"	"	
7440-02-0	Nickel	BRL		μg/l	5.0	1	"	"	"	"	
7439-92-1	Lead	BRL		μg/l	7.5	1	"	"	"	"	
7440-36-0	Antimony	BRL		μg/l	6.0	1	"	"	"	"	
7782-49-2	Selenium	BRL		μg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL		μg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		μg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	21.6		μg/l	7.5	1	"	"	"	"	
Soluble M	Metals by EPA 200 Series Methods										
7439-97-6	Mercury	BRL		μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Client Project # 12700058

Matrix Aqueous Collection Date/Time 11-Nov-08 00:00

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cer
olatile C	Organic Compounds										
/olatile C	Organic Compounds by GCMS										
repared	l by method SW846 5030 Water M	1S									
7-64-1	Acetone	BRL		μg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
1-43-2	Benzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	"	u u	"	"	Х
5-25-2	Bromoform	BRL		μg/l	1.0	1	"	u u	"	"	Х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	u u	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1	"	u u	"	"	
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		μg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		μg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		μg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		μg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1	"	"	"		Х
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1		"	"		X
9-01-6	Trichloroethene	BRL		μg/l	1.0	1		"	"		Х
5-69-4	Trichlorofluoromethane (Freon 11)			μg/l	1.0	1		"	"	"	Х
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1		"	"	"	X
	1m,p-Xylene	BRL		μg/l	2.0	1		"	"	"	X
5-47-6	o-Xylene	BRL		μg/l	1.0	1		"	"	"	X
	recoveries:										
ourrogate 60-00-4	4-Bromofluorobenzene	82		70-13	30 %		"	"	"		
	Toluene-d8	93		70-13			"		"		
	1,2-Dichloroethane-d4	93 127		70-13			"		"		
		161		10-1	JU /0						

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8111076 - SW846 5030 Water MS										
Blank (8111076-BLK1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	BRL		μg/l	20.0						
Benzene	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	1.0						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		μg/l	2.0						
2-Butanone (MEK)	BRL		μg/l	10.0						
Carbon tetrachloride	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		μg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	1.0						
trans-1,3-Dichloropropene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	10.0						
Styrene	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.2		μg/l		30.0		84	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.2 33.0		μg/l μg/l		30.0 30.0		98 110	70-130 70-130		
Surrogate: Dibromofluoromethane	32.3		μg/l		30.0		108	70-130 70-130		
LCS (8111076-BS1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	18.0		μg/l		20.0		90	70-130		
Benzene	21.7		μg/l		20.0		108	70-130		
Bromodichloromethane	24.1		μg/l		20.0		121	35-155		
Bromoform	17.5		μg/l		20.0		87	45-169		
Bromomethane	22.2		μg/l		20.0		111	1-242		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8111076 - SW846 5030 Water MS										
LCS (8111076-BS1)										
Prepared & Analyzed: 14-Nov-08										
2-Butanone (MEK)	18.1		μg/l		20.0		90	70-130		
Carbon tetrachloride	23.3		μg/l		20.0		117	70-140		
Chlorobenzene	21.2		μg/l		20.0		106	70-130		
Chloroethane	22.4		μg/l		20.0		112	14-230		
Chloroform	23.0		μg/l		20.0		115	51-138		
Chloromethane	20.3		μg/l		20.0		101	1-273		
Dibromochloromethane	19.2		μg/l		20.0		96	53-149		
1,2-Dichlorobenzene	20.4		μg/l		20.0		102	18-190		
1,3-Dichlorobenzene	22.2		μg/l		20.0		111	59-156		
1,4-Dichlorobenzene	20.4		μg/l		20.0		102	18-190		
1,1-Dichloroethane	20.8		μg/l		20.0		104	59-155		
1,2-Dichloroethane	20.1		μg/l		20.0		100	49-155		
1,1-Dichloroethene	20.1		μg/l		20.0		100	70-130		
cis-1,2-Dichloroethene	20.0		μg/l		20.0		100	70-130		
trans-1,2-Dichloroethene	21.0		μg/l		20.0		105	54-156		
1,2-Dichloropropane	21.4		μg/l		20.0		107	1-210		
cis-1,3-Dichloropropene	18.6		μg/l		20.0		93	1-227		
trans-1,3-Dichloropropene	18.3		μg/l		20.0		92	17-183		
Ethylbenzene	22.0		μg/l		20.0		110	37-162		
2-Hexanone (MBK)	14.5		μg/l		20.0		72	70-130		
Methyl tert-butyl ether	20.2		μg/l		20.0		101	70-130		
4-Methyl-2-pentanone (MIBK)	18.1		μg/l		20.0		90	70-130		
Methylene chloride	22.5		μg/l		20.0		113	1-221		
Styrene	19.4		μg/l		20.0		97	70-130		
1,1,2,2-Tetrachloroethane	20.1				20.0		101	46-157		
Tetrachloroethene	19.0		μg/l		20.0		95	64-148		
Toluene	21.0		μg/l		20.0		105	70-130		
1,1,1-Trichloroethane	20.0		μg/l		20.0		100	52-162		
1,1,2-Trichloroethane	20.7		µg/l		20.0		103	52-162		
Trichloroethene	20.7		μg/l μg/l		20.0		105	71-157		
Trichlorofluoromethane (Freon 11) Vinyl chloride	21.4 23.8		μg/l		20.0 20.0		107 119	17-181 1-251		
•			µg/l							
m,p-Xylene	45.3		μg/l		40.0		113	70-130 70-130		
o-Xylene Surrogate: 4-Bromofluorobenzene	22.8 31.3		µg/l		20.0 30.0		114	70-130 70-130		
Surrogate: 4-Bromonuoropenzene Surrogate: Toluene-d8	31.3 30.2		μg/l μg/l		30.0 30.0		104 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	29.2		μg/l		30.0		97	70-130		
Surrogate: Dibromofluoromethane	30.8		μg/l		30.0		103	70-130		
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	17.0		μg/l		20.0		85	70-130	6	30
Benzene	17.3		μg/l		20.0		87	70-130	22	30
Bromodichloromethane	20.3		μg/l		20.0		101	35-155	17	30
Bromoform	16.3		μg/l		20.0		82	45-169	7	30
Bromomethane	17.8		μg/l		20.0		89	1-242	22	30
2-Butanone (MEK)	19.1		μg/l		20.0		96	70-130	6	30
Carbon tetrachloride	15.8	QR2	μg/l		20.0		79	70-140	39	30
Chlorobenzene	17.6		μg/l		20.0		88	70-130	18	30
Chloroethane	17.8		μg/l		20.0		89	14-230	23	30
Chloroform	19.4		μg/l		20.0		97	51-138	17	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8111076 - SW846 5030 Water	MS									
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Chloromethane	15.6		μg/l		20.0		78	1-273	26	30
Dibromochloromethane	17.3		μg/l		20.0		87	53-149	10	30
1,2-Dichlorobenzene	17.4		μg/l		20.0		87	18-190	16	30
1,3-Dichlorobenzene	19.3		μg/l		20.0		96	59-156	14	30
1,4-Dichlorobenzene	17.5		μg/l		20.0		88	18-190	15	30
1,1-Dichloroethane	17.3		μg/l		20.0		87	59-155	18	30
1,2-Dichloroethane	17.9		μg/l		20.0		90	49-155	11	30
1,1-Dichloroethene	14.2	QR2	μg/l		20.0		71	70-130	34	30
cis-1,2-Dichloroethene	16.8		μg/l		20.0		84	70-130	18	30
trans-1,2-Dichloroethene	16.4		μg/l		20.0		82	54-156	24	30
1,2-Dichloropropane	17.9		μg/l		20.0		89	1-210	18	30
cis-1,3-Dichloropropene	16.1		μg/l		20.0		80	1-227	14	30
trans-1,3-Dichloropropene	16.3		μg/l		20.0		82	17-183	11	30
Ethylbenzene	17.1		μg/l		20.0		86	37-162	25	30
2-Hexanone (MBK)	14.2		μg/l		20.0		71	70-130	2	30
Methyl tert-butyl ether	19.1		μg/l		20.0		96	70-130	6	30
4-Methyl-2-pentanone (MIBK)	18.6		μg/l		20.0		93	70-130	3	30
Methylene chloride	19.0		μg/l		20.0		95	1-221	17	30
Styrene	15.7		μg/l		20.0		78	70-130	21	30
1,1,2,2-Tetrachloroethane	19.4		μg/l		20.0		97	46-157	4	30
Tetrachloroethene	14.4		μg/l		20.0		72	64-148	27	30
Toluene	17.0		μg/l		20.0		85	70-130	21	30
1,1,1-Trichloroethane	14.6	QR2	μg/l		20.0		73	52-162	31	30
1,1,2-Trichloroethane	18.8		μg/l		20.0		94	52-150	9	30
Trichloroethene	16.3		μg/l		20.0		82	71-157	25	30
Trichlorofluoromethane (Freon 11)	13.9	QR2	μg/l		20.0		69	17-181	43	30
Vinyl chloride	15.8	QR2	μg/l		20.0		79	1-251	41	30
m,p-Xylene	35.6		μg/l		40.0		89	70-130	24	30
o-Xylene	18.4		μg/l		20.0		92	70-130	21	30
Surrogate: 4-Bromofluorobenzene	30.9		μg/l		30.0		103	70-130		
Surrogate: Toluene-d8	30.4		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.8		μg/l		30.0		99	70-130		
Surrogate: Dibromofluoromethane	31.1		μg/l		30.0		104	70-130		
Matrix Spike (8111076-MS1)	Source: SA8726	7-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.5		μg/l		20.0	BRL	88	70-130		
Bromodichloromethane	23.0		μg/l		20.0	BRL	115	35-155		
Bromoform	17.2		μg/l		20.0	BRL	86	45-169		
Bromomethane	11.9		μg/l		20.0	BRL	60	1-242		
Carbon tetrachloride	21.0		μg/l		20.0	BRL	105	70-140		
Chlorobenzene	19.3		μg/l		20.0	BRL	97	70-130		
Chloroethane	13.9		μg/l		20.0	BRL	70	14-230		
Chloroform	21.5		μg/l		20.0	BRL	108	51-138		
Chloromethane	10.0		μg/l		20.0	BRL	50	1-273		
Dibromochloromethane	18.5		μg/l		20.0	BRL	92	53-149		
1,2-Dichlorobenzene	21.4		μg/l		20.0	BRL	107	18-190		
1,3-Dichlorobenzene	21.8		μg/l		20.0	BRL	109	59-156		
1,4-Dichlorobenzene	20.1		μg/l		20.0	BRL	100	18-190		
1,1-Dichloroethane	19.3		μg/l		20.0	BRL	97	59-155		
1,2-Dichloroethane	18.0		μg/l		20.0	BRL	90	49-155		

Analyta(s)	Popult Floo	Unita	*RDL	Spike	Source Result	%REC	%REC	RPD	RPD Limit
Analyte(s)	Result Flag	Units	*KDL	Level	Resuit	%KEC	Limits	KPD	Limit
Batch 8111076 - SW846 5030 Water	r MS								
Matrix Spike (8111076-MS1)	Source: SA87267-01								
Prepared & Analyzed: 14-Nov-08									
1,1-Dichloroethene	14.1	μg/l		20.0	BRL	71	70-130		
trans-1,2-Dichloroethene	14.1	μg/l		20.0	BRL	71	54-156		
1,2-Dichloropropane	20.1	μg/l		20.0	BRL	101	1-210		
cis-1,3-Dichloropropene	16.9	μg/l		20.0	BRL	84	1-227		
trans-1,3-Dichloropropene	17.0	μg/l		20.0	BRL	85	17-183		
Ethylbenzene	19.3	μg/l		20.0	BRL	97	37-162		
Methylene chloride	17.8	μg/l		20.0	BRL	89	1-221		
1,1,2,2-Tetrachloroethane	20.1	μg/l		20.0	BRL	101	46-157		
Tetrachloroethene	16.0	μg/l		20.0	BRL	80	64-148		
Toluene	17.6	μg/l		20.0	BRL	88	70-130		
1,1,1-Trichloroethane	19.1	μg/l		20.0	BRL	96	52-162		
1,1,2-Trichloroethane	20.8	μg/l		20.0	BRL	104	52-150		
Trichloroethene	17.5	μg/l		20.0	BRL	88	71-157		
Trichlorofluoromethane (Freon 11)	16.6	μg/l		20.0	BRL	83	17-181		
Vinyl chloride	11.4	μg/l		20.0	BRL	57	1-251		
Surrogate: 4-Bromofluorobenzene	30.6	μg/l		30.0		102	70-130		
Surrogate: Toluene-d8	30.1	μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	29.6 31.5	μg/l μg/l		30.0 30.0		99 105	70-130 70-130		
Matrix Spike Dup (8111076-MSD1)	Source: SA87267-01	F3		00.0		700			
Prepared & Analyzed: 14-Nov-08	Source. SA67267-01								
Benzene	17.5	ua/l		20.0	BRL	88	70-130	0.06	30
Bromodichloromethane	23.5	μg/l		20.0	BRL		35-155	2	30
Bromoform	23.5 17.2	μg/l		20.0	BRL	118 86	45-169	0.4	30
Bromomethane	12.0	μg/l		20.0	BRL	60	1-242	0.4	30
Carbon tetrachloride	20.9	μg/l		20.0	BRL	104	70-140	0.9	30
Chlorobenzene	19.1	μg/l		20.0	BRL	96	70-140 70-130	0.7	30
Chloroethane	13.0	µg/l		20.0	BRL	65	14-230	7	30
Chloroform	21.5	μg/l		20.0	BRL	107	51-138	0.2	30
Chloromethane	9.4	μg/l		20.0	BRL	47	1-273	7	30
		µg/l							
Dibromochloromethane	19.0	µg/l		20.0	BRL	95 105	53-149	2	30
1,2-Dichlorobenzene	21.1 21.8	μg/l		20.0 20.0	BRL BRL	105	18-190	1	30 30
1,3-Dichlorobenzene		μg/l				109	59-156	0.2	
1,4-Dichlorobenzene	19.8	μg/l		20.0 20.0	BRL BRL	99	18-190	1	30 30
1,1-Dichloroethane	19.1 18.2	µg/l		20.0	BRL	95 01	59-155	1	30
1,2-Dichloroethane		μg/l		20.0		91	49-155	1	30
1,1-Dichloroethene	14.4	µg/l			BRL BRL	72 71	70-130	2	30
trans-1,2-Dichloroethene 1,2-Dichloropropane	14.2 19.9	μg/l		20.0 20.0	BRL	71 100	54-156 1-210	0.2 1	30
cis-1,3-Dichloropropene	17.4	μg/l		20.0	BRL	87	1-210		30
trans-1,3-Dichloropropene	17.4 17.5	μg/l		20.0	BRL	88	17-183	3 3	30
		µg/l							
Ethylbenzene Methylene chloride	19.8 17.5	µg/l		20.0	BRL BRL	99 87	37-162 1 221	2	30 30
Methylene chloride	17.5 19.6	µg/l		20.0	BRL	87	1-221 46 157	2	30
1,1,2,2-Tetrachloroethane		μg/l		20.0		98	46-157	3	
Tetrachloroethene	16.5	µg/l		20.0	BRL	83	64-148	4	30
Toluene	18.1	μg/l		20.0	BRL	91	70-130	3	30
1,1,1-Trichloroethane	19.0	μg/l		20.0	BRL	95 403	52-162	0.5	30
1,1,2-Trichloroethane	20.6	μg/l		20.0	BRL	103	52-150	1	30
Trichloroethene	17.7	μg/l "		20.0	BRL	88	71-157	1	30
Trichlorofluoromethane (Freon 11)	15.7	μg/l		20.0	BRL	79	17-181	5	30

				Spike	Source		%REC		RPD
Analyte(s)	Result Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water	r MS								
Matrix Spike Dup (8111076-MSD1)	Source: SA87267-01								
Prepared & Analyzed: 14-Nov-08									
Vinyl chloride	11.5	μg/l		20.0	BRL	58	1-251	0.6	30
Surrogate: 4-Bromofluorobenzene	30.9	μg/l		30.0		103	70-130		
Surrogate: Toluene-d8	31.0	μg/l		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.2	μg/l		30.0		101	70-130		
Surrogate: Dibromofluoromethane	31.4	μg/l		30.0		105	70-130		
Batch 8111077 - SW846 5030 Water	r MS								
Blank (8111077-BLK1) Prepared & Analyzed: 14-Nov-08									
Acetone	BRL	ua/l	20.0						
		μg/l							
Benzene	BRL	μg/l	1.0						
Bromodichloromethane	BRL	μg/l 	1.0						
Bromoform	BRL	μg/l	1.0						
Bromomethane	BRL	μg/l	2.0						
2-Butanone (MEK)	BRL	μg/l	10.0						
Carbon tetrachloride	BRL	μg/l	1.0						
Chlorobenzene	BRL	μg/l	1.0						
Chloroethane	BRL	μg/l	2.0						
Chloroform	BRL	μg/l	1.0						
Chloromethane	BRL	μg/l	2.0						
Dibromochloromethane	BRL	μg/l	1.0						
1,2-Dichlorobenzene	BRL	μg/l	1.0						
1,3-Dichlorobenzene	BRL	μg/l	1.0						
1,4-Dichlorobenzene	BRL	μg/l	1.0						
1,1-Dichloroethane	BRL	μg/l	1.0						
1,2-Dichloroethane	BRL	μg/l	1.0						
1,1-Dichloroethene	BRL	μg/l	1.0						
cis-1,2-Dichloroethene	BRL	μg/l	1.0						
trans-1,2-Dichloroethene	BRL		1.0						
		μg/l							
1,2-Dichloropropane	BRL	μg/l	1.0						
cis-1,3-Dichloropropene	BRL	μg/l	1.0						
trans-1,3-Dichloropropene	BRL	μg/l 	1.0						
Ethylbenzene	BRL	μg/l	1.0						
2-Hexanone (MBK)	BRL	μg/l	10.0						
Methyl tert-butyl ether	BRL	μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	μg/l	10.0						
Methylene chloride	BRL	μg/l	10.0						
Styrene	BRL	μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL	μg/l	1.0						
Tetrachloroethene	BRL	μg/l	1.0						
Toluene	BRL	μg/l	1.0						
1,1,1-Trichloroethane	BRL	μg/l	1.0						
1,1,2-Trichloroethane	BRL	μg/l	1.0						
Trichloroethene	BRL	μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	μg/l	1.0						
Vinyl chloride	BRL	μg/l	1.0						
m,p-Xylene	BRL	μg/l	2.0						
o-Xylene	BRL	μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	30.9	μg/l	1.0	30.0		103	70-130		
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	30.9 29.7	μg/l μg/l		30.0 30.0		99	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	30.9	μg/l		30.0		103	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water MS										
Blank (8111077-BLK1)										
Prepared & Analyzed: 14-Nov-08										
Surrogate: Dibromofluoromethane	30.5		μg/l		30.0		102	70-130		
_CS (8111077-BS1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	19.6		μg/l		20.0		98	70-130		
Benzene	21.7		μg/l		20.0		108	70-130		
Bromodichloromethane	19.9		μg/l		20.0		99	35-155		
Bromoform	18.7		μg/l		20.0		94	45-169		
Bromomethane	10.7		μg/l		20.0		54	1-242		
2-Butanone (MEK)	18.7		μg/l		20.0		93	70-130		
Carbon tetrachloride	20.3		μg/l		20.0		102	70-140		
Chlorobenzene	21.8		μg/l		20.0		109	70-130		
Chloroethane	24.6		μg/l		20.0		123	14-230		
Chloroform	22.2		μg/l		20.0		111	51-138		
Chloromethane	19.5		μg/l		20.0		98	1-273		
Dibromochloromethane	20.1		μg/l		20.0		101	53-149		
1,2-Dichlorobenzene	22.0		μg/l		20.0		110	18-190		
1,3-Dichlorobenzene	21.7		μg/l		20.0		108	59-156		
1,4-Dichlorobenzene	21.3		μg/l		20.0		106	18-190		
1,1-Dichloroethane	21.9		μg/l		20.0		109	59-155		
1,2-Dichloroethane	21.6		μg/l		20.0		108	49-155		
1,1-Dichloroethene	21.1		μg/l		20.0		105	70-130		
cis-1,2-Dichloroethene	20.5		μg/l		20.0		103	70-130		
rans-1,2-Dichloroethene	22.4		μg/l		20.0		112	54-156		
1,2-Dichloropropane	21.5		μg/l		20.0		108	1-210		
cis-1,3-Dichloropropene	20.4		μg/l		20.0		102	1-227		
rans-1,3-Dichloropropene	20.0		μg/l		20.0		100	17-183		
Ethylbenzene	21.2		μg/l		20.0		106	37-162		
2-Hexanone (MBK)	20.0		μg/l		20.0		100	70-130		
Methyl tert-butyl ether	21.9		μg/l		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	18.7		μg/l		20.0		94	70-130		
Methylene chloride	22.2		μg/l		20.0		111	1-221		
Styrene	20.6		μg/l		20.0		103	70-130		
1,1,2,2-Tetrachloroethane	20.9		μg/l		20.0		104	46-157		
Tetrachloroethene	21.0		μg/l		20.0		105	64-148		
Toluene	21.1		μg/l		20.0		106	70-130		
1,1,1-Trichloroethane	21.3		μg/l		20.0		107	52-162		
1,1,2-Trichloroethane	20.2		μg/l		20.0		101	52-150		
Trichloroethene	21.0		μg/l		20.0		105	71-157		
Trichlorofluoromethane (Freon 11)	23.3		μg/l		20.0		116	17-181		
Vinyl chloride	21.4		μg/l		20.0		107	1-251		
m,p-Xylene	42.5		μg/l		40.0		106	70-130		
o-Xylene	20.7		μg/l		20.0		103	70-130		
Surrogate: 4-Bromofluorobenzene	30.2		μg/l		30.0		101	70-130		
Surrogate: Toluene-d8	30.2		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.1 31.4		μg/l μg/l		30.0 30.0		104 105	70-130 70-130		
-	9 1.7		P9''		00.0		,00	, 0 100		
<u>_CS Dup (8111077-BSD1)</u>										
Prepared & Analyzed: 14-Nov-08	00.0				0.5.5		4	70 / 00	4-	
Acetone	23.2		μg/l		20.0		116	70-130	17	30

A 1.77	D I FI	XX ::	*DD1	Spike	Source	A/DEC	%REC	nnn	RPD
Analyte(s)	Result Fl	ag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water M	IS								
LCS Dup (8111077-BSD1)									
Prepared & Analyzed: 14-Nov-08									
Benzene	23.9	μg/l		20.0		119	70-130	10	30
Bromodichloromethane	21.8	μg/l		20.0		109	35-155	9	30
Bromoform	20.7	μg/l		20.0		103	45-169	10	30
Bromomethane	13.2	μg/l		20.0		66	1-242	21	30
2-Butanone (MEK)	23.9	μg/l		20.0		119	70-130	24	30
Carbon tetrachloride	21.6	μg/l		20.0		108	70-140	6	30
Chlorobenzene	23.3	μg/l		20.0		116	70-130	7	30
Chloroethane	25.1	μg/l		20.0		125	14-230	2	30
Chloroform	24.0	μg/l		20.0		120	51-138	8	30
Chloromethane	20.3	μg/l		20.0		102	1-273	4	30
Dibromochloromethane	22.1	μg/l		20.0		110	53-149	9	30
1,2-Dichlorobenzene	23.1	μg/l		20.0		115	18-190	5	30
1,3-Dichlorobenzene	23.0	μg/l		20.0		115	59-156	6	30
1,4-Dichlorobenzene	22.3	μg/l		20.0		112	18-190	5	30
1,1-Dichloroethane	23.2	μg/l		20.0		116	59-155	6	30
1,2-Dichloroethane	24.0	μg/l		20.0		120	49-155	11	30
1,1-Dichloroethene	22.8	μg/l		20.0		114	70-130	8	30
cis-1,2-Dichloroethene	22.5	μg/l		20.0		113	70-130	9	30
trans-1,2-Dichloroethene	24.3	μg/l		20.0		122	54-156	8	30
1,2-Dichloropropane	23.3	μg/l		20.0		117	1-210	8	30
cis-1,3-Dichloropropene	21.9	μg/l		20.0		109	1-227	7	30
trans-1,3-Dichloropropene	22.2	μg/l		20.0		111	17-183	11	30
Ethylbenzene	22.2	μg/l		20.0		111	37-162	5	30
2-Hexanone (MBK)	22.8	μg/l		20.0		114	70-130	13	30
Methyl tert-butyl ether	24.8	μg/l		20.0		124	70-130	12	30
4-Methyl-2-pentanone (MIBK)	22.3	μg/l		20.0		111	70-130	17	30
Methylene chloride	24.4	μg/l		20.0		122	1-221	9	30
Styrene	21.9	μg/l		20.0		109	70-130	6	30
1,1,2,2-Tetrachloroethane	23.2	μg/l		20.0		116	46-157	11	30
Tetrachloroethene	22.4	μg/l		20.0		112	64-148	6	30
Toluene	22.8	μg/l		20.0		114	70-130	8	30
1,1,1-Trichloroethane	22.7	μg/l		20.0		113	52-162	6	30
1,1,2-Trichloroethane	23.0	μg/l		20.0		115	52-150	13	30
Trichloroethene	22.8	μg/l		20.0		114	71-157	8	30
Trichlorofluoromethane (Freon 11)	24.1	μg/l		20.0		120	17-181	4	30
Vinyl chloride	22.6	μg/l		20.0		113	1-251	5	30
m,p-Xylene	45.4	μg/l		40.0		113	70-130	7	30
o-Xylene	22.2	μg/l		20.0		111	70-130	, 7	30
Surrogate: 4-Bromofluorobenzene	30.6	μg/l		30.0		102	70-130	•	
Surrogate: 4 Diomondoloschizene Surrogate: Toluene-d8	29.8	μg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.4	μg/l		30.0		105	70-130		
Surrogate: Dibromofluoromethane	31.7	μg/l		30.0		106	70-130		
Matrix Spike (8111077-MS1)	Source: SA87315-01								
Prepared & Analyzed: 14-Nov-08									
Benzene	17.9	μg/l		20.0	BRL	89	70-130		
Bromodichloromethane	19.6	μg/l		20.0	BRL	98	35-155		
Bromoform	17.9	μg/l		20.0	BRL	89	45-169		
Bromomethane	7.3	μg/l		20.0	BRL	37	1-242		
Carbon tetrachloride	18.8	μg/l		20.0	BRL	94	70-140		
Chlorobenzene	20.5	μg/l		20.0	BRL	103	70-130		

D 1: EI	** *	de De la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Spike	Source	0/PEG	%REC	nnn	RPD
Result Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
· MS								
Source: SA87315-01								
14.6	μg/l		20.0	BRL	73	14-230		
21.3	μg/l		20.0	BRL	106	51-138		
9.6	μg/l		20.0	BRL	48	1-273		
19.5	μg/l		20.0	BRL	97	53-149		
21.3	μg/l		20.0	BRL	106	18-190		
22.0	μg/l		20.0	BRL	110	59-156		
20.8	μg/l		20.0	BRL	104	18-190		
20.1	μg/l		20.0	BRL	100	59-155		
18.8	μg/l		20.0	BRL	94	49-155		
15.3	μg/l		20.0	BRL	76	70-130		
15.3	μg/l		20.0	BRL	77	54-156		
20.0	μg/l		20.0	BRL	100	1-210		
18.6	μg/l		20.0	BRL	93	1-227		
18.4	μg/l		20.0	BRL	92	17-183		
19.7	μg/l		20.0	BRL	99	37-162		
17.8	μg/l		20.0	BRL	89	1-221		
20.3	μg/l		20.0	BRL	102	46-157		
18.1	μg/l		20.0	BRL	91	64-148		
18.2	μg/l		20.0	BRL	91	70-130		
20.7			20.0	BRL	104	52-162		
19.7			20.0	BRL	98	52-150		
18.2			20.0	BRL	91	71-157		
18.2			20.0	BRL	91	17-181		
12.7			20.0	BRL	63	1-251		
30.6			30.0		102	70-130		
29.6	μg/l		30.0		99	70-130		
	μg/l				103			
37.6	μg/i		30.0		105	70-130		
Source: SA87315-01								
18.6	μg/l		20.0	BRL	93	70-130	4	30
20.7			20.0	BRL	104	35-155	6	30
19.6	μg/l		20.0	BRL	98	45-169	9	30
7.1			20.0	BRL	36	1-242	3	30
19.1			20.0	BRL	96	70-140	2	30
21.0			20.0	BRL	105	70-130	3	30
14.5			20.0	BRL	72	14-230	0.6	30
	μg/l		20.0	BRL	110	51-138	3	30
21.9						1-273	4	30
21.9 10.0	μg/l		20.0	BRL	50	1-213	-	
10.0								
	μg/l		20.0 20.0 20.0	BRL BRL BRL	50 102 110	53-149 18-190	5	30 30
10.0 20.4	μg/l μg/l		20.0	BRL	102	53-149	5	30
10.0 20.4 22.0	μg/l μg/l μg/l		20.0 20.0	BRL BRL	102 110	53-149 18-190	5 3	30 30
10.0 20.4 22.0 22.8	µg/I µg/I µg/I µg/I		20.0 20.0 20.0	BRL BRL BRL	102 110 114	53-149 18-190 59-156	5 3 4	30 30 30
10.0 20.4 22.0 22.8 21.4 21.0	hā\l hā\l hā\l		20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL	102 110 114 107 105	53-149 18-190 59-156 18-190 59-155	5 3 4 3 4	30 30 30 30 30
10.0 20.4 22.0 22.8 21.4 21.0 19.8	hā\I hā\I hā\I hā\I		20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL	102 110 114 107 105 99	53-149 18-190 59-156 18-190 59-155 49-155	5 3 4 3 4 5	30 30 30 30 30 30
10.0 20.4 22.0 22.8 21.4 21.0 19.8 15.6	hā\I hā\I hā\I hā\I hā\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL	102 110 114 107 105 99 78	53-149 18-190 59-156 18-190 59-155 49-155 70-130	5 3 4 3 4 5	30 30 30 30 30 30 30
10.0 20.4 22.0 22.8 21.4 21.0 19.8 15.6	ha\] ha\] ha\] ha\] ha\] ha\]		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL	102 110 114 107 105 99 78 79	53-149 18-190 59-156 18-190 59-155 49-155 70-130 54-156	5 3 4 3 4 5 2	30 30 30 30 30 30 30 30
10.0 20.4 22.0 22.8 21.4 21.0 19.8 15.6	hā\I hā\I hā\I hā\I hā\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL	102 110 114 107 105 99 78	53-149 18-190 59-156 18-190 59-155 49-155 70-130	5 3 4 3 4 5	30 30 30 30 30 30 30
	\$\text{Source: SA87315-01}\$ 14.6 21.3 9.6 19.5 21.3 22.0 20.8 20.1 18.8 15.3 15.3 20.0 18.6 18.4 19.7 17.8 20.3 18.1 18.2 20.7 19.7 18.2 18.2 12.7 30.6 29.6 30.8 31.6 \$\text{Source: SA87315-01}\$ 18.6 20.7 19.6 7.1 19.1 21.0 14.5	MS Source: SA87315-01 14.6	MS Source: SA87315-01 14.6	NS Source: SA87315-01	Result Flag Units *RDL Level Result	Result Flag Units *RDL Level Result %REC	MS Source: SA87315-01 14.6	Result Flag Units *RDL Level Result *REC Limits RPD

Result Flag e: SA87315-01 20.3 18.5 21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6 BRL BRL	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	*RDL	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL BRL	%REC 102 92 107 95 93 108 106 92 92 63 101 101 105 105	37-162 1-221 46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	RPD 3 4 5 4 2 4 8 1 2 1	30 30 30 30 30 30 30 30 30 30 30
20.3 18.5 21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL	92 107 95 93 108 106 92 92 63 101 101	1-221 46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 5 4 2 4 8 1	30 30 30 30 30 30 30 30
20.3 18.5 21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL	92 107 95 93 108 106 92 92 63 101 101	1-221 46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 5 4 2 4 8 1	30 30 30 30 30 30 30 30
18.5 21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL	92 107 95 93 108 106 92 92 63 101 101	1-221 46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 5 4 2 4 8 1	30 30 30 30 30 30 30 30
18.5 21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL BRL	92 107 95 93 108 106 92 92 63 101 101	1-221 46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 5 4 2 4 8 1	30 30 30 30 30 30 30 30
21.4 19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l hâ\l		20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	BRL BRL BRL BRL BRL BRL	107 95 93 108 106 92 92 63 101 101 105	46-157 64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	5 4 2 4 8 1	30 30 30 30 30 30 30
19.0 18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 20.0 30.0 3	BRL BRL BRL BRL BRL BRL	95 93 108 106 92 92 63 101 101 105	64-148 70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 2 4 8 1 2	30 30 30 30 30 30
18.7 21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 20.0 30.0 30.0	BRL BRL BRL BRL BRL	93 108 106 92 92 63 101 101 105	70-130 52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	2 4 8 1 2	30 30 30 30 30
21.5 21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 20.0 30.0 30.0 30.0	BRL BRL BRL BRL	108 106 92 92 63 101 101 105	52-162 52-150 71-157 17-181 1-251 70-130 70-130 70-130	4 8 1 2	30 30 30 30
21.3 18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 20.0 30.0 30.0 30.0	BRL BRL BRL	106 92 92 63 101 101 105	52-150 71-157 17-181 1-251 70-130 70-130 70-130	8 1 2	30 30 30
18.4 18.5 12.5 30.4 30.2 31.5 31.6	hâ\I hâ\I hâ\I hâ\I hâ\I		20.0 20.0 20.0 30.0 30.0 30.0	BRL BRL	92 92 63 101 101 105	71-157 17-181 1-251 70-130 70-130 70-130	1 2	30 30
18.5 12.5 30.4 30.2 31.5 31.6 BRL	hâ\l hâ\l hâ\l hâ\l		20.0 20.0 30.0 30.0 30.0	BRL	92 63 101 101 105	17-181 1-251 70-130 70-130 70-130	2	30
12.5 30.4 30.2 31.5 31.6 BRL BRL	hâ\I hâ\I hâ\I hâ\I		20.0 30.0 30.0 30.0		63 101 101 105	1-251 70-130 70-130 70-130		
30.4 30.2 31.5 31.6 BRL	hâ\I hâ\I hâ\I hâ\I		30.0 30.0 30.0	BRL	101 101 105	70-130 70-130 70-130	1	30
30.2 31.5 31.6 BRL BRL	hâ\I hâ\I hâ\I hâ\I		30.0 30.0		101 105	70-130 70-130		
31.5 31.6 BRL BRL	µg/I µg/I µg/I		30.0		105	70-130		
31.6 BRL BRL	μg/l μg/l							
BRL BRL	μg/l		30.0		105	70-130		
BRL								
BRL								
BRL								
BRL		20.0						
חחו	μg/l	1.0						
BRL	μg/l	1.0						
BRL	μg/l	1.0						
BRL	μg/l	2.0						
BRL BRL	μg/l	10.0 1.0						
	μg/l							
BRL	μg/l	1.0						
BRL	μg/l	2.0						
BRL	μg/l	1.0						
BRL	μg/l	2.0						
	μg/l 							
	μg/l							
BRL	μg/l							
	μg/l							
	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL	BRL	BRL	BRL μg/l 1.0 BRL μg/l 1.0	BRL	BRL	BRL	BRL

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - SW846 5030 Water MS										
Blank (8111194-BLK1)										
Prepared & Analyzed: 17-Nov-08										
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.9		μg/l		30.0		86	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.6 33.2		μg/l μg/l		30.0 30.0		99 111	70-130 70-130		
Surrogate: Dibromofluoromethane	34.4		μg/l		30.0		115	70-130		
LCS (8111194-BS1)										
Prepared & Analyzed: 17-Nov-08										
Acetone	18.5		μg/l		20.0		92	70-130		
Benzene	20.2		μg/l		20.0		101	70-130		
Bromodichloromethane	24.1		μg/l		20.0		121	35-155		
Bromoform	18.7		μg/l		20.0		93	45-169		
Bromomethane	19.8		μg/l		20.0		99	1-242		
2-Butanone (MEK)	20.0		μg/l		20.0		100	70-130		
Carbon tetrachloride	20.7		μg/l		20.0		103	70-140		
Chlorobenzene	20.3		μg/l		20.0		102	70-130		
Chloroethane	20.6		μg/l		20.0		103	14-230		
Chloroform	22.8		μg/l		20.0		114	51-138		
Chloromethane	18.6		μg/l		20.0		93	1-273		
Dibromochloromethane	20.0		μg/l		20.0		100	53-149		
1,2-Dichlorobenzene	18.8		μg/l		20.0		94	18-190		
1,3-Dichlorobenzene	22.0		μg/l		20.0		110	59-156		
1,4-Dichlorobenzene	18.9		μg/l		20.0		94	18-190		
1,1-Dichloroethane	20.4		μg/l		20.0		102	59-155		
1,2-Dichloroethane	20.4		μg/l		20.0		102	49-155		
1,1-Dichloroethene	17.5		μg/l		20.0		87	70-130		
cis-1,2-Dichloroethene	19.2		μg/l		20.0		96	70-130		
trans-1,2-Dichloroethene	19.6		μg/l		20.0		98	54-156		
1,2-Dichloropropane	20.7		μg/l		20.0		103	1-210		
cis-1,3-Dichloropropene	18.4		μg/l		20.0		92	1-227		
trans-1,3-Dichloropropene	19.0		μg/l		20.0		95	17-183		
Ethylbenzene	20.1		μg/l		20.0		100	37-162		
2-Hexanone (MBK)	14.5		μg/l		20.0		73	70-130		
Methyl tert-butyl ether	21.2		μg/l		20.0		106	70-130		
4-Methyl-2-pentanone (MIBK)	19.4		μg/l		20.0		97	70-130		
Methylene chloride	21.6		μg/l		20.0		108	1-221		
Styrene	18.3		μg/l		20.0		92	70-130		
1,1,2,2-Tetrachloroethane	21.3		μg/l		20.0		106	46-157		
Tetrachloroethene	16.8		μg/l		20.0		84	64-148		
Toluene	19.8		μg/l		20.0		99	70-130		
1,1,1-Trichloroethane	18.7		μg/l		20.0		94	52-162		
1,1,2-Trichloroethane	21.4		μg/l		20.0		107	52-150		
Trichloroethene	19.6		μg/l		20.0		98	71-157		
Trichlorofluoromethane (Freon 11)	17.0		μg/l		20.0		85	17-181		
Vinyl chloride	19.7		μg/l		20.0		99	1-251		

		Source		%REC		RPD
*RDL	Level	Result	%REC	Limits	RPD	Limit
	40.0		105	70-130		
	20.0		105	70-130		
	30.0		106	70-130		
	30.0 30.0		101 103	70-130 70-130		
	30.0		103	70-130 70-130		
	20.0		95	70-130	3	30
	20.0		111	70-130	9	30
	20.0		131	35-155	9	30
	20.0		96	45-169	3	30
	20.0		120	1-242	19	30
	20.0		98	70-130	2	30
	20.0		127	70-140	20	30
	20.0		112	70-130	10	30
	20.0		119	14-230	14	30
	20.0		126	51-138	10	30
	20.0		105	1-273	12	30
	20.0		105	53-149	5	30
	20.0		104	18-190	10	30
	20.0		121	59-156	10	30
	20.0		105	18-190	11	30
	20.0		113	59-155	10	30
	20.0		109	49-155	6	30
	20.0		102	70-130	15	30
	20.0		106	70-130	9	30
	20.0		111	54-156	12	30
	20.0		110	1-210	7	30
	20.0		95	1-227	4	30
	20.0		96	17-183	8.0	30
	20.0		115	37-162	13	30
	20.0		68	70-130	6	30
	20.0		106	70-130	0.5	30
	20.0		90	70-130	8	30
	20.0		119	1-221	10	30
	20.0		97	70-130	6	30
	20.0		110	46-157	3	30
	20.0		100	64-148	17	30
	20.0		111	70-130	11	30
	20.0		108	52-162	15	30
	20.0		109	52-150	2	30
	20.0		110	71-157	12	30
	20.0		108	17-181	24	30
	20.0		147	1-251	39	30
	40.0		119	70-130	13	30
	20.0		119	70-130	12	30
	30.0		108	70-130		-
	30.0		101	70-130		
		40.0 20.0 30.0	40.0 20.0 30.0 30.0	40.0 119 20.0 119 30.0 108 30.0 101	40.0 119 70-130 20.0 119 70-130 30.0 108 70-130 30.0 101 70-130	40.0 119 70-130 13 20.0 119 70-130 12 30.0 108 70-130 30.0 101 70-130

Analyto(a)	Result	Flag	Unita	*RDL	Spike	Source	%REC	%REC	RPD	RPD Limit
Analyte(s)	Result	гіад	Units	·KDL	Level	Result	70KEC	Limits	KPD	Limit
Batch 8111194 - SW846 5030 Water	MS									
LCS Dup (8111194-BSD1) Prepared & Analyzed: 17-Nov-08										
Surrogate: Dibromofluoromethane	32.1		μg/l		30.0		107	70-130		
Matrix Spike (8111194-MS1)	Source: SA87191	-03								
Prepared & Analyzed: 17-Nov-08	Cource. CAO? 13	-00								
Benzene	12.8	QM7	μg/l		20.0	BRL	64	70-130		
Bromodichloromethane	24.2		μg/l		20.0	BRL	121	35-155		
Bromoform	19.6		μg/l		20.0	BRL	98	45-169		
Bromomethane	6.1		μg/l		20.0	BRL	30	1-242		
Carbon tetrachloride	17.9		μg/l		20.0	BRL	89	70-140		
Chlorobenzene	18.4		μg/l		20.0	BRL	92	70-130		
Chloroethane	8.6		μg/l		20.0	BRL	43	14-230		
Chloroform	21.9		μg/l		20.0	BRL	109	51-138		
Chloromethane	4.4		μg/l		20.0	BRL	22	1-273		
Dibromochloromethane	20.3		μg/l		20.0	BRL	101	53-149		
1,2-Dichlorobenzene	21.9		μg/l		20.0	BRL	109	18-190		
1,3-Dichlorobenzene	24.4		μg/l		20.0	BRL	122	59-156		
1,4-Dichlorobenzene	19.8		μg/l		20.0	BRL	99	18-190		
1,1-Dichloroethane	17.6		μg/l		20.0	BRL	88	59-155		
1,2-Dichloroethane	18.4		μg/l		20.0	BRL	92	49-155		
1,1-Dichloroethene	9.2	QM7	μg/l		20.0	BRL	46	70-130		
rans-1,2-Dichloroethene	9.2	QM7	μg/l		20.0	BRL	46	54-156		
1,2-Dichloropropane	18.0		μg/l		20.0	BRL	90	1-210		
cis-1,3-Dichloropropene	15.2		μg/l		20.0	BRL	76	1-227		
rans-1,3-Dichloropropene	16.9		μg/l		20.0	BRL	84	17-183		
Ethylbenzene	17.1		μg/l		20.0	BRL	86	37-162		
Methylene chloride	14.4		μg/l		20.0	BRL	72	1-221		
1,1,2,2-Tetrachloroethane	23.7		μg/l		20.0	BRL	118	46-157		
Tetrachloroethene	12.6	QM7	μg/l		20.0	BRL	63	64-148		
Toluene	15.3		μg/l		20.0	BRL	76	70-130		
1,1,1-Trichloroethane	20.2		μg/l		20.0	1.3	95	52-162		
1,1,2-Trichloroethane	22.3		μg/l		20.0	BRL	111	52-150		
Trichloroethene	14.1	QM7	μg/l		20.0	BRL	70	71-157		
Trichlorofluoromethane (Freon 11)	12.4		μg/l		20.0	BRL	62	17-181		
Vinyl chloride	5.9		μg/l		20.0	BRL	29	1-251		
Surrogate: 4-Bromofluorobenzene	33.5		μg/l		30.0		112	70-130		
Surrogate: Toluene-d8	31.0		μg/l		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	34.5		μg/l		30.0		115	70-130		
Surrogate: Dibromofluoromethane	33.6		μg/l		30.0		112	70-130		
Matrix Spike Dup (8111194-MSD1)	Source: SA87191	-03								
Prepared & Analyzed: 17-Nov-08										
Benzene	12.1	QM7	μg/l		20.0	BRL	61	70-130	6	30
Bromodichloromethane	21.7		μg/l		20.0	BRL	109	35-155	11	30
Bromoform	17.6		μg/l		20.0	BRL	88	45-169	11	30
Bromomethane	6.3		μg/l		20.0	BRL	31	1-242	3	30
Carbon tetrachloride	15.6		μg/l		20.0	BRL	78	70-140	14	30
Chlorobenzene	17.1		μg/l		20.0	BRL	85	70-130	7	30
Chloroethane	8.1		μg/l		20.0	BRL	41	14-230	6	30
Chloroform	19.8		μg/l		20.0	BRL	99	51-138	10	30
Chloromethane	4.1		μg/l		20.0	BRL	21	1-273	7	30
Dibromochloromethane	18.4		μg/l		20.0	BRL	92	53-149	10	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111194 - SW846 5030 Water	r MS									
Matrix Spike Dup (8111194-MSD1)	Source: SA8719	1-03								
Prepared & Analyzed: 17-Nov-08										
1,2-Dichlorobenzene	20.2		μg/l		20.0	BRL	101	18-190	8	30
1,3-Dichlorobenzene	22.1		μg/l		20.0	BRL	111	59-156	10	30
1,4-Dichlorobenzene	18.6		μg/l		20.0	BRL	93	18-190	6	30
1,1-Dichloroethane	16.2		μg/l		20.0	BRL	81	59-155	9	30
1,2-Dichloroethane	16.5		μg/l		20.0	BRL	82	49-155	11	30
1,1-Dichloroethene	8.4	QM7	μg/l		20.0	BRL	42	70-130	8	30
trans-1,2-Dichloroethene	8.7	QM7	μg/l		20.0	BRL	44	54-156	5	30
1,2-Dichloropropane	16.9		μg/l		20.0	BRL	84	1-210	7	30
cis-1,3-Dichloropropene	14.3		μg/l		20.0	BRL	72	1-227	6	30
trans-1,3-Dichloropropene	15.5				20.0	BRL	77	17-183	9	30
Ethylbenzene	15.9		μg/l		20.0	BRL	80	37-162	7	30
Methylene chloride	13.1		μg/l		20.0	BRL	65	1-221	10	30
1,1,2,2-Tetrachloroethane	21.8		μg/l		20.0	BRL	109	46-157	8	30
Tetrachloroethene		QM7	µg/l			BRL			8 7	30
Toluene	11.8 13.9	QM7 QC1	μg/l		20.0 20.0	BRL	59 69	64-148 70-130	7 10	30
		QUI	µg/l							
1,1,1-Trichloroethane	18.1		µg/l		20.0	1.3	84	52-162	12	30
1,1,2-Trichloroethane	20.2	01.17	μg/l		20.0	BRL	101	52-150	10	30
Trichloroethene	13.2	QM7	μg/l		20.0	BRL	66	71-157	6	30
Trichlorofluoromethane (Freon 11)	11.0		µg/l		20.0	BRL	55	17-181	12	30
Vinyl chloride	5.2		μg/l		20.0	BRL	26	1-251	13	30
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	32.2 30.2		µg/l µg/l		30.0 30.0		107 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	32.8		μg/l		30.0		109	70-130		
Surrogate: Dibromofluoromethane	32.8		μg/l		00.0		400	70-130		
=			μул		30.0		109	70-730		
Batch 8111291 - SW846 5030 Water			рул		30.0		109	70-730		
Batch 8111291 - SW846 5030 Water			μул		30.0		109	70-730		
			μg/i		30.0		109	70-730		
Blank (8111291-BLK1)			µg/I	20.0	30.0		109	70-730		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08	r MS			20.0 1.0	30.0		109	70-730		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone	r MS BRL		μg/l		30.0		109	70-730		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene	r MS BRL BRL		µg/l µg/l	1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane	BRL BRL BRL		µg/l µg/l µg/l	1.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform	BRL BRL BRL BRL BRL		hā\] hā\] hā\]	1.0 1.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane	BRL BRL BRL BRL BRL BRL		hā\] hā\] hā\]	1.0 1.0 1.0 2.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	BRL BRL BRL BRL BRL BRL BRL		hā\] hā\] hā\] hā\]	1.0 1.0 1.0 2.0 10.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride	BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0 2.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane Chloroform	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform Chloromethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 2.0 10.0 1.0 1.0 2.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Dibromochloromethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 2.0 10.0 1.0 1.0 2.0 1.0 2.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		hall hall hall hall hall hall hall hall	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 1.0	30.0		109	70-130		
Blank (8111291-BLK1) Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0	30.0		109	70-130		
Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,1-Dichloroethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	30.0		109	70-130		
Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chlorothane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		hall hall hall hall hall hall hall hall	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	30.0		109	70-130		
Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chlorotemane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,1-Dichloroethene	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/ ha\/	1.0 1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	30.0		109	70-130		
Prepared & Analyzed: 18-Nov-08 Acetone Benzene Bromodichloromethane Bromomethane 2-Butanone (MEK) Carbon tetrachloride Chlorobenzene Chlorothane Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	BRL BRL BRL BRL BRL BRL BRL BRL BRL BRL		hall hall hall hall hall hall hall hall	1.0 1.0 1.0 2.0 10.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	30.0		109	70-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 8111291 - SW846 5030 Water MS										
Blank (8111291-BLK1)										
Prepared & Analyzed: 18-Nov-08										
trans-1,3-Dichloropropene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	10.0						
Styrene	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.1		μg/l		30.0		84	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.7 33.8		μg/l μg/l		30.0 30.0		99 113	70-130 70-130		
Surrogate: Dibromofluoromethane	36.4		μg/l		30.0		121	70-130		
LCS (8111291-BS1)										
Prepared & Analyzed: 18-Nov-08										
Acetone	20.6		μg/l		20.0		103	70-130		
Benzene	20.6		μg/l		20.0		103	70-130		
Bromodichloromethane	24.1		μg/l		20.0		121	35-155		
Bromoform	18.3		μg/l		20.0		92	45-169		
Bromomethane	23.3		μg/l		20.0		116	1-242		
2-Butanone (MEK)	19.0		μg/l		20.0		95	70-130		
Carbon tetrachloride	22.8		μg/l		20.0		114	70-140		
Chlorobenzene	20.8		μg/l		20.0		104	70-130		
Chloroethane	22.1		μg/l		20.0		110	14-230		
Chloroform	23.2		μg/l		20.0		116	51-138		
Chloromethane	19.7		μg/l		20.0		99	1-273		
Dibromochloromethane	19.7		μg/l		20.0		98	53-149		
1,2-Dichlorobenzene	19.2		μg/l		20.0		96	18-190		
1,3-Dichlorobenzene	22.7		μg/l		20.0		113	59-156		
1,4-Dichlorobenzene	19.3		μg/l		20.0		96	18-190		
1,1-Dichloroethane	21.0		μg/l		20.0		105	59-155		
1,2-Dichloroethane	20.6		μg/l		20.0		103	49-155		
1,1-Dichloroethene	19.1		μg/l		20.0		96	70-130		
cis-1,2-Dichloroethene	19.7		μg/l		20.0		99	70-130		
trans-1,2-Dichloroethene	20.7		μg/l		20.0		103	54-156		
1,2-Dichloropropane	20.8		μg/l		20.0		104	1-210		
cis-1,3-Dichloropropene	17.8		μg/l		20.0		89	1-227		
trans-1,3-Dichloropropene	17.9		μg/l		20.0		89	17-183		
Ethylbenzene	21.1		μg/l		20.0		106	37-162		
2-Hexanone (MBK)	14.0		μg/l		20.0		70	70-130		
Methyl tert-butyl ether	21.0		μg/l		20.0		105	70-130		
4-Methyl-2-pentanone (MIBK)	18.0		μg/l		20.0		90	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water MS										
LCS (8111291-BS1)										
Prepared & Analyzed: 18-Nov-08										
Methylene chloride	22.5		μg/l		20.0		113	1-221		
Styrene	18.0		μg/l		20.0		90	70-130		
1,1,2,2-Tetrachloroethane	21.1		μg/l		20.0		106	46-157		
Tetrachloroethene	18.1		μg/l		20.0		90	64-148		
Toluene	20.4		μg/l		20.0		102	70-130		
1,1,1-Trichloroethane	19.9		μg/l		20.0		100	52-162		
1,1,2-Trichloroethane	21.0		μg/l		20.0		105	52-150		
Trichloroethene	20.1		μg/l		20.0		101	71-157		
Trichlorofluoromethane (Freon 11)	19.6		μg/l		20.0		98	17-181		
Vinyl chloride	23.2		μg/l		20.0		116	1-251		
m,p-Xylene	43.9		μg/l		40.0		110	70-130		
o-Xylene	22.1		μg/l		20.0		111	70-130		
Surrogate: 4-Bromofluorobenzene	32.0		μg/l		30.0		107	70-130		
Surrogate: Toluene-d8	30.3		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.3 32.1		μg/l μg/l		30.0 30.0		104 107	70-130 70-130		
-			F-3··							
LCS Dup (8111291-BSD1)										
Prepared & Analyzed: 18-Nov-08	0.4.4				00.0		407	70.400		00
Acetone	21.4		μg/l		20.0		107	70-130	4	30
Benzene	20.1		μg/l		20.0		100	70-130	3	30
Bromodichloromethane	23.8		μg/l		20.0		119	35-155	1	30
Bromoform	18.8		μg/l		20.0		94	45-169	2	30
Bromomethane	22.6		μg/l		20.0		113	1-242	3	30
2-Butanone (MEK)	20.9		μg/l		20.0		104	70-130	10	30
Carbon tetrachloride	21.8		μg/l		20.0		109	70-140	4	30
Chlorothore	20.5		μg/l		20.0		103	70-130	1	30
Chloroethane Chloroform	21.0 23.3		μg/l		20.0 20.0		105 117	14-230 51-138	5 0.6	30 30
	23.3 18.6		µg/l		20.0					
Chloromethane Dibromochloromethane	19.6		μg/l				93 98	1-273 53-149	6 0.1	30 30
			μg/l		20.0					
1,2-Dichlorobenzene	19.6		µg/l		20.0		98	18-190	2	30
1,3-Dichlorobenzene 1,4-Dichlorobenzene	22.9 20.0		μg/l		20.0		114	59-156	0.7	30 30
1,1-Dichloroethane	20.6		μg/l		20.0 20.0		100 103	18-190 59-155	4	30
1,2-Dichloroethane	21.0		µg/l		20.0		105	49-155	2 2	30
1,1-Dichloroethene	18.3		µg/l		20.0		92	70-130	4	30
cis-1,2-Dichloroethene	19.3		µg/l		20.0		96	70-130	2	30
trans-1,2-Dichloroethene	19.9		µg/l		20.0		99	54-156	4	30
1,2-Dichloropropane	20.4		μg/l μg/l		20.0		102	1-210	2	30
cis-1,3-Dichloropropene	17.7		μg/l		20.0		88	1-217	0.4	30
trans-1,3-Dichloropropene	18.0		μg/l		20.0		90	17-183	0.4	30
Ethylbenzene	20.1				20.0		100	37-162	5	30
2-Hexanone (MBK)	15.4		μg/l μg/l		20.0		77	70-130	9	30
Methyl tert-butyl ether	21.6		μg/l		20.0		108	70-130	3	30
4-Methyl-2-pentanone (MIBK)	19.2		μg/l		20.0		96	70-130	3 7	30
Methylene chloride	22.3		μg/l		20.0		111	1-221	1	30
Styrene	17.6		μg/l		20.0		88	70-130	2	30
1,1,2,2-Tetrachloroethane	22.2		μg/l		20.0		111	46-157	5	30
Tetrachloroethene	17.8		μg/l		20.0		89	64-148	2	30
1 Stradition oction is	20.0		μg/l		20.0		100	70-130	2	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water	·MS									
LCS Dup (8111291-BSD1)										
Prepared & Analyzed: 18-Nov-08										
1,1,1-Trichloroethane	19.3		μg/l		20.0		97	52-162	3	30
1,1,2-Trichloroethane	21.9		μg/l		20.0		109	52-150	4	30
Trichloroethene	19.8		μg/l		20.0		99	71-157	2	30
Trichlorofluoromethane (Freon 11)	19.2		μg/l		20.0		96	17-181	2	30
Vinyl chloride	22.6		μg/l		20.0		113	1-251	3	30
m,p-Xylene	42.8		μg/l		40.0		107	70-130	3	30
o-Xylene	22.0		μg/l		20.0		110	70-130	0.7	30
Surrogate: 4-Bromofluorobenzene	32.0		μg/l		30.0		106	70-130		
Surrogate: Toluene-d8	30.0		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.1 32.0		μg/l μg/l		30.0 30.0		104 107	70-130 70-130		
Matrix Spike (8111291-MS1)	Source: SA8750	1-01	P3		00.0					
Prepared & Analyzed: 18-Nov-08	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- •								
Benzene	23.0		μg/l		20.0	BRL	115	70-130		
Bromodichloromethane	29.2		μg/l		20.0	BRL	146	35-155		
Bromoform	22.7		μg/l		20.0	BRL	113	45-169		
Bromomethane	24.8		μg/l		20.0	BRL	124	1-242		
Carbon tetrachloride	28.8	QM7	μg/l		20.0	BRL	144	70-140		
Chlorobenzene	23.8		μg/l		20.0	BRL	119	70-130		
Chloroethane	25.0		μg/l		20.0	BRL	125	14-230		
Chloroform	27.4		μg/l		20.0	BRL	137	51-138		
Chloromethane	20.8		μg/l		20.0	BRL	104	1-273		
Dibromochloromethane	23.8		μg/l		20.0	BRL	119	53-149		
1,2-Dichlorobenzene	21.4		μg/l		20.0	BRL	107	18-190		
1,3-Dichlorobenzene	28.0		μg/l		20.0	BRL	140	59-156		
1,4-Dichlorobenzene	21.9		μg/l		20.0	BRL	109	18-190		
1,1-Dichloroethane	24.1		μg/l		20.0	BRL	121	59-155		
1,2-Dichloroethane	25.8		μg/l		20.0	BRL	129	49-155		
1,1-Dichloroethene	21.9		μg/l		20.0	BRL	110	70-130		
trans-1,2-Dichloroethene	23.8		μg/l		20.0	BRL	119	54-156		
1,2-Dichloropropane	23.4		μg/l		20.0	BRL	117	1-210		
cis-1,3-Dichloropropene	19.3		μg/l		20.0	BRL	97	1-227		
trans-1,3-Dichloropropene	20.6		μg/l		20.0	BRL	103	17-183		
Ethylbenzene	23.8		μg/l		20.0	BRL	119	37-162		
Methylene chloride	25.8		μg/l		20.0	BRL	129	1-221		
1,1,2,2-Tetrachloroethane	30.4		μg/l		20.0	BRL	152	46-157		
Tetrachloroethene	22.8		μg/l		20.0	BRL	114	64-148		
Toluene	24.3		μg/l		20.0	BRL	122	70-130		
1,1,1-Trichloroethane	24.2		μg/l		20.0	BRL	121	52-162		
1,1,2-Trichloroethane	26.7		μg/l		20.0	BRL	134	52-150		
Trichloroethene	23.9		μg/l		20.0	BRL	120	71-157		
Trichlorofluoromethane (Freon 11)	24.6		μg/l		20.0	BRL	123	17-181		
Vinyl chloride	19.4		μg/l		20.0	BRL	97	1-251		
Surrogate: 4-Bromofluorobenzene	34.6		μg/l		30.0		115	70-130		
Surrogate: Toluene-d8	31.1		μg/l		30.0		104 105	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	37.6 35.0		µg/l µg/l		30.0 30.0		125 117	70-130 70-130		
Matrix Spike Dup (8111291-MSD1)	Source: SA8750	1-01	. 2							
Prepared & Analyzed: 18-Nov-08										
Benzene	26.5	QC1	μg/l		20.0	BRL	132	70-130	14	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111291 - SW846 5030 Water	· MS									
Matrix Spike Dup (8111291-MSD1)	Source: SA8750	1-01								
Prepared & Analyzed: 18-Nov-08										
Bromodichloromethane	40.1	QC1	μg/l		20.0	BRL	201	35-155	32	30
Bromoform	35.2	QC1	μg/l		20.0	BRL	176	45-169	43	30
Bromomethane	24.8		μg/l		20.0	BRL	124	1-242	0.2	30
Carbon tetrachloride	31.1	QM7	μg/l		20.0	BRL	156	70-140	8	30
Chlorobenzene	34.5	QC1	μg/l		20.0	BRL	172	70-130	37	30
Chloroethane	24.4		μg/l		20.0	BRL	122	14-230	3	30
Chloroform	31.7	QC1	μg/l		20.0	BRL	158	51-138	15	30
Chloromethane	20.6		μg/l		20.0	BRL	103	1-273	0.9	30
Dibromochloromethane	35.7	QC1	μg/l		20.0	BRL	179	53-149	40	30
1,2-Dichlorobenzene	36.5	QC1	μg/l		20.0	BRL	182	18-190	52	30
1,3-Dichlorobenzene	41.8	QC1	μg/l		20.0	BRL	209	59-156	40	30
1,4-Dichlorobenzene	35.2	QC1	μg/l		20.0	BRL	176	18-190	47	30
1,1-Dichloroethane	25.4		μg/l		20.0	BRL	127	59-155	5	30
1,2-Dichloroethane	30.3		μg/l		20.0	BRL	152	49-155	16	30
1,1-Dichloroethene	21.8		μg/l		20.0	BRL	109	70-130	0.7	30
trans-1,2-Dichloroethene	23.9		μg/l		20.0	BRL	120	54-156	0.6	30
1,2-Dichloropropane	30.2		μg/l		20.0	BRL	151	1-210	25	30
cis-1,3-Dichloropropene	28.3	QC1	μg/l		20.0	BRL	141	1-227	38	30
trans-1,3-Dichloropropene	32.1	QC1	μg/l		20.0	BRL	161	17-183	43	30
Ethylbenzene	37.0	QC1	μg/l		20.0	BRL	185	37-162	43	30
Methylene chloride	26.3		μg/l		20.0	BRL	131	1-221	2	30
1,1,2,2-Tetrachloroethane	45.6	QC1	μg/l		20.0	BRL	228	46-157	40	30
Tetrachloroethene	29.1		μg/l		20.0	BRL	146	64-148	24	30
Toluene	31.4	QC1	μg/l		20.0	BRL	157	70-130	25	30
1,1,1-Trichloroethane	28.8		μg/l		20.0	BRL	144	52-162	18	30
1,1,2-Trichloroethane	38.9	QC1	μg/l		20.0	BRL	195	52-150	37	30
Trichloroethene	28.8		μg/l		20.0	BRL	144	71-157	18	30
Trichlorofluoromethane (Freon 11)	23.0		μg/l		20.0	BRL	115	17-181	7	30
Vinyl chloride	17.8		μg/l		20.0	BRL	89	1-251	9	30
Surrogate: 4-Bromofluorobenzene	33.2		μg/l		30.0	DILL	111	70-130		
Surrogate: Toluene-d8	30.7		μg/l		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.3		μg/l		30.0		111	70-130		
Surrogate: Dibromofluoromethane	32.0		μg/l		30.0		107	70-130		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

				Spike	Source		%REC		RPD
Analyte(s)	Result F	lag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A									
Blank (8111042-BLK1)									
Prepared & Analyzed: 21-Nov-08									
Thallium	BRL	μg/l	5.00						
Zinc	BRL	μg/l	7.50						
Antimony	BRL	μg/l	6.00						
Lead	BRL	μg/l	7.50						
Nickel	BRL	μg/l	5.00						
Selenium	BRL	μg/l	15.0						
Beryllium	BRL	μg/l	2.00						
Cadmium	BRL	μg/l	2.50						
Chromium	BRL	μg/l	5.00						
Arsenic	BRL	μg/l	4.00						
Vanadium	BRL	μg/l	5.00						
Silver	BRL	μg/l	5.00						
Barium	BRL	μg/l	5.00						
I CS (9444042 BS4)									
LCS (8111042-BS1) Prepared & Analyzed: 21-Nov-08									
Zinc	1320		7.50	1050		105	OE 11E		
Nickel		μg/l		1250		105	85-115 85-115		
	1250	μg/l	5.00	1250		100	85-115 85-115		
Lead	1260	μg/l	7.50	1250		100	85-115 85-115		
Thallium	1210 1230	μg/l	5.00	1250		97 99	85-115 85-115		
Selenium		μg/l	15.0	1250			85-115 85-115		
Antimony Barium	1310 1230	μg/l	6.00 5.00	1250 1250		105 99	85-115 85-115		
		μg/l							
Cadmium Chromium	1330 1250	μg/l	2.50 5.00	1250 1250		106 100	85-115 85-115		
		μg/l							
Arsenic Beryllium	1240	μg/l	4.00	1250		99	85-115 85-115		
Vanadium	1230 1220	μg/l	2.00	1250 1250		99 98	85-115 85-115		
Silver	1250	μg/l	5.00 5.00	1250		100	85-115 85-115		
Silver	1250	μg/l	5.00	1250		100	00-110		
LCS Dup (8111042-BSD1)									
Prepared & Analyzed: 21-Nov-08									
Lead	1200	μg/l	7.50	1250		96	85-115	4	20
Thallium	1170	μg/l	5.00	1250		94	85-115	3	20
Antimony	1270	μg/l	6.00	1250		102	85-115	3	20
Selenium	1200	μg/l	15.0	1250		96	85-115	3	20
Nickel	1220	μg/l	5.00	1250		97	85-115	3	20
Zinc	1280	μg/l	7.50	1250		102	85-115	3	20
Barium	1200	μg/l	5.00	1250		96	85-115	3	20
Silver	1210	μg/l	5.00	1250		97	85-115	3	20
Chromium	1210	μg/l	5.00	1250		97	85-115	3	20
Vanadium	1180	μg/l	5.00	1250		95	85-115	4	20
Beryllium	1190	μg/l	2.00	1250		95	85-115	3	20
Cadmium	1290	μg/l	2.50	1250		103	85-115	3	20
Arsenic	1200	μg/l	4.00	1250		96	85-115	3	20
Duplicate (8111042-DUP1)	Source: SA87401-01								
Prepared & Analyzed: 21-Nov-08									
Thallium	3.80	J μg/l	5.00		BRL				20
Zinc	22.6	μg/l	7.50		23.7			5	20
Selenium	BRL	μg/l	15.0		BRL				20

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
<u>Duplicate (8111042-DUP1)</u>	Source: SA8740	1-01								
Prepared & Analyzed: 21-Nov-08										
Antimony	BRL		μg/l	6.00		BRL				20
Nickel	BRL		μg/l	5.00		BRL				20
Lead	12.6	QR8	μg/l	7.50		6.00			71	20
Barium	8.20		μg/l	5.00		7.90			3	20
Silver	BRL		μg/l	5.00		BRL				20
Beryllium	BRL		μg/l	2.00		BRL				20
Chromium	BRL		μg/l	5.00		BRL				20
Arsenic	BRL		μg/l	4.00		BRL				20
Cadmium	0.500	J	μg/l	2.50		BRL				20
Vanadium	BRL		μg/l	5.00		BRL				20
Matrix Spike (8111042-MS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Antimony	1300		μg/l	6.00	1250	BRL	104	75-125		
Zinc	1310		μg/l	7.50	1250	16.9	103	75-125		
Thallium	1190		μg/l	5.00	1250	BRL	95	75-125		
Selenium	1220		μg/l	15.0	1250	BRL	97	75-125		
Lead	1230		μg/l	7.50	1250	5.35	98	75-125		
Nickel	1230		μg/l	5.00	1250	4.50	98	75-125		
Beryllium	1210		μg/l	2.00	1250	BRL	97	75-125		
Chromium	1220		μg/l	5.00	1250	BRL	97	75-125		
Vanadium	1200		μg/l	5.00	1250	BRL	96	70-130		
Silver	1230		μg/l	5.00	1250	BRL	98	75-125		
Arsenic	1210		μg/l	4.00	1250	BRL	97	75-125		
Barium	1260		μg/l	5.00	1250	69.4	95	75-125		
Cadmium	1300		μg/l	2.50	1250	BRL	104	75-125		
Matrix Spike Dup (8111042-MSD1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Nickel	1230		μg/l	5.00	1250	4.50	98	75-125	0.3	20
Zinc	1310		μg/l	7.50	1250	16.9	103	75-125	0.3	20
Thallium	1180		μg/l	5.00	1250	BRL	95	75-125	0.5	20
Selenium	1220		μg/l	15.0	1250	BRL	97	75-125	0.04	20
Lead	1220		μg/l	7.50	1250	5.35	97	75-125	0.6	20
Antimony	1290		μg/l	6.00	1250	BRL	103	75-125	0.4	20
Arsenic	1210		μg/l	4.00	1250	BRL	97	75-125	0	20
Silver	1230		μg/l	5.00	1250	BRL	98	75-125	0	20
Cadmium	1300		μg/l	2.50	1250	BRL	104	75-125	0.5	20
Barium	1260		μg/l	5.00	1250	69.4	95	75-125	0.04	20
Chromium	1220		μg/l	5.00	1250	BRL	98	75-125	0.6	20
Vanadium	1200		μg/l	5.00	1250	BRL	96	70-130	0.5	20
Beryllium	1200		μg/l	2.00	1250	BRL	96	75-125	0.8	20
Post Spike (8111042-PS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Thallium	1250		μg/l	5.00	1250	BRL	100	80-120		
Nickel	1270		μg/l	5.00	1250	4.50	101	80-120		
Lead	1280		μg/l	7.50	1250	5.35	102	80-120		
Zinc	1350		μg/l	7.50	1250	16.9	107	80-120		
Antimony	1320		μg/l	6.00	1250	BRL	106	80-120		
Selenium	1260		μg/l	15.0	1250	BRL	101	80-120		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Post Spike (8111042-PS1)	Source: SA87401	1-02								
Prepared & Analyzed: 21-Nov-08										
Barium	1320		μg/l	5.00	1250	69.4	100	80-120		
Chromium	1260		μg/l	5.00	1250	BRL	101	80-120		
Cadmium	1350		μg/l	2.50	1250	BRL	108	80-120		
Arsenic	1250		μg/l	4.00	1250	BRL	100	80-120		
Beryllium	1260		μg/l	2.00	1250	BRL	100	80-120		
Vanadium	1240		μg/l	5.00	1250	BRL	99	80-120		
Silver	1270		μg/l	5.00	1250	BRL	102	80-120		
	Soluble Me	tals by l	EPA 200 S	Series Meth	ods - Qual	ity Contro	ol			
					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Blank (8111043-BLK1)	. 00									
<u> </u>										
Prepared: 21-Nov-08 Analyzed: 24-Nov	v-us BRL			0.000						
Mercury	DKL		μg/l	0.200						
LCS (8111043-BS1)										
Prepared: 21-Nov-08 Analyzed: 24-Nov	/-08									
Mercury	4.48		μg/l	0.200	5.00		90	85-115		
Duplicate (8111043-DUP1)	Source: SA87371	I-01								
Prepared: 21-Nov-08 Analyzed: 24-Nov	<i>ı</i> -08									
Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury	v-08 BRL		μg/l	0.200		BRL				20
Mercury	BRL	1-02	µg/l	0.200		BRL				20
Mercury Matrix Spike (8111043-MS1)	BRL Source: SA87371	1-02	μg/l	0.200		BRL				20
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov	BRL Source: SA87371 v-08	1-02			5.00		100	75-125		20
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury	BRL Source: SA87374 v-08 4.99		µg/l µg/l	0.200	5.00	BRL BRL	100	75-125		20
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury Matrix Spike Dup (8111043-MSD1)	BRL Source: SA87374 v-08 4.99 Source: SA87374				5.00		100	75-125		20
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury Matrix Spike Dup (8111043-MSD1) Prepared: 21-Nov-08 Analyzed: 24-Nov	BRL Source: SA87374 v-08 4.99 Source: SA87374 v-08		μg/l	0.200		BRL				
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury Matrix Spike Dup (8111043-MSD1)	BRL Source: SA87374 v-08 4.99 Source: SA87374				5.00		100 92	75-125 75-125	8	20
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury Matrix Spike Dup (8111043-MSD1) Prepared: 21-Nov-08 Analyzed: 24-Nov	BRL Source: SA87374 v-08 4.99 Source: SA87374 v-08	1-02	μg/l	0.200		BRL			8	
Mercury Matrix Spike (8111043-MS1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury Matrix Spike Dup (8111043-MSD1) Prepared: 21-Nov-08 Analyzed: 24-Nov Mercury	BRL Source: SA87374 v-08 4.99 Source: SA87374 v-08 4.61 Source: SA87374	1-02	μg/l	0.200		BRL			8	

Notes and Definitions

QC1 Analyte out of acceptance range.

QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Rebecca Merz

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

Labor	ratory Name: S	Spectrum Analytical, I	nc Agawam, MA	Λ	Project #: 127000	58		
Projec	ct Location: W	alpole Park South-Wa	alpole, MA		MADEP RTN 1:			
	form provides of 371-01 thro	certifications for the fugh SA87371-09	ollowing data set:					
Samp	le matrices:	Aqueous Ground	l Water					
		□ 8260B	□ 8151A	□ 8330	☑ 6010B	☑ 7470A/1A		
	SW-846 ods Used	□ 8270C	□ 8081A	□ VPH	□ 6020	□ 9014M ²		
1,10011	ous escu	□ 8082	□ 8021B	□ ЕРН	□ 7000S ³	□ 7196A		
2 M - S	SW-846 Method 9	Number (RTN), if known 014 or MADEP Physiologie 000 Series List individual		(PAC) Method				
		An affirmative respo	nse to questions A	, B, C and D is requ	ired for "Presumpt	ive Certainty" status	S	
A		mples received by the astody documentation		ndition consistent wi	th that described on	the	☑ Yes	□ No
В	followed, in	A/QC procedures required actuding the requirement of the performance standard	ent to note and disc				☑ Yes	□ No
C	Certainty",	ta included in this rep as described in Sectio ssurance and Quality O Data"?	n 2.0 (a), (b), (c) an	nd (d) of the MADE	P document CAM V	VII A,	☑ Yes	□ No
D		ns (see Section 11.3 o			without significant		☐ Yes	□ No
		A response to	questions E and F	below is required fo	or "Presumptive Ce	rtainty" status		
E	Were all an achieved?	alytical QC performa	nce standards and r	ecommendations for	the specified method	ods	☑ Yes	□ No
F	Were result	s for all analyte-list co	ompounds/elements	s for the specified m	ethod(s) reported?		☑ Yes	□ No
•		All negative res	ponses are address	sed in a case narrati	ve on the cover pag	e of this report.		
respo	nsible for obta	attest under the pair aining the informatio ief, accurate and com	n, the material co		ytical report is, to t			
					Γ	Date: 11/26/2008		

CHAIN OF CUSTODY RECORD

Page 1 of 1

Spe	1	L
cial		1
Har	1	
Idli	ŧ	(
Ģ.		-
		(

M	
Standard T	S
Ä	ec.
-3	al
ಕ	H
5	Ħ.
business	lling:
·	

- Rush TAT Date Needed:

 All TATs subject to laboratory approval.

 Min. 24-hour notification needed for rushes.

otherw	Sampl
ise instruc	es dispose
ted.	d of after
	60 days

Con	ED	図			6						-	1	873			X1=	11	Pro	Į.		Inch	Rep
dition upor	D Format	E-mail to	Fax result		1-0	1000	19	- OK	2	- au	. 8	20-	3710	Lab Id:		DW=Drinking Water 0=Oil SW=Surface X1=	1=Na ₂ S2O ₃ · 2=HCl 7=CH ₃ OH	Project Mgr.: 1280	Scar	One	100	Report To:
Condition upon receipt: Elect Ambient EleC	EDD Format PDF, Excel wall Dis + in 49	E-mail to raymond johnson & throtech com	Fax results when available to (TripBlank IIIIOS	GHC-6-GW	MW. 3- GW	MD-6-213 Of	MW-2-GW	MW.9-GW	R12-3- GW	N5-8-218	R12-10-GW	Sample Id:	G=Grab C=	GW= Water X2=_	2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 8= NaHSO ₄ 9=_	Ray Johnson	MA	Grant	Took Distri	
	fall Dis +	of Hotel		3.5							30/11/11	4	11/11/08	Date:	C=Composite		4=HNO ₃ 5=NaOH		IOLIO			
8,9	In ug/L	Com				9:20	00.00	11:00	9:50	11:50	15:40	13:50	14: 35	Time:		WW=Wastewater SL=Sludge A=Air X3=	aOH 6=Ascorbic Acid	P.C			Ш	In
		M			-	7						-	G	Туре			orbic /	P.O. No.:			шуоке го:	T seeke
	2	and in				Z.						_	SW	Matrix			cid					
0	Crac	N	Reli		بو	+		-					374	Prese		ve					ACCOUNTING	7
	you	W.	Relinquished by:	2		4	-			_		-	so.	# of V							000	_
	3	my	ed by:		-							-	100	# of A			Cont	RQN:			100	
		1			-	4					_	-	-	# of C			Containers:					
- 38							180%															
	1			-	×	X	X	×	×	×	×	-	×	VOCs	6	24					1	
)	1	E	1		-	X	X	×	X	×	X	×	×	MCP 1	4 ~	velals		Sampi	Locati	Site N	riolog	Denion
	7	der	Recei				56.6.0				-			5			An	Sampler(s): Kic	Location: Wol	ame:	Trojectivo	\$ Z
	7	3	Received by:			7.2			lou						×		Analyses:	5		3		ĵ
					, ii	5.					jes.	OIC.	1					3	Pote	Site Name: Wolpote For	7 0000	1000
) 												7	-	70	7 0	NA Q
	11/12/08	11/12/08	Date:									かしん かまれる	* Medals have	State specific reporting standards:	Standard	□ Provide MA DEP MCP CAM Report □ Provide CTDEP RCP Report QA/QC Reporting Level	QA Reporting Notes: (check if needed)	towar	Sta	rek South		
	SIL	16,00	Time:									25	we been	porting standards:	□No QC	MCP CAM Report RCP Report orting Level	ing Notes: needed)		State: MA			

ANALYTICAL REPORT

Lab Number: L0818397

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: lan Cannan

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Report Date: 12/23/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Project Number: 12700058 Report Date: 12/23/08

Sample Location

WALPOLE, MA

Alpha Sample ID

L0818397-01

Client ID

RIZ-10

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Project Number: 12700058 Report Date: 12/23/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	NO
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L0818397

Project Name: WALPOLE PARK SOUTH Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

Sample Receipt

In reference to question C:

The samples were received at the laboratory requiring filtration for Dissolved Metals; however, the samples were received beyond the 24 hour holding time recommended for filtration. The samples were filtered and preserved appropriately.

Dissolved Metals

L0818397-01 has an elevated detection limit for Thallium due to the dilution required by the high concentrations of non-target analytes. The requested reporting limit was achieved.

12230812:22

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Case Narrative (continued)

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Unibeth & Simin

ALPHA

Date: 12/23/08

METALS

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Project Number: 12700058 Report Date: 12/23/08

SAMPLE RESULTS

Lab ID: L0818397-01 Date Collected: 12/11/08 09:30

Client ID: RIZ-10 Date Received: 12/15/08
Sample Location: WALPOLE, MA Field Prep: Not Specified

Matrix: Water

Dilution Date Date Prep Analytical Method **Factor** Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

Dissolved Metals by MCP 6000/7000 series

Thallium, Dissolved ND mg/l 0.0020 4 12/16/08 11:15 12/17/08 00:50 EPA 3005A 64,6020A BM

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Project Number: 12700058 Report Date: 12/23/08

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier Units RDL Factor Prepared Analyzed** Dissolved Metals by MCP 6000/7000 series for sample(s): 01 Batch: WG347338-1 Thallium, Dissolved ND mg/l 0.0005 12/16/08 23:33 64,6020A ВМ 12/16/08 11:15

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L0818397

Project Number: 12700058

Project Name:

WALPOLE PARK SOUTH

Report Date:

12/23/08

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01	Batch: WG347338	-2 WG347338-3		
Thallium, Dissolved	95		96	80-120	1	20

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397

Project Number: 12700058 Report Date: 12/23/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0818397-01A	Plastic 500ml unpreserved	А	7	2C	Υ	Absent	-
L0818397-01B	Plastic 500ml HNO3 preserved spl	Α	<2	2C	Υ	Absent	MCP-TL-6020S(180)

Project Name:WALPOLE PARK SOUTHLab Number:L0818397Project Number:12700058Report Date:12/23/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Data Usability Report

Project Name: WALPOLE PARK SOUTH Lab Number: L0818397
Project Number: 12700058 Report Date: 12/23/08

REFERENCES

Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

12230812:22 PLEASE ANSWER QUESTIONS ABOVE MA MCP or CT RCP? IS YOUR PROJECT ALPHA Lab ID DLs <RCGW-1 Other Project Specific Requirements/Comments/Detection Limits: Email: ian.cannan@tetratech.com Phone: 508-903-2039 Fax: 508-903-2001 Framingham, MA Client Information Westborough, MA These samples have been Previously analyzed by Alpha Address: One Grant Street Client: Tetra Tech Rizzo TEL: 508-898-9220 FAX: 508-898-9193 (Lab Use Only) TEL: 508-822-9300 Mansfield, MA FAX: 508-822-3288 RIZ-10 CHAIN OF CUSTODY Sample ID Due Date: 17/77 (%Time: Project Location: Walpole, MA Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard
 Standard Project Manager: Ray Johnson Turn-Around Time Project #: 12700058 Project Name: Walpole Park South Project Information ALPHA Quote #: 12-11-08 Date Collection 0930 Time □ Rush (ONLY IF PRE-APPROVED) Relinguisbed By: PAGE Sample Matrix GW Container Type 읶 Preservative SC Sampler's Initials ס 12-15-08 12-15-02 Date Rec'd in Lab: \boxtimes ☐ Yes ⊠ Yes Regulatory Requirements/Report Limits ANALYSIS MCP PRESUMPTIVE CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS ☐ FAX Report Information Data Deliverables MA MCP CAM State/Fed Program ⊠ ADE> Dissolved Thallium Date/Time □ 8 S S 2-115/08 Add'l Deliverables **⊠** EMAIL Are CT RCP (Reasonable Confidence Protocols) Required? Are MCP Analytical Methods Required? Criteria Billing Information ALPHA Job #: 208/8397 Same as Client info 2/15/68 Date/Time Please print clearly, legibly and completely. Samples can not be logged in and timaround time alock will negative and timaround time alock will negative and the logged in an and timaround time alock will negative. All samples submitted are subject to Alpha's Payment Terms. Sample Specific Comments □ Done PO # 🛛 Lab to do ☐ Not Needec Lab to filter (Please specif) below) 🛛 Lab to do Preservation **Filtration** SAMPLE HANDLING SELTIOB

ANALYTICAL REPORT

Lab Number: L0907670

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: Ray Johnson

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Report Date: 06/17/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 12700053 **Report Date:** 06/17/09

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L0907670-01	RIZ-10	WALPOLE, MA	06/10/09 13:00
L0907670-02	RIZ-8	WALPOLE, MA	06/10/09 13:28
L0907670-03	RIZ-8S	WALPOLE, MA	06/10/09 13:18
L0907670-04	MW-9	WALPOLE, MA	06/10/09 13:45
L0907670-05	GHC-6	WALPOLE, MA	06/10/09 14:05
L0907670-06	RIZ-3	WALPOLE, MA	06/10/09 14:12
L0907670-07	MW-2	WALPOLE, MA	06/10/09 14:26
L0907670-08	RIZ-9	WALPOLE, MA	06/10/09 14:41

Project Number: 12700053 Report Date: 06/17/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L0907670

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700053 **Report Date:** 06/17/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Metals

L0907670-01 through -08 have elevated detection limits for Antimony and Thallium due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Unabeth & Simuro

Authorized Signature:

Title: Technical Director/Representative

Date: 06/17/09

ORGANICS

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: Report Date: 12700053 06/17/09

SAMPLE RESULTS

Lab ID: Date Collected: L0907670-01 06/10/09 13:00

Client ID: RIZ-10

Date Received: 06/11/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 06/12/09 14:10 Analytical Date:

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 Report Date: 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-01 Date Collected: 06/10/09 13:00

Client ID: RIZ-10 Date Received: 06/11/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL Parameter Qualifier Units **Dilution Factor** Result Volatile Organics by GC/MS - Westborough Lab ND 1,3-Dichlorobenzene ug/l 0.50 1 ND 0.50 1 1,4-Dichlorobenzene ug/l Styrene ND 0.50 1 ug/l o-Xylene ND ug/l 0.50 1 ND 1,1-Dichloropropene ug/l 0.50 1 ND 0.50 2,2-Dichloropropane ug/l 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l ND 1 1,2,3-Trichloropropane ug/l 0.50 Bromochloromethane ND ug/l 0.50 1 ND 0.50 n-Butylbenzene ug/l 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 ND 1 1,2,3-Trichlorobenzene ug/l 0.50 ND 0.50 1 1,2,4-Trichlorobenzene ug/l 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND 0.50 1 ug/l Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND 0.50 1 ug/l ND p-Chlorotoluene ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 ND 1,2-Dibromoethane ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 ND 1,3-Dichloropropane ug/l 0.50 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	83		80-120	

ND

1

0.50

ug/l

Methyl tert butyl ether

06/11/09

Date Received:

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-02 Date Collected: 06/10/09 13:28

Client ID: RIZ-8

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/12/09 14:47

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-02 Date Collected: 06/10/09 13:28

Client ID: RIZ-8 Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

'				•	
Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS - Westbo	orough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

06/11/09

See Narrative

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-03 Date Collected: 06/10/09 13:18

Client ID: RIZ-8S

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/12/09 15:24

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	0.71		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 Report Date: 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-03 Date Collected: 06/10/09 13:18

Client ID: RIZ-8S Date Received: 06/11/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL Parameter Qualifier Units **Dilution Factor** Result Volatile Organics by GC/MS - Westborough Lab ND 1,3-Dichlorobenzene ug/l 0.50 1 ND 1 1,4-Dichlorobenzene ug/l 0.50 ND 0.50 1 Styrene ug/l o-Xylene ND ug/l 0.50 1 ND 1,1-Dichloropropene ug/l 0.50 1 ND 0.50 2,2-Dichloropropane ug/l 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l ND 1 1,2,3-Trichloropropane ug/l 0.50 Bromochloromethane ND ug/l 0.50 1 ND n-Butylbenzene ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 ND 1 1,2,3-Trichlorobenzene ug/l 0.50 ND 0.50 1,2,4-Trichlorobenzene ug/l 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 ND 1,3,5-Trimethylbenzene 0.50 1 ug/l Bromobenzene ND ug/l 0.50 1 ND 0.50 1 o-Chlorotoluene ug/l p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 ND 1,2-Dibromoethane ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 ND 1,3-Dichloropropane ug/l 0.50 1 ND Methyl tert butyl ether 0.50 ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: Report Date: 12700053 06/17/09

SAMPLE RESULTS

Date Collected: Lab ID: L0907670-04 06/10/09 13:45

Client ID: MW-9

Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 16:01

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	0.75		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-04 Date Collected: 06/10/09 13:45

Client ID: MW-9 Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Campio Ecodationi Witzi CEE, in	, ·			.а. тор.	oo mana	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	
Volatile Organics by GC/MS - Westbor	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50	1	
1,4-Dichlorobenzene	ND		ug/l	0.50	1	
Styrene	ND		ug/l	0.50	1	
o-Xylene	ND		ug/l	0.50	1	
1,1-Dichloropropene	ND		ug/l	0.50	1	
2,2-Dichloropropane	ND		ug/l	0.50	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1	
1,2,3-Trichloropropane	ND		ug/l	0.50	1	
Bromochloromethane	ND		ug/l	0.50	1	
n-Butylbenzene	ND		ug/l	0.50	1	
Dichlorodifluoromethane	ND		ug/l	0.50	1	
Hexachlorobutadiene	ND		ug/l	0.50	1	
Isopropylbenzene	ND		ug/l	0.50	1	
p-Isopropyltoluene	ND		ug/l	0.50	1	
Naphthalene	ND		ug/l	0.50	1	
n-Propylbenzene	ND		ug/l	0.50	1	
sec-Butylbenzene	ND		ug/l	0.50	1	
tert-Butylbenzene	ND		ug/l	0.50	1	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1	
Bromobenzene	ND		ug/l	0.50	1	
o-Chlorotoluene	ND		ug/l	0.50	1	
p-Chlorotoluene	ND		ug/l	0.50	1	
Dibromomethane	ND		ug/l	0.50	1	
1,2-Dibromoethane	ND		ug/l	0.50	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1	
1,3-Dichloropropane	ND		ug/l	0.50	1	
Methyl tert butyl ether	ND		ug/l	0.50	1	

Surrogate	% Recovery	Acceptance % Recovery Qualifier Criteria				
1,2-Dichlorobenzene-d4	106		80-120			
4-Bromofluorobenzene	84		80-120			

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: Report Date: 12700053 06/17/09

SAMPLE RESULTS

Lab ID: Date Collected: L0907670-05 06/10/09 14:05

Client ID: GHC-6

Date Received: 06/11/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 16:38

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-05 Date Collected: 06/10/09 14:05

Client ID: GHC-6 Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

,				•	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Surrogate	% Recovery	Acceptance ecovery Qualifier Criteria			
1,2-Dichlorobenzene-d4	103		80-120		
4-Bromofluorobenzene	84		80-120		

06/11/09

Date Received:

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-06 Date Collected: 06/10/09 14:12

Client ID: RIZ-3

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/12/09 17:15

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-06 Date Collected: 06/10/09 14:12

Client ID: RIZ-3 Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier		
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

06/11/09

See Narrative

Date Received:

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-07 Date Collected: 06/10/09 14:26

Client ID: MW-2

Sample Location: WALPOLE, MA Field Prep:

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/12/09 17:52

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	1.0		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 Report Date: 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-07 Date Collected: 06/10/09 14:26

Client ID: MW-2 Date Received: 06/11/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL Parameter Qualifier Units **Dilution Factor** Result Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene ND ug/l 0.50 1 ND 1 1,4-Dichlorobenzene ug/l 0.50 ND 0.50 1 Styrene ug/l o-Xylene ND ug/l 0.50 1 ND 1,1-Dichloropropene ug/l 0.50 1 ND 0.50 2,2-Dichloropropane ug/l 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l ND 1,2,3-Trichloropropane ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 ND n-Butylbenzene ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 ND 1,2,3-Trichlorobenzene ug/l 0.50 1 ND 0.50 1,2,4-Trichlorobenzene ug/l 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 ND 1,3,5-Trimethylbenzene 0.50 1 ug/l Bromobenzene ND ug/l 0.50 1 ND 0.50 1 o-Chlorotoluene ug/l ug/l p-Chlorotoluene ND 0.50 1 Dibromomethane ND ug/l 0.50 1 ND 1,2-Dibromoethane ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 ND 1,3-Dichloropropane ug/l 0.50 1 ND Methyl tert butyl ether 0.50 ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria		
1,2-Dichlorobenzene-d4	108		80-120		
4-Bromofluorobenzene	84		80-120		

06/11/09

Date Received:

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-08 Date Collected: 06/10/09 14:41

Client ID: RIZ-9

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/12/09 18:29

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-08 Date Collected: 06/10/09 14:41

Client ID: RIZ-9 Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	rough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	84		80-120	

Project Number: 12700053 **Report Date:** 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/12/09 08:00

Analyst: TT

rameter	Result	Qualifier	Units	RDL	
latile Organics by GC/MS	Westborough La	b for sample(s):	01-08	Batch:	WG366434-4
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

Project Number: 12700053 **Report Date:** 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/12/09 08:00

Analyst: TT

arameter	Result Qualifier	Units	RDL	
olatile Organics by GC/MS	- Westborough Lab for sample(s)	: 01-08	Batch:	WG366434-4
1,4-Dichlorobenzene	ND	ug/l	0.50	
Styrene	ND	ug/l	0.50	
o-Xylene	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	0.50	
2,2-Dichloropropane	ND	ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
1,2,3-Trichloropropane	ND	ug/l	0.50	
Bromochloromethane	ND	ug/l	0.50	
n-Butylbenzene	ND	ug/l	0.50	
Dichlorodifluoromethane	ND	ug/l	0.50	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	0.50	
n-Propylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	0.50	
1,2,4-Trichlorobenzene	ND	ug/l	0.50	
1,2,4-Trimethylbenzene	ND	ug/l	0.50	
1,3,5-Trimethylbenzene	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	0.50	
o-Chlorotoluene	ND	ug/l	0.50	
p-Chlorotoluene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	0.50	
1,2-Dibromoethane	ND	ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND	ug/l	0.50	
1,3-Dichloropropane	ND	ug/l	0.50	
Methyl tert butyl ether	ND	ug/l	0.50	

Project Number: 12700053 **Report Date:** 06/17/09

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/12/09 08:00

Analyst: TT

Parameter Result Qualifier Units RDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-08 Batch: WG366434-4

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichlorobenzene-d4	106		80-120			
4-Bromofluorobenzene	87		80-120			

Lab Control Sample Analysis Batch Quality Control

WALPOLE PARK SOUTH

Project Number: 12700053

Project Name:

Lab Number:

L0907670

Report Date:

06/17/09

rameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
platile Organics by GC/MS - Westborough	h Lab Associated sample(s)	: 01-08 Batch:	WG366434-3		
Methylene chloride	101	-	70-130	-	
1,1-Dichloroethane	96	-	70-130	-	
Chloroform	99	-	70-130	-	
Carbon tetrachloride	91	-	70-130	-	
1,2-Dichloropropane	97	-	70-130	-	
Dibromochloromethane	91	-	70-130	-	
1,1,2-Trichloroethane	97	-	70-130	-	
Tetrachloroethene	94	-	70-130	-	
Chlorobenzene	97	-	70-130	-	
Trichlorofluoromethane	100	-	70-130	-	
1,2-Dichloroethane	93	-	70-130	-	
1,1,1-Trichloroethane	91	-	70-130	-	
Bromodichloromethane	94	-	70-130	-	
trans-1,3-Dichloropropene	85	-	70-130	-	
cis-1,3-Dichloropropene	85	-	70-130	-	
Bromoform	92	-	70-130	-	
1,1,2,2-Tetrachloroethane	106	-	70-130	-	
Benzene	98	-	70-130	-	
Toluene	91	-	70-130	-	
Ethylbenzene	96	-	70-130	-	
p/m-Xylene	98	-	70-130	-	

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

Report Date: 06/17/09

rameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated sample(s):	01-08 Batch:	WG366434-3		
Chloromethane	112	-	70-130	-	
Bromomethane	114	-	70-130	-	
Vinyl chloride	104	-	70-130	-	
Chloroethane	104	-	70-130	-	
1,1-Dichloroethene	98	-	70-130	-	
trans-1,2-Dichloroethene	95	-	70-130	-	
cis-1,2-Dichloroethene	92	-	70-130	-	
Trichloroethene	86	-	70-130	-	
1,2-Dichlorobenzene	97	-	70-130	-	
1,3-Dichlorobenzene	96	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	96	-	70-130	-	
o-Xylene	91	-	70-130	-	
1,1-Dichloropropene	92	-	70-130	-	
2,2-Dichloropropane	94	-	70-130	-	
1,1,1,2-Tetrachloroethane	95	-	70-130	-	
1,2,3-Trichloropropane	97	-	70-130	-	
Bromochloromethane	100	-	70-130	-	
n-Butylbenzene	94	-	70-130	-	
Dichlorodifluoromethane	105	-	70-130	-	
Hexachlorobutadiene	100	-	70-130	-	

L0907670

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

tty Control Lab Number:

Report Date: 06/17/09

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS - V	Westborough Lab Associated sample(s): 01-08 Batch:	WG366434-3		
Isopropylbenzene	96	-	70-130	-	
p-Isopropyltoluene	93	-	70-130	-	
Naphthalene	75	-	70-130	-	
n-Propylbenzene	96	-	70-130	-	
sec-Butylbenzene	96	-	70-130	-	
tert-Butylbenzene	94	-	70-130	-	
1,2,3-Trichlorobenzene	89	-	70-130	-	
1,2,4-Trichlorobenzene	90	-	70-130	-	
1,2,4-Trimethylbenzene	89	-	70-130	-	
1,3,5-Trimethylbenzene	87	-	70-130	-	
Bromobenzene	102	-	70-130	-	
o-Chlorotoluene	98	-	70-130	-	
p-Chlorotoluene	93	-	70-130	-	
Dibromomethane	94	-	70-130	-	
1,2-Dibromoethane	94	-	70-130	-	
1,2-Dibromo-3-chloropropane	103	-	70-130	-	
1,3-Dichloropropane	92	-	70-130	-	
Methyl tert butyl ether	88	-	70-130	-	

Lab Control Sample Analysis Batch Quality Control

WALPOLE PARK SOUTH

Lab Number: L0907670

Project Number: Report Date: 06/17/09 12700053

LCS **LCSD** %Recovery Limits %Recovery %Recovery

RPD **RPD Limits** Parameter

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG366434-3

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	102		80-120
4-Bromofluorobenzene	97		80-120

Project Name:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS Sample	- Westborough La	b Associated	sample(s): 01	-08 QC Ba	ch ID: WG3664	34-5 QC Sar	mple: L0907641	I-01 C	Client ID: MS
Methylene chloride	ND	4	4.1	103	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.2	106	-	-	70-130	-	20
Chloroform	ND	4	4.0	101	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.1	102	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.0	100	-	-	70-130	-	20
Dibromochloromethane	ND	4	3.6	90	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	3.8	95	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.0	101	-	-	70-130	-	20
Chlorobenzene	ND	4	4.1	102	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.4	109	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.0	100	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.0	101	-	-	70-130	-	20
Bromodichloromethane	ND	4	3.8	95	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.0	75	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.7	93	-	-	70-130	-	20
Bromoform	ND	4	3.5	88	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.1	103	-	-	70-130	-	20
Benzene	ND	4	4.2	105	-	-	70-130	-	20
Toluene	ND	4	3.8	96	-	-	70-130	-	20
Ethylbenzene	ND	4	4.0	100	-	-	70-130	-	20
p/m-Xylene	ND	8	7.9	99	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

arameter	Native Sample	MS Added	MS Found		S overy	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS ample	- Westborough La	ab Associated	sample(s): 01	-08 C	QC Batcl	n ID: WG36643	34-5 QC Sar	mple: L0907641	-01 C	Client ID: MS
Chloromethane	ND	4	4.2		104		-	70-130	-	20
Bromomethane	ND	4	4.7		117	-	-	70-130	-	20
Vinyl chloride	ND	4	5.2		131	-	-	70-130	-	20
Chloroethane	ND	4	4.6		115	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.4		111	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2		105	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	3.9		99	-	-	70-130	-	20
Trichloroethene	ND	4	3.8		96	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.8		95	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	3.8		96	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.7		93	-	-	70-130	-	20
Styrene	ND	4	3.8		94	-	-	70-130	-	20
o-Xylene	ND	4	3.7		94	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	3.8		96	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.1		103	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	3.7		92	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.8		94	-	-	70-130	-	20
Bromochloromethane	ND	4	4.0		101	-	-	70-130	-	20
n-Butylbenzene	ND	4	3.9		98	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	3.8		96	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1		102	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01-	08 QC Bato	h ID: WG36643	4-5 QC Sar	nple: L0907641	I-01 C	lient ID: MS
Isopropylbenzene	ND	4	3.5	88	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	3.7	92	-	-	70-130	-	20
Naphthalene	ND	4	3.0	76	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.0	100	-	-	70-130	-	20
sec-Butylbenzene	ND	4	3.9	98	-	-	70-130	-	20
tert-Butylbenzene	ND	4	3.9	97	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.4	86	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.6	89	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	3.6	91	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	3.5	87	-	-	70-130	-	20
Bromobenzene	ND	4	4.0	100	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.0	100	-	-	70-130	-	20
p-Chlorotoluene	ND	4	3.7	92	-	-	70-130	-	20
Dibromomethane	ND	4	3.9	98	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.7	92	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.4	86	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	3.6	90	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	3.5	88	-	-	70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670

Report Date:

06/17/09

MS	MSD	Recovery

Parameter Native Sample MS Added MS Found %Recovery MSD Found %Recovery Limits RPD RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG366434-5 QC Sample: L0907641-01 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	96		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670

Report Date:

06/17/09

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-08	QC Batch ID: WG366434-	6 QC Sample	e: L0907641-	02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670

Report Date:

06/17/09

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-08	QC Batch ID: WG366434-	-6 QC Sample	e: L0907641-02	Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01-08	QC Batch ID: WG36643	34-6 QC Sar	mple: L0907641-0	2 Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670

Report Date:

06/17/09

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab As Sample	ssociated sample(s): 01-08	QC Batch ID: WG366434	1-6 QC Samp	ole: L0907641-	02 Client ID: DUP
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	104		106		80-120	
4-Bromofluorobenzene	85		85		80-120	

METALS

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-01 Date Collected: 06/10/09 13:00

Client ID: Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.148		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:55	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-02

Client ID: RIZ-8

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 06/10/09 13:28

Date Received: 06/11/09

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:34	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.026		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:56	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:34	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:24	EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-03 Date Collected: 06/10/09 13:18

Client ID: RIZ-8S Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:40	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.051		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:58	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:40	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-04

Client ID: MW-9

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 06/10/09 13:45
Date Received: 06/11/09

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:46	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.029		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 11:00	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:46	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Lab ID: L0907670-05 Date Collected: 06/10/09 14:05

Client ID: Date Received: 06/11/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:52	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.066		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 11:02	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:52	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	Al

06/10/09 14:12

See Narrative

06/11/09

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L0907670-06

Client ID: RIZ-3

Sample Location: WALPOLE, MA Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:57	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.013		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 11:04	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:57	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:42	EPA 3005A	60,6010B	Al

06/10/09 14:26

Project Name: Lab Number: WALPOLE PARK SOUTH L0907670

Project Number: 12700053 Report Date: 06/17/09

SAMPLE RESULTS

Date Collected:

Lab ID: L0907670-07

Client ID: MW-2

Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	tborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:03	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.070		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 11:05	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:03	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:45	EPA 3005A	60,6010B	AI

06/10/09 14:41

06/11/09

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L0907670-08

Client ID: RIZ-9

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:09	EPA 3005A	64,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.015		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 11:11	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:09	EPA 3005A	64,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:48	EPA 3005A	60,6010B	Al

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 Report Date: 06/17/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01-C	8 Batch:	WG366599-1			
Arsenic, Dissolved	ND	mg/l	0.005	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Nickel, Dissolved	ND	mg/l	0.025	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Vanadium, Dissolved	ND	mg/l	0.010	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	06/12/09 11:00	06/15/09 16:07	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals -	Westborough Lab fo	r sample	(s): 01-	08 Batch:	WG366913-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:49	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01-	08 Batch:	WG367081-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	64,6020A	ВМ
Thallium, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	64,6020A	ВМ

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 **Report Date:** 06/17/09

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670

arameter	LCS %Recovery	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch: \	WG366599-2 WG366599-3		
Arsenic, Dissolved	113		114	80-120	1	20
Barium, Dissolved	106		106	80-120	0	20
Beryllium, Dissolved	107		106	80-120	1	20
Cadmium, Dissolved	116		115	80-120	1	20
Chromium, Dissolved	105		105	80-120	0	20
Lead, Dissolved	110		111	80-120	1	20
Nickel, Dissolved	105		105	80-120	0	20
Selenium, Dissolved	113		117	80-120	3	20
Silver, Dissolved	110		109	80-120	1	20
Vanadium, Dissolved	106		105	80-120	1	20
Zinc, Dissolved	110		111	80-120	1	20
CP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch: \	WG366913-2 WG366913-3		
Mercury, Dissolved	98		93	80-120	5	20
ICP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch: \	WG367081-2 WG367081-3		
Antimony, Dissolved	106		106	80-120	2	20
Thallium, Dissolved	96		96	80-120	1	20

Lab Number: L0907670

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053 Report Date: 06/17/09

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal A Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0907670-01A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-01B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-01C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TA70S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-02A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-02B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-02C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-03A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-03B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-03C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-04A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-04B	Vial Ascorbic Acid/HCI preserved	Α	N/A	3	Υ	Absent	524.2(14)

Project Name: WALPOLE PARK SOUTH

Lab Number: L0907670 Project Number: 12700053 **Report Date:** 06/17/09

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0907670-04C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-TL-6020S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-05A	Vial Ascorbic Acid/HCI preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-05B	Vial Ascorbic Acid/HCI preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-05C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-TL-6020S(180),MCP-TL-6020S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-06A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-06B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-06C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TL-6020S(180),MCP-PB-6010S(180),MCP-PB-6010S(180),MCP-SN-6010S(180),MCP-SN-6010S(180),MCP-V-6010S(180)
L0907670-07A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-07B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-07C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-T470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0907670-08A	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)
L0907670-08B	Vial Ascorbic Acid/HCl preserved	Α	N/A	3	Υ	Absent	524.2(14)

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670

Project Number: 12700053 Report Date: 06/17/09

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0907670-08C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-T470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-R5-6010S(180),MCP-V-6010S(180)

Project Name:WALPOLE PARK SOUTHLab Number:L0907670Project Number:12700053Report Date:06/17/09

GLOSSARY

Acronyms

EPA · Environmental Protection Agency.

LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND · Not detected at the reported detection limit for the sample.

NI · Not Ignitable.

RDL • Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E -Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- N The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHLab Number:L0907670Project Number:12700053Report Date:06/17/09

REFERENCES

Methods for the Determination of Organic Compounds in Drinking Water - Supplement II. EPA/600/R-92/129, August 1992.

- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kieldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, EPA 150.1, SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water)

600/4-81-045-PCB-Oil

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

OQA-QAM-025 Rev.7.)

Microbiology Parameters: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. Organic Parameters: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.) Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500Cl-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health Certificate/Lab ID: LAO00065. NELAP Accredited via NY-DOH.

Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 625, 608, 8081A, 8082, 8151A, 8270C, 8330) *Solid & Hazardous Waste* (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

	Cont	
	- I	
	111/111	2 - MB - 2
	1417/114	R17 -
_	405/404	1747
	3751/349	J W1. 2
	318/320	1
	Ť	78.75
	6-10-09 Bushen 17W	1/3/ 1 812-10
N		(Lab Ose Only)
Initials OCC	Collection Sample Time Matrix	ALPHA Lab ID Sample ID
14		
	txe/	Ross data believable in t
1 ch	ts/Detection Limits:	ಹ
/,	Due Date: 6/8/69 Time:	☐ These samples have been Previously analyzed by Alpha
	i	Email Jan. Cannan & telately. Con
PPROVED)	Rush (ONLY IF PRE-APPROVED)	Fax: 50 93 7001
ANALYSIS	Turn-Around Time	Phone: 508 905 2039
	ALPHA Quote #:	Famingham Mit
	Project Manager: Nay Jurson	is:
MA MCF	Project #: 1270005 3	Client Tetlatak Raz-
m Criteria	Project Location: Walpak, NVT	Client Information
Regulatory Requirements/Report Limits	WINDLE MEK JOHN	
ADEX Addi Deliverables	Project Name:	Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300
M EMAIL		0
Report Information Data Deliverables Billing Information		NEPHA
Date Rec'd in Lab Co [1/1/69 ALPHA Job #:	CHAIN OF CUSTODY PAGE 1 OF 1	CHAIN OF

ANALYTICAL REPORT

Lab Number: L1003740

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: Ray Johnson

Project Name: WALPOLE PK SOUTH

Project Number: 12700058 Report Date: 03/19/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WALPOLE PK SOUTHLab Number:L1003740

Project Number: 12700058 **Report Date:** 03/19/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1003740-01	MW-9	WALPOLE, MA	12/21/09 10:12
L1003740-02	RIZ-8	WALPOLE, MA	12/21/09 11:05
L1003740-03	GHC-6	WALPOLE, MA	12/28/09 08:25
L1003740-04	RIZ-3	WALPOLE, MA	12/28/09 09:03
L1003740-05	RIZ-9	WALPOLE, MA	12/28/09 10:00
L1003740-06	RIZ-10	WALPOLE, MA	12/28/09 10:43
L1003740-07	MW-3	WALPOLE, MA	12/28/09 11:50

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: 12700058 Report Date: 03/19/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1003740

Lab Number:

Project Name: WALPOLE PK SOUTH

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered.

Metals

L1003740-01 through -07 have elevated detection limits due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

Unabeth & Simuro

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 03/19/10

METALS

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS

Lab ID: L1003740-01 Date Collected: 12/21/09 10:12

Client ID: MW-9 Date Received: 12/29/09

WALPOLE, MA Field Prep: Sample Location: See Narrative

Matrix: Water

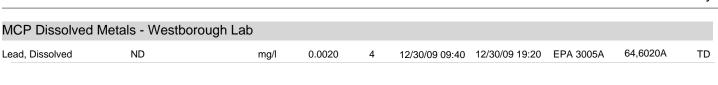
Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

MCP Dissolved Metals - Westborough Lab ND 64,6020A TD Lead, Dissolved mg/l 0.0020 4 12/30/09 09:40 12/30/09 18:56 EPA 3005A

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS


Lab ID: L1003740-02 Date Collected: 12/21/09 11:05

Client ID: RIZ-8 Date Received: 12/29/09

WALPOLE, MA Field Prep: Sample Location: See Narrative

Matrix: Water

Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: 12700058 **Report Date:** 03/19/10

SAMPLE RESULTS

Lab ID: L1003740-03 Date Collected: 12/28/09 08:25

Client ID: Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Dilution Date Drep Analytical
Parameter Result Qualifier Units RDL Factor Prepared Analyzed Method Method Analyst

MCP Dissolved Metals - Westborough Lab

Lead, Dissolved ND mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:26 EPA 3005A 64,6020A TD

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS

Lab ID: L1003740-04 Date Collected: 12/28/09 09:03

Client ID: RIZ-3 Date Received: 12/29/09

Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water

Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

MCP Dissolved Metals - Westborough Lab ND 64,6020A TD Lead, Dissolved mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:32 EPA 3005A

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS

Lab ID: L1003740-05 Date Collected: 12/28/09 10:00

RIZ-9 Client ID: Date Received: 12/29/09

WALPOLE, MA Field Prep: Sample Location: See Narrative

Matrix: Water

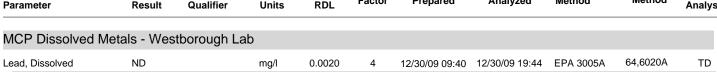
Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

MCP Dissolved Metals - Westborough Lab ND 64,6020A TD Lead, Dissolved mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:38 EPA 3005A

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS


Lab ID: L1003740-06 Date Collected: 12/28/09 10:43

Client ID: RIZ-10 Date Received: 12/29/09

Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water

Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

Project Name: WALPOLE PK SOUTH Lab Number: L1003740

Project Number: Report Date: 12700058 03/19/10

SAMPLE RESULTS

Lab ID: L1003740-07 Date Collected: 12/28/09 11:50

Client ID: MW-3 Date Received: 12/29/09

Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water

Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Parameter Result Qualifier Units RDL Analyst

MCP Dissolved Metals - Westborough Lab ND 64,6020A TD Lead, Dissolved mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:50 EPA 3005A

Project Name: WALPOLE PK SOUTH **Lab Number:** L1003740

Project Number: 12700058 **Report Date:** 03/19/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metal	ls - Westborough Lab fo	r sample	e(s): 01-	07 Batch:	WG404525-1			
Lead, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1003740

03/19/10

Project Number: 12700058 Report Date:

LCS **LCSD** %Recovery %Recovery %Recovery Limits **RPD Limits Parameter** Qual RPD Qual Qual MCP Dissolved Metals - Westborough Lab Associated sample(s): 01-07 Batch: WG404525-2 WG404525-3 Lead, Dissolved 103 101 80-120 2 20

Project Name:

WALPOLE PK SOUTH

Project Name:WALPOLE PK SOUTHLab Number:L1003740Project Number:12700058Report Date:03/19/10

GLOSSARY

Acronyms

EPA · Environmental Protection Agency.

LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI · Not Ignitable.

RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H -The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reported detection limit (RDL) for the sample.

Report Format: Data Usability Report

Project Name:WALPOLE PK SOUTHLab Number:L1003740Project Number:12700058Report Date:03/19/10

REFERENCES

Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised March 16, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C. SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Aq,Sr,Ti,Tl, V,Zn,Ca,Mq,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. Organic Parameters: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500Cl-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. **NELAP Accredited. Non-Potable Water** (Inorganic Parameters: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

PLEASE ANSWER QUESTIONS ABOVE! Container Type IS YOUR PROJECT MA MCP or CT RCP? Common of the 14-001-07) 8 6HC-6 10/28/4 0725 10500 S R1Z-2 10600 1043 1 1043 1 10600 1043 1 10600 1043 1 10600 106	ments/Comments/Detection L ments/Comments/Detection L Coll ample ID Coll Date	CHAIN OF CUSTODY PAGE 1 OF 1 AMANSFIELD, MA TEL: 508-822-2000 FAX: 508-822-3288 Client Information Client Felix Felt 17220 Project Location: Majale M. Saul Project Manager: Majale M. Saul Project M	
Hcl // Please prints early legibly and com- pletely. Samples can not be legged in and furnation time clock will not start unit any ambiguities are resolved All samples submitted are seconed All samples submitted are subjective (72/74/04/125) Seere erse sub-		A Samp	ALEPHA Job # CONFIDENCE PROTOCOL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL ACTUAL Criteria PRESUMPTIVE CERTAINTY - CT REASONABLE CONFIDENCE PROTOCOL DNo Are MCP Analytical Methods Required? SYNO Are CT RCP (Reasonable Confidence Protocols) Required? SYNO SAMPLE HANDLING

.

ANALYTICAL REPORT

Lab Number: L0918777

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: lan Cannan

Project Name: WALPOLE PK SOUTH

Project Number: 12700058 Report Date: 01/05/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L0918777-01	MW-9	WALPOLE, MA	12/21/09 10:12
L0918777-02	RIZ-8	WALPOLE, MA	12/21/09 11:05
L0918777-03	GHC-6	WALPOLE, MA	12/28/09 08:25
L0918777-04	RIZ-3	WALPOLE, MA	12/28/09 09:03
L0918777-05	RIZ-9	WALPOLE, MA	12/28/09 10:00
L0918777-06	RIZ-10	WALPOLE, MA	12/28/09 10:43
L0918777-07	MW-3	WALPOLE, MA	12/28/09 11:50
L0918777-08	TRIP BLANK	WALPOLE, MA	12/21/09 00:00

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 Report Date: 01/05/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L0918777

Lab Number:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058 **Report Date:** 01/05/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For addition	al information	nlease contact	Client Services	at 800-624-9220
oi auditioi	iai ii ii Ulii laiiUli	. Dicase cultact	CHELL DELVICES	al 000-024-3220

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Metals

L0918777-01 through -07 have elevated detection limits for Antimony and Thallium due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/05/10

Michelle M. Morris

ORGANICS

VOLATILES

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: 12/21/09 10:12

Client ID: MW-9 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 12/30/09 11:35

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-01 12/21/09 10:12

Client ID: MW-9 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS - Westbo	orough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
o-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	0.77		ug/l	0.50	1

ND

ug/l

1

No Tentatively Identified Compounds

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: 12/21/09 10:12

Client ID: MW-9 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-02 12/21/09 11:05

Client ID: RIZ-8

Date Received: 12/29/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 12/30/09 12:12

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-02 Date Collected: 12/21/09 11:05

Client ID: RIZ-8 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS - Westbord	ough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-02 Date Collected: 12/21/09 11:05

Client ID: RIZ-8 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	93		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-03 12/28/09 08:25

Client ID: GHC-6

Date Received: 12/29/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 12/30/09 12:49 Analytical Date:

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Date Collected: Lab ID: L0918777-03 12/28/09 08:25

Client ID: GHC-6 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Campio Location. While CLL, whi		1 101	riola riop.		
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
lexachlorobutadiene	ND		ug/l	0.50	1
sopropylbenzene	ND		ug/l	0.50	1
-lsopropyltoluene	ND		ug/l	0.50	1
laphthalene	ND		ug/l	0.50	1
-Propylbenzene	ND		ug/l	0.50	1
ec-Butylbenzene	ND		ug/l	0.50	1
ert-Butylbenzene	ND		ug/l	0.50	1
,2,3-Trichlorobenzene	ND		ug/l	0.50	1
,2,4-Trichlorobenzene	ND		ug/l	0.50	1
,2,4-Trimethylbenzene	ND		ug/l	0.50	1
,3,5-Trimethylbenzene	ND		ug/l	0.50	1
romobenzene	ND		ug/l	0.50	1
-Chlorotoluene	ND		ug/l	0.50	1
-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
,2-Dibromoethane	ND		ug/l	0.50	1
,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1
Footstively Identified Company					
Tentatively Identified Compounds					

ND

ug/l

1

No Tentatively Identified Compounds

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-03 Date Collected: 12/28/09 08:25

Client ID: GHC-6 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-04 12/28/09 09:03

Client ID: RIZ-3

Date Received: 12/29/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 12/30/09 13:26

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-04 Date Collected: 12/28/09 09:03

Client ID: RIZ-3 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

latile Organics by GC/MS - Westborough La Dichlorobenzene Dichlorobenzene ene ylene	Result b ND ND ND	Qualifier	Units ug/l	RDL	Dilution Factor
Dichlorobenzene Dichlorobenzene ene	ND ND		ug/l		
Dichlorobenzene ene	ND		ug/l		
Dichlorobenzene ene	ND		ug/i	0.50	1
ene					1
	[311.1		ug/l	0.50	1
			ug/l	0.50	1
	ND		ug/l	0.50	1
Dichloropropene	ND		ug/l	0.50	1
Dichloropropane	ND		ug/l	0.50	1
1,2-Tetrachloroethane	ND		ug/l	0.50	1
3-Trichloropropane	ND		ug/l	0.50	1
mochloromethane	ND		ug/l	0.50	1
utylbenzene	ND		ug/l	0.50	1
nlorodifluoromethane	ND		ug/l	0.50	1
achlorobutadiene	ND		ug/l	0.50	1
ropylbenzene	ND		ug/l	0.50	1
opropyltoluene	ND		ug/l	0.50	1
hthalene	ND		ug/l	0.50	1
ropylbenzene	ND		ug/l	0.50	1
Butylbenzene	ND		ug/l	0.50	1
Butylbenzene	ND		ug/l	0.50	1
3-Trichlorobenzene	ND		ug/l	0.50	1
4-Trichlorobenzene	ND		ug/l	0.50	1
4-Trimethylbenzene	ND		ug/l	0.50	1
5-Trimethylbenzene	ND		ug/l	0.50	1
mobenzene	ND		ug/l	0.50	1
hlorotoluene	ND		ug/l	0.50	1
hlorotoluene	ND		ug/l	0.50	1
omomethane	ND		ug/l	0.50	1
Dibromoethane	ND		ug/l	0.50	1
Dibromo-3-chloropropane	ND		ug/l	0.50	1
Dichloropropane	ND		ug/l	0.50	1
hyl tert butyl ether	ND		ug/l	0.50	1
ntatively Identified Compounds					

ND

ug/l

1

No Tentatively Identified Compounds

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: 12/28/09 09:03

Client ID: RIZ-3 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-05 12/28/09 10:00

RIZ-9 Client ID:

Date Received: 12/29/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 12/30/09 14:02

Analyst: TT

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichklorofucorethane ND ug/l 0.50 1 1_2-Dichloromethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborou	gh Lab				
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itaris-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bernache ND ug/l 0.50 1 Bernacher ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Eenzene ND ug/l 0.50 1 Tolluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorotluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Chloro	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	0.50	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ehylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-05 Date Collected: 12/28/09 10:00

Client ID: RIZ-9 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Campio Location. With CLL, With			1 101	a i iop.	Coo Harrain
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1
Tantativaly Identified Comments					
Tentatively Identified Compounds					

ND

ug/l

1

No Tentatively Identified Compounds

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-05 Date Collected: 12/28/09 10:00

Client ID: RIZ-9 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: Report Date: 12700058 01/05/10

SAMPLE RESULTS

Lab ID: Date Collected: L0918777-06 12/28/09 10:43

Client ID: RIZ-10

Date Received: 12/29/09 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 12/30/09 14:39

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough La	ıb				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-06 Date Collected: 12/28/09 10:43

Client ID: RIZ-10 Date Received: 12/29/09

Sample Location: WALPOLE, MA Field Prep: See Narrative

Ouripic Location. With OLL, Wi	`	1 101	аттор.	Occ Harrati	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
sopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1
Tentatively Identified Compounds					
No Tentatively Identified Compounds	ND		ug/l		1
· ·					

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-06 Date Collected: 12/28/09 10:43

Client ID: RIZ-10 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	92		80-120	

12/29/09

See Narrative

Date Received:

Field Prep:

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-07 Date Collected: 12/28/09 11:50

Client ID: MW-3

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 12/30/09 15:16

Analyst: TT

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Inchipotopopane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Totrachloroethane ND ug/l 0.50 1 Totrachloroethane ND ug/l 0.50 1 Tichloroforomethane ND ug/l 0.50 1 1_2-Dichloromethane ND ug/l 0.50 1 1_2-Dichloropropene ND ug/l 0.50 1 1_2-Dichloropropene ND ug/l 0.50 1 1_2-Dichloropropene ND ug/l 0.50 1 1_2-Dichloro	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborou	gh Lab				
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichlorofuloromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itaris-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bernache ND ug/l 0.50 1 Bernacher ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Eenzene ND ug/l 0.50 1 Tolluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorotluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Chloro	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	0.50	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ehylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-07 Date Collected: 12/28/09 11:50

Client ID: MW-3 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL **Dilution Factor** Parameter Qualifier Units Result Volatile Organics by GC/MS - Westborough Lab ND 1,3-Dichlorobenzene ug/l 0.50 1 ND 0.50 1 1,4-Dichlorobenzene ug/l ND 0.50 Styrene ug/l 1 o-Xylene ND ug/l 0.50 1 ND 0.50 1,1-Dichloropropene ug/l 1 ND 0.50 2,2-Dichloropropane ug/l 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l ND 0.50 1 1,2,3-Trichloropropane ug/l Bromochloromethane ND ug/l 0.50 1 ND 0.50 n-Butylbenzene ug/l 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND 0.50 ug/l 1 tert-Butylbenzene ND ug/l 0.50 1 ND 0.50 1 1,2,3-Trichlorobenzene ug/l ND 0.50 1 1,2,4-Trichlorobenzene ug/l 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND 0.50 1 ug/l Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND 0.50 1 ug/l ug/l ND p-Chlorotoluene 0.50 1 Dibromomethane ND ug/l 0.50 1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

ND

ND

ND

ND

1

1

1

1

0.50

0.50

0.50

0.50

ug/l

ug/l

ug/l

ug/l

1,2-Dibromoethane

1,3-Dichloropropane

Methyl tert butyl ether

1,2-Dibromo-3-chloropropane

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-07 Date Collected: 12/28/09 11:50

Client ID: MW-3 Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-08 Date Collected: 12/21/09 00:00

Client ID: TRIP BLANK Date Received: 12/29/09 Sample Location: WALPOLE, MA Field Prep: None

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 12/30/09 15:53

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-08 Date Collected: 12/21/09 00:00

Client ID: TRIP BLANK Date Received: 12/29/09 Sample Location: WALPOLE, MA Field Prep: None

Parameter	Result	Qualifier U	nits RDL	Dilution Facto
Volatile Organics by GC/MS - Westbo	orough Lab			
1,3-Dichlorobenzene	ND	u	g/l 0.50	1
1,4-Dichlorobenzene	ND	u	g/l 0.50	1
Styrene	ND	u	g/l 0.50	1
o-Xylene	ND	u	g/l 0.50	1
1,1-Dichloropropene	ND	u	g/l 0.50	1
2,2-Dichloropropane	ND	u	g/l 0.50	1
1,1,1,2-Tetrachloroethane	ND	u	g/l 0.50	1
1,2,3-Trichloropropane	ND	u	g/l 0.50	1
Bromochloromethane	ND	u	g/l 0.50	1
n-Butylbenzene	ND	u	g/l 0.50	1
Dichlorodifluoromethane	ND	u	g/I 0.50	1
Hexachlorobutadiene	ND	u	g/l 0.50	1
sopropylbenzene	ND	u	g/I 0.50	1
o-Isopropyltoluene	ND	u	g/l 0.50	1
Naphthalene	ND	u	g/l 0.50	1
n-Propylbenzene	ND	u	g/l 0.50	1
sec-Butylbenzene	ND	u	g/I 0.50	1
ert-Butylbenzene	ND	u	g/I 0.50	1
1,2,3-Trichlorobenzene	ND	u	g/I 0.50	1
1,2,4-Trichlorobenzene	ND	u	g/I 0.50	1
1,2,4-Trimethylbenzene	ND	u	g/I 0.50	1
1,3,5-Trimethylbenzene	ND	u	g/l 0.50	1
Bromobenzene	ND	u	g/I 0.50	1
o-Chlorotoluene	ND	u	g/I 0.50	1
o-Chlorotoluene	ND	u	g/l 0.50	1
Dibromomethane	ND	u	g/l 0.50	1
1,2-Dibromoethane	ND	u	g/l 0.50	1
1,2-Dibromo-3-chloropropane	ND	u	g/I 0.50	1
1,3-Dichloropropane	ND	u	g/l 0.50	1
Methyl tert butyl ether	ND	u	g/l 0.50	1

ND

ug/l

1

No Tentatively Identified Compounds

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-08 Date Collected: 12/21/09 00:00

Client ID: TRIP BLANK Date Received: 12/29/09
Sample Location: WALPOLE, MA Field Prep: None

Parameter Result Qualifier Units RDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	93		80-120	

L0918777

Project Name: WALPOLE PK SOUTH Lab Number:

Project Number: 12700058 **Report Date:** 01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 12/30/09 07:18

Analyst: TT

arameter	Result	Qualifier	Units	RDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	: 01-08	Batch:	WG395058-2
Methylene chloride	ND		ug/l	0.8	50
1,1-Dichloroethane	ND		ug/l	0.9	50
Chloroform	ND		ug/l	0.9	50
Carbon tetrachloride	ND		ug/l	0.9	50
1,2-Dichloropropane	ND		ug/l	0.9	50
Dibromochloromethane	ND		ug/l	0.9	50
1,1,2-Trichloroethane	ND		ug/l	0.9	50
Tetrachloroethene	ND		ug/l	0.9	50
Chlorobenzene	ND		ug/l	0.9	50
Trichlorofluoromethane	ND		ug/l	0.9	50
1,2-Dichloroethane	ND		ug/l	0.9	50
1,1,1-Trichloroethane	ND		ug/l	0.9	50
Bromodichloromethane	ND		ug/l	0.9	50
trans-1,3-Dichloropropene	ND		ug/l	0.9	50
cis-1,3-Dichloropropene	ND		ug/l	0.9	50
Bromoform	ND		ug/l	0.9	50
1,1,2,2-Tetrachloroethane	ND		ug/l	0.9	50
Benzene	ND		ug/l	0.9	50
Toluene	ND		ug/l	0.9	50
Ethylbenzene	ND		ug/l	0.9	50
p/m-Xylene	ND		ug/l	0.9	50
Chloromethane	ND		ug/l	0.9	50
Bromomethane	ND		ug/l	0.9	50
Vinyl chloride	ND		ug/l	0.9	50
Chloroethane	ND		ug/l	0.9	50
1,1-Dichloroethene	ND		ug/l	0.9	50
trans-1,2-Dichloroethene	ND		ug/l	0.9	50
cis-1,2-Dichloroethene	ND		ug/l	0.9	50
Trichloroethene	ND		ug/l	0.9	50
1,2-Dichlorobenzene	ND		ug/l	0.9	50
1,3-Dichlorobenzene	ND		ug/l	0.9	50

L0918777

Project Name: WALPOLE PK SOUTH Lab Number:

Project Number: 12700058 **Report Date:** 01/05/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 12/30/09 07:18

Analyst: TT

arameter	Result	Qualifier	Units	RDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s)	01-08	Batch:	WG395058-2
1,4-Dichlorobenzene	ND		ug/l	0.5	50
Styrene	ND		ug/l	0.5	50
o-Xylene	ND		ug/l	0.5	50
1,1-Dichloropropene	ND		ug/l	0.5	50
2,2-Dichloropropane	ND		ug/l	0.8	50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.5	50
1,2,3-Trichloropropane	ND		ug/l	0.8	50
Bromochloromethane	ND		ug/l	0.8	50
n-Butylbenzene	ND		ug/l	0.5	50
Dichlorodifluoromethane	ND		ug/l	0.5	50
Hexachlorobutadiene	ND		ug/l	0.5	50
Isopropylbenzene	ND		ug/l	0.5	50
p-Isopropyltoluene	ND		ug/l	0.5	50
Naphthalene	ND		ug/l	0.5	50
n-Propylbenzene	ND		ug/l	0.5	50
sec-Butylbenzene	ND		ug/l	0.5	50
tert-Butylbenzene	ND		ug/l	0.5	50
1,2,3-Trichlorobenzene	ND		ug/l	0.5	50
1,2,4-Trichlorobenzene	ND		ug/l	0.5	50
1,2,4-Trimethylbenzene	ND		ug/l	0.8	50
1,3,5-Trimethylbenzene	ND		ug/l	0.5	50
Bromobenzene	ND		ug/l	0.5	50
o-Chlorotoluene	ND		ug/l	0.5	50
p-Chlorotoluene	ND		ug/l	0.5	50
Dibromomethane	ND		ug/l	0.5	50
1,2-Dibromoethane	ND		ug/l	0.8	50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.5	50
1,3-Dichloropropane	ND		ug/l	0.8	50
Methyl tert butyl ether	ND		ug/l	0.5	50

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 12/30/09 07:18

Analyst: TT

Parameter Result Qualifier Units RDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-08 Batch: WG395058-2

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	95		80-120	

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

arameter	LCS %Recovery	Qual		SD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated sa	ample(s):	01-08	Batch:	WG395058-	1			
Methylene chloride	96			-		70-130	-		
1,1-Dichloroethane	103			-		70-130	-		
Chloroform	108			-		70-130	-		
Carbon tetrachloride	115			-		70-130	-		
1,2-Dichloropropane	106			-		70-130	-		
Dibromochloromethane	111			-		70-130	-		
1,1,2-Trichloroethane	107			-		70-130	-		
Tetrachloroethene	111			-		70-130	-		
Chlorobenzene	106			-		70-130	-		
Trichlorofluoromethane	115			-		70-130	-		
1,2-Dichloroethane	118			-		70-130	-		
1,1,1-Trichloroethane	116			-		70-130	-		
Bromodichloromethane	111			-		70-130	-		
trans-1,3-Dichloropropene	110			-		70-130	-		
cis-1,3-Dichloropropene	112			-		70-130	-		
Bromoform	119			-		70-130	-		
1,1,2,2-Tetrachloroethane	105			-		70-130	-		
Benzene	104			-		70-130	-		
Toluene	104			-		70-130	-		
Ethylbenzene	105			-		70-130	-		
p/m-Xylene	106			-		70-130	-		

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

ırameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough L	ab Associated s	sample(s):	01-08	Batch:	WG395058-	-1			
Chloromethane	104			-		70-130	-		
Bromomethane	91			-		70-130	-		
Vinyl chloride	101			-		70-130	-		
Chloroethane	102			-		70-130	-		
1,1-Dichloroethene	100			-		70-130	-		
trans-1,2-Dichloroethene	101			-		70-130	-		
cis-1,2-Dichloroethene	103			-		70-130	-		
Trichloroethene	110			-		70-130	-		
1,2-Dichlorobenzene	104			-		70-130	-		
1,3-Dichlorobenzene	107			-		70-130	-		
1,4-Dichlorobenzene	105			-		70-130	-		
Styrene	104			-		70-130	-		
o-Xylene	104			-		70-130	-		
1,1-Dichloropropene	107			-		70-130	-		
2,2-Dichloropropane	114			-		70-130	-		
1,1,1,2-Tetrachloroethane	117			-		70-130	-		
1,2,3-Trichloropropane	115			-		70-130	-		
Bromochloromethane	106			-		70-130	-		
n-Butylbenzene	99			-		70-130	-		
Dichlorodifluoromethane	115			-		70-130	-		
Hexachlorobutadiene	110			-		70-130	-		

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-08 Batch:	WG395058-	-1			
Isopropylbenzene	107		-		70-130	-		
p-Isopropyltoluene	109		-		70-130	-		
Naphthalene	72		-		70-130	-		
n-Propylbenzene	103		-		70-130	-		
sec-Butylbenzene	104		-		70-130	-		
tert-Butylbenzene	109		-		70-130	-		
1,2,3-Trichlorobenzene	89		-		70-130	-		
1,2,4-Trichlorobenzene	91		-		70-130	-		
1,2,4-Trimethylbenzene	110		-		70-130	-		
1,3,5-Trimethylbenzene	110		-		70-130	-		
Bromobenzene	109		-		70-130	-		
o-Chlorotoluene	111		-		70-130	-		
p-Chlorotoluene	107		-		70-130	-		
Dibromomethane	101		-		70-130	-		
1,2-Dibromoethane	111		-		70-130	-		
1,2-Dibromo-3-chloropropane	99		-		70-130	-		
1,3-Dichloropropane	103		-		70-130	-		
Methyl tert butyl ether	114		-		70-130	-		

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L0918777

Report Date: 01/05/10

LCS LCSD %Recovery

Parameter %Recovery Qual %Recovery Qual Limits RPD Qual RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 Batch: WG395058-1

WALPOLE PK SOUTH

12700058

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
1,2-Dichlorobenzene-d4	100				80-120
4-Bromofluorobenzene	101				80-120

Project Name:

Project Number:

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSI Qual Four	_	Recovery y Qual Limits	RPE	RPD Qual Limits
olatile Organics by GC/MS - Sample	- Westborough	Lab Assoc	iated sample	(s): 01-08 Q	C Batch ID: WG	395058-3 Q0	C Sample: L091874	0-01	Client ID: MS
Methylene chloride	ND	4	4.0	101	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.4	110	-	-	70-130	-	20
Chloroform	ND	4	4.5	112	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.9	123	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.4	110	-	-	70-130	-	20
Dibromochloromethane	ND	4	4.0	101	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	4.2	104	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.6	114	-	-	70-130	-	20
Chlorobenzene	ND	4	4.4	110	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	5.0	124	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.7	117	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	5.2	130	-	-	70-130	-	20
Bromodichloromethane	ND	4	4.3	108	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	4.0	99	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	4.6	115	-	-	70-130	-	20
Bromoform	ND	4	4.0	101	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.0	99	-	-	70-130	-	20
Benzene	ND	4	4.2	106	-	-	70-130	-	20
Toluene	ND	4	4.4	109	-	-	70-130	-	20
Ethylbenzene	ND	4	4.3	107	-	-	70-130	-	20
p/m-Xylene	ND	8	8.6	108	-	-	70-130	-	20

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - cample	- Westborough	n Lab Assoc	iated sample	(s): 01-08 Q	C Batch ID: WG39	95058-3 QC	Sample: L091874	0-01 (Client ID: MS
Chloromethane	ND	4	3.6	91	-	-	70-130	-	20
Bromomethane	ND	4	4.0	101	-	-	70-130	-	20
Vinyl chloride	ND	4	5.0	125	-	-	70-130	-	20
Chloroethane	ND	4	4.4	111	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.5	114	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2	106	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	4.2	105	-	-	70-130	-	20
Trichloroethene	ND	4	4.5	113	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	4.0	99	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	4.1	102	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	4.0	100	-	-	70-130	-	20
Styrene	ND	4	3.9	97	-	-	70-130	-	20
o-Xylene	ND	4	4.1	104	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	4.4	111	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.8	120	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	4.6	115	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	4.1	102	-	-	70-130	-	20
Bromochloromethane	ND	4	4.2	104	-	-	70-130	-	20
n-Butylbenzene	ND	4	4.0	99	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	3.9	98	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.3	108	-	-	70-130	-	20

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

rameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS ample	- Westborough	Lab Associ	ated sample	(s): 01-08 Q	C Batch I	D: WG395	5058-3 QC	Sample: L0918740	0-01	Client ID: MS
Isopropylbenzene	ND	4	3.8	96		-	-	70-130	-	20
p-Isopropyltoluene	ND	4	4.3	107		-	-	70-130	-	20
Naphthalene	ND	4	2.6	65	Q	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.2	106		-	-	70-130	-	20
sec-Butylbenzene	ND	4	4.3	108		-	-	70-130	-	20
tert-Butylbenzene	ND	4	4.5	112		-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.3	82		-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.2	81		-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.4	110		-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.4	111		-	-	70-130	-	20
Bromobenzene	ND	4	4.3	108		-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.4	110		-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.2	105		-	-	70-130	-	20
Dibromomethane	ND	4	4.2	106		-	-	70-130	-	20
1,2-Dibromoethane	ND	4	4.4	109		-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.7	93		-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.1	104		-	-	70-130	-	20
Methyl tert butyl ether	ND	4	4.4	109	<u> </u>	-	-	70-130	-	20

Project Name: WALPOLE PK SOUTH

Project Number:

12700058

Lab Number:

L0918777

Report Date:

01/05/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG395058-3 QC Sample: L0918740-01 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	98		80-120	
4-Bromofluorobenzene	102		80-120	

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number:

L0918777

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
platile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-08	QC Batch ID: WG39505	8-4 QC Samp	ole: L09187	83-02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number:

L0918777

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01-08	QC Batch ID: WG395058-	4 QC Sample	: L0918783-0	2 Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number:

L0918777

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01-08	QC Batch ID: WG395058-4	QC Sample:	L0918783-02	Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

WALPOLE PK SOUTH

Project Number: 12700058

Project Name:

Lab Number:

L0918777

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Ass Sample	sociated sample(s): 01-08	QC Batch ID: WG395058	-4 QC Sampl	e: L09187	83-02 Client ID: DUP
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	1.4	1.4	ug/l	0	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	102		101		80-120	
4-Bromofluorobenzene	93		94		80-120	

METALS

12/21/09 10:12

12/29/09

Project Name: WALPOLE PK SOUTH **Lab Number:** L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Dilution

Lab ID: L0918777-01

Client ID: MW-9

Sample Location: WALPOLE, MA

Matrix: Water

Fie	ld Prep:	S	ee Narrative	1
Date	Date	Prep	Analytical	Analyst
Prepared	Analyzed	Method	Method	

Date Collected:

Date Received:

Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 18:56	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.056		mg/l	0.010	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:09	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 18:56	EPA 3005A	64,6020A	TD
Vanadium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI
Zinc, Dissolved	0.052		mg/l	0.050	1	01/04/10 11:15	01/04/10 17:57	EPA 3005A	60,6010B	AI

12/21/09 11:05

12/29/09

Project Name: WALPOLE PK SOUTH **Lab Number:** L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L0918777-02

Client ID: RIZ-8

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:20	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	0.005		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.031		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:11	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:20	EPA 3005A	64,6020A	TD
Vanadium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	01/04/10 11:15	01/04/10 18:00	EPA 3005A	60,6010B	Al

Project Name: Lab Number: WALPOLE PK SOUTH L0918777

Project Number: 12700058 Report Date: 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-03

Client ID: GHC-6

Sample Location: WALPOLE, MA

Matrix: Water Date Collected: 12/28/09 08:25

Date Received: 12/29/09

Field Prep: See Narrative

Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
tals - Wes	stborough La	ab							
ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:26	EPA 3005A	64,6020A	TD
ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
0.039		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:13	EPA 7470A	64,7470A	EZ
ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:26	EPA 3005A	64,6020A	TD
ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
ND		mg/l	0.050	1	01/04/10 11:15	01/04/10 18:04	EPA 3005A	60,6010B	AI
	tals - Wes	tals - Westborough La ND ND 0.039 ND ND ND ND ND ND ND ND ND N	tals - Westborough Lab ND mg/l ND mg/l 0.039 mg/l ND mg/l	tals - Westborough Lab ND mg/l 0.0020 ND mg/l 0.005 0.039 mg/l 0.010 ND mg/l 0.004 ND mg/l 0.001 ND mg/l 0.010 ND mg/l 0.0002 ND mg/l 0.010 ND mg/l 0.007 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.0020 ND mg/l 0.0020 ND mg/l 0.0010	Result Qualifier Units RDL Factor tals - Westborough Lab ND mg/l 0.0020 4 ND mg/l 0.005 1 0.039 mg/l 0.010 1 ND mg/l 0.004 1 ND mg/l 0.004 1 ND mg/l 0.010 1 ND mg/l 0.0002 1 ND mg/l 0.010 1 ND mg/l 0.007 1 ND mg/l 0.0020 4 ND mg/l 0.0020 4 ND mg/l 0.0020 4 ND mg/l 0.010 1	Result Qualifier Units RDL Factor Prepared tals - Westborough Lab ND mg/l 0.0020 4 12/30/09 09:40 ND mg/l 0.005 1 01/04/10 11:15 0.039 mg/l 0.010 1 01/04/10 11:15 ND mg/l 0.004 1 01/04/10 11:15 ND mg/l 0.004 1 01/04/10 11:15 ND mg/l 0.010 1 01/04/10 11:15 ND mg/l 0.0002 1 12/30/09 13:20 ND mg/l 0.010 1 01/04/10 11:15 ND mg/l 0.010 1 01/04/10 11:15 ND mg/l 0.007 1 01/04/10 11:15 ND mg/l 0.007 1 01/04/10 11:15 ND mg/l 0.0020 4 12/30/09 09:40 ND mg/l 0.010 1 01/04/10 11:15	Result Qualifier Units RDL Factor Prepared Analyzed tals - Westborough Lab ND mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:26 ND mg/l 0.005 1 01/04/10 11:15 01/04/10 18:04 0.039 mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.01 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.0002 1 12/30/09 13:20 12/31/09 11:13 ND mg/l 0.0025 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 ND mg/l 0.007 1 01/04/10 11:15 01	Result Qualifier Units RDL Factor Prepared Analyzed Method tals - Westborough Lab ND mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:26 EPA 3005A ND mg/l 0.005 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.01 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.01 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND mg/l 0.0002 1 12/30/09 13:20 12/31/09 11:13 EPA 7470A ND mg/l 0.025 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A ND </td <td>Result Qualifier Units RDL Factor Prepared Analyzed Method Method tals - Westborough Lab ND mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:26 EPA 3005A 64,6020A ND mg/l 0.005 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B 0.039 mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.01 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.002 1 12/30/09 13:20 12/31/09 11:13 EPA 7470A 64,7470A</td>	Result Qualifier Units RDL Factor Prepared Analyzed Method Method tals - Westborough Lab ND mg/l 0.0020 4 12/30/09 09:40 12/30/09 19:26 EPA 3005A 64,6020A ND mg/l 0.005 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B 0.039 mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.004 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.01 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.010 1 01/04/10 11:15 01/04/10 18:04 EPA 3005A 60,6010B ND mg/l 0.002 1 12/30/09 13:20 12/31/09 11:13 EPA 7470A 64,7470A

Project Name: WALPOLE PK SOUTH **Lab Number:** L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-04

Client ID: RIZ-3

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 12/28/09 09:03

Date Received: 12/29/09

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:32	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Barium, Dissolved	0.177		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:15	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:32	EPA 3005A	64,6020A	TD
Vanadium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050	1	01/04/10 11:15	01/04/10 18:07	EPA 3005A	60,6010B	Al

12/28/09 10:00

12/29/09

Project Name: WALPOLE PK SOUTH **Lab Number:** L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L0918777-05

Client ID: RIZ-9

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	tborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:38	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Barium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:16	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Silver, Dissolved	ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:38	EPA 3005A	64,6020A	TD
Vanadium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	01/04/10 11:15	01/04/10 18:10	EPA 3005A	60,6010B	AI

12/28/09 10:43

See Narrative

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

ΑI

ΑI

TD

ΑI

ΑI

12/29/09

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Date Collected:

Date Received:

01/04/10 11:15 01/04/10 18:14 EPA 3005A

01/04/10 11:15 01/04/10 18:14 EPA 3005A

01/04/10 11:15 01/04/10 18:14 EPA 3005A

Field Prep:

Lab ID: L0918777-06

Client ID: RIZ-10

Sample Location: WALPOLE, MA

ND

ND

ND

ND

ND

Matrix: Water

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Silver, Dissolved

Zinc, Dissolved

Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:44	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.099		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:55	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:14	EPA 3005A	60,6010B	AI

1

1

4

1

1

mg/l

mg/l

mg/l

mg/l

mg/l

0.010

0.007

0.0020

0.010

0.050

Project Name: WALPOLE PK SOUTH **Lab Number:** L0918777

Project Number: 12700058 **Report Date:** 01/05/10

SAMPLE RESULTS

Lab ID: L0918777-07

Client ID: MW-3

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 12/28/09 11:50
Date Received: 12/29/09

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:50	EPA 3005A	64,6020A	TD
Arsenic, Dissolved	ND		mg/l	0.005	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Barium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002	1	12/30/09 13:20	12/31/09 11:56	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/09 09:40	12/30/09 19:50	EPA 3005A	64,6020A	TD
Vanadium, Dissolved	ND		mg/l	0.010	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	01/04/10 11:15	01/04/10 18:17	EPA 3005A	60,6010B	Al

Lab Number:

Project Name: WALPOLE PK SOUTH

L0918777 Project Number: 12700058 **Report Date:** 01/05/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals -	- Westborough Lab fo	r sample	(s): 01-	07 Batch:	WG395110-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD
Thallium, Dissolved	ND	mg/l	0.0005	1	12/30/09 09:40	12/30/09 18:32	64,6020A	TD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Westborough Lab fo	r sample	e(s): 01-	07 Batch:	WG395135-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	12/30/09 13:20	12/31/09 10:53	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01-0	7 Batch:	WG395350-1			
Arsenic, Dissolved	ND	mg/l	0.005	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Barium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Beryllium, Dissolved	ND	mg/l	0.004	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Cadmium, Dissolved	ND	mg/l	0.004	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Chromium, Dissolved	ND	mg/l	0.01	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Lead, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Nickel, Dissolved	ND	mg/l	0.025	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Selenium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Silver, Dissolved	ND	mg/l	0.007	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Vanadium, Dissolved	ND	mg/l	0.010	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al
Zinc, Dissolved	ND	mg/l	0.050	1	01/04/10 11:15	01/04/10 17:15	60,6010B	Al

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 **Report Date:** 01/05/10

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PK SOUTH

Project Number: 12700058

Lab Number: L0918777

Parameter		LCS %Recovery	Qua	ı %	LCSD Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Dissolved Metals -	- Westborough Lab	Associated samp	ole(s):	01-07	Batch:	WG395110-2	WG395110-3				
Antimony, Dissolved		97			94		80-120	3		20	
Thallium, Dissolved		97			96		80-120	1		20	
MCP Dissolved Metals -	- Westborough Lab	Associated samp	ole(s):	01-07	Batch:	WG395135-2	WG395135-3				
Mercury, Dissolved		98			106		80-120	8		20	
MCP Dissolved Metals -	- Westborough Lab	Associated samp	ole(s):	01-07	Batch:	WG395350-2	WG395350-3				
Arsenic, Dissolved		110			109		80-120	1		20	
Barium, Dissolved		100			98		80-120	2		20	
Beryllium, Dissolved		105			101		80-120	4		20	
Cadmium, Dissolved		108			108		80-120	0		20	
Chromium, Dissolved		100			105		80-120	5		20	
Lead, Dissolved		106			106		80-120	0		20	
Nickel, Dissolved		101			101		80-120	0		20	
Selenium, Dissolved		110			112		80-120	2		20	
Silver, Dissolved		103			105		80-120	2		20	
Vanadium, Dissolved		102			104		80-120	2		20	
Zinc, Dissolved		109			108		80-120	1		20	

Project Name: WALPOLE PK SOUTH

Lab Number: L0918777 **Report Date:** 01/05/10 Project Number: 12700058

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Cooler **Custody Seal** Α Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis
L0918777-01A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-01C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TL-6020S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-02A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-02B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-02C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-T470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-03A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-03B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-03C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-T470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-04A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-04B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)

Project Name: WALPOLE PK SOUTH Lab Number: L0918777 Project Number: 12700058 **Report Date:** 01/05/10

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis
L0918777-04C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-05A	Vial Ascorbic Acid/HCI preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-05B	Vial Ascorbic Acid/HCI preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-05C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TL-6020S(180),MCP-PB-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-06A	Vial Ascorbic Acid/HCI preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-06B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-06C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-T470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-CN-6010S(180),MCP-CN-6010S(180),MCP-CN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-07A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-07B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)
L0918777-07C	Plastic 500ml HNO3 preserved	A	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SB-6020S(180),MCP-SE-6010S(180),MCP-BE-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TL-6020S(180),MCP-PB-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)
L0918777-08A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5	Υ	Absent	524.2(14)

Project Name: WALPOLE PK SOUTH Lab Number: L0918777

Project Number: 12700058 Report Date: 01/05/10

GLOSSARY

Acronyms

EPA · Environmental Protection Agency.

LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

ND · Not detected at the reported detection limit for the sample.

NI · Not Ignitable.

RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E . Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J : Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

Report Format: Data Usability Report

Project Name:WALPOLE PK SOUTHLab Number:L0918777Project Number:12700058Report Date:01/05/10

REFERENCES

Methods for the Determination of Organic Compounds in Drinking Water - Supplement II. EPA/600/R-92/129, August 1992.

- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised December 1, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C. SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B, C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B, E, 5220D, EPA 410.4, SM 5210B,

5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. Organic Parameters: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500Cl-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health Certificate/Lab ID: AAMA. **NELAP Accredited.** Non-Potable Water (Inorganic Parameters: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B**: Freon-113, 1,2,4,5-Tetramethylbenzene. **EPA 8330A**: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C**: Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625**: 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

IS YOUR PROJECT MA MCP or CT RCP? FORM NO: 01-01 (rev. 14-0CT-07)	8 Tripbluc	6 RIZ-10	9-7H7 E	18777.1 Mw-9	ALPHA Lab ID (Lab Use Only) Sample ID	Other Project specific Requirements/Comments/Detection Limits $DL/ \neq \mathit{KCEO}-1$	Email: IAM. CAMMEN Athorped. Com These samples have been previously analyzed by Alpha	Fax: 508 903 2001	Fanu	Address: D. 1 1 CL	508-898-9193 Int Information	CHAIN (AMAZICA) TEL: 508-832-9300 TEL: 508-832-9300
Relinquished By: Respression 12/16/9 - 8/0K Apha	643	 10/28/4 0725	12/21/9 1012 6W 180	Collection Sample Sampler's Date Time Matrix Initials		pha Date Due: \\(\(\) \\(\) \\\(\) \\\(\) \\\\\(\) \\\\\(\) \\\\\(\) \\\\\(\) \\\\\\\\	Turn-Around Time	1 2000	Project # 12 7005 8 Project Manager: Ra. Ch. In Toure	Project Name: Unipole IVE SOUL	PAGE	
HLI N Rederved By: 12/24/C	× <			× × × × × × × × × × × × × × × × × × ×	ers Vo	ANA C. SZY MCD 14 M	etak	XYes ☐ No Are MCP Analytical Methods Required? ☐ Yes	MA MCP PR	Regulatory Requirements/Report Limits State /Fed Program Criteria		ed in Lab: (ヨ)ユ의 0 句 Information - Data Deliverables
Please print clearly, legibly and completely. Samples cannot be logged in and turnaround time clock will not start until any ambiguities are resolved All samples submitted are subject to the phase Terms and Conditions of See reverse side	~ *		vsix o. vs.un Pitter 2	metals fell-filled 3	(Please specify below) Sample Specific Comments	eded do	SAMPLE HANDLING Filtration	quired? dence Protocols) Required?	ESUMPTIVE CERTAINTY - CT REASONABLE CONFIDENCE PROTOCOLS		a same as Client into PO#:	

ANALYTICAL REPORT

Lab Number: L1004931

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: Ian Cannan Phone: (508) 903-2039

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Report Date: 04/15/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 12700058 **Report Date:** 04/15/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1004931-01	GHC-5	WALPOLE, MA	04/07/10 12:32
L1004931-02	GHC-5-A	WALPOLE, MA	04/07/10 12:56
L1004931-03	GHC-5-B	WALPOLE, MA	04/07/10 12:57
L1004931-04	GHC-5-C	WALPOLE, MA	04/07/10 12:58
L1004931-05	RIZ-2	WALPOLE, MA	04/07/10 13:39
L1004931-06	RIZ-2-A	WALPOLE, MA	04/07/10 13:55
L1004931-07	RIZ-2-B	WALPOLE, MA	04/07/10 13:56
L1004931-08	RIZ-2-C	WALPOLE, MA	04/07/10 13:57
L1004931-09	RIZ-10	WALPOLE, MA	04/07/10 14:19
L1004931-10	RIZ-10-A	WALPOLE, MA	04/07/10 14:32
L1004931-11	RIZ-10-B	WALPOLE, MA	04/07/10 14:33
L1004931-12	RIZ-10-C	WALPOLE, MA	04/07/10 14:34

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1004931

Lab Number:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 **Report Date:** 04/15/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

For additional information, please contact Client Services at 800-624-9220.

The date collected for L1004931-01 through -04 was obtained from the sample labels.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

Project Number: 12700058 **Report Date:** 04/15/10

Case Narrative (continued)

Non-MCP Related Narratives

Phenolics, Total

L1004931-01 and -09 have elevated detection limits due to the dilutions required by the sample matrices.

Coliform, Fecal (MF)

L1004931-02, -03, -04, -10, -11 and -12 have elevated detection limits due to the dilutions required by the sample matrices.

L1004931-06, -07 and -08 have elevated detection limits due to the dilutions required by the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 04/15/10

ORGANICS

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: Report Date: 12700058 04/15/10

SAMPLE RESULTS

Lab ID: Date Collected: L1004931-01 04/07/10 12:32

Client ID: GHC-5

Date Received: 04/07/10 Field Prep: Sample Location: WALPOLE, MA See Narrative

Matrix: Water Analytical Method: 16,524.2 04/09/10 17:33 Analytical Date:

Analyst: TT

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: Report Date: 12700058 04/15/10

SAMPLE RESULTS

Lab ID: Date Collected: L1004931-01 04/07/10 12:32

Client ID: GHC-5 Date Received: 04/07/10

Sample Location: WALPOLE, MA Field Prep: See Narrative Parameter RDL **Dilution Factor** Qualifier Units Result

Parameter	Result	Qualifier Units	KDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab			
1,3-Dichlorobenzene	ND	ug/l	0.50	1
1,4-Dichlorobenzene	ND	ug/l	0.50	1
Styrene	ND	ug/l	0.50	1
o-Xylene	ND	ug/l	0.50	1
1,1-Dichloropropene	ND	ug/l	0.50	1
2,2-Dichloropropane	ND	ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	1
1,2,3-Trichloropropane	ND	ug/l	0.50	1
Bromochloromethane	ND	ug/l	0.50	1
n-Butylbenzene	ND	ug/l	0.50	1
Dichlorodifluoromethane	ND	ug/l	0.50	1
Hexachlorobutadiene	ND	ug/l	0.50	1
Isopropylbenzene	ND	ug/l	0.50	1
p-Isopropyltoluene	ND	ug/l	0.50	1
Naphthalene	ND	ug/l	0.50	1
n-Propylbenzene	ND	ug/l	0.50	1
sec-Butylbenzene	ND	ug/l	0.50	1
tert-Butylbenzene	ND	ug/l	0.50	1
1,2,3-Trichlorobenzene	ND	ug/l	0.50	1
1,2,4-Trichlorobenzene	ND	ug/l	0.50	1
1,2,4-Trimethylbenzene	ND	ug/l	0.50	1
1,3,5-Trimethylbenzene	ND	ug/l	0.50	1
Bromobenzene	ND	ug/l	0.50	1
o-Chlorotoluene	ND	ug/l	0.50	1
p-Chlorotoluene	ND	ug/l	0.50	1
Dibromomethane	ND	ug/l	0.50	1
1,2-Dibromoethane	ND	ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND	ug/l	0.50	1
1,3-Dichloropropane	ND	ug/l	0.50	1
Methyl tert butyl ether	ND	ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	89		80-120	

04/07/10

See Narrative

Date Received:

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-05 Date Collected: 04/07/10 13:39

Client ID: RIZ-2

Sample Location: WALPOLE, MA Field Prep:

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 04/09/10 18:05

Analyst: TT

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichklorofucorethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborou	gh Lab				
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itaris-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bernache ND ug/l 0.50 1 Bernacher ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Eenzene ND ug/l 0.50 1 Tolluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorotluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Chloro	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	0.50	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ehylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-05 Date Collected: 04/07/10 13:39

Client ID: RIZ-2 Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL **Dilution Factor** Parameter Qualifier Units Result Volatile Organics by GC/MS - Westborough Lab ND 1,3-Dichlorobenzene ug/l 0.50 1 ND 0.50 1 1,4-Dichlorobenzene ug/l Styrene ND 0.50 ug/l 1 o-Xylene ND ug/l 0.50 1 ND 0.50 1,1-Dichloropropene ug/l 1 ND 0.50 2,2-Dichloropropane ug/l 1 1,1,1,2-Tetrachloroethane ND 0.50 1 ug/l ND 0.50 1 1,2,3-Trichloropropane ug/l Bromochloromethane ND ug/l 0.50 1 ND 0.50 n-Butylbenzene ug/l 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND 0.50 ug/l 1 tert-Butylbenzene ND ug/l 0.50 1 ND 0.50 1 1,2,3-Trichlorobenzene ug/l ND 0.50 1 1,2,4-Trichlorobenzene ug/l 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND 0.50 1 ug/l Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND 0.50 1 ug/l ND p-Chlorotoluene ug/l 0.50 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	92		80-120	

ND

ND

ND

ND

ND

ug/l

ug/l

ug/l

ug/l

ug/l

0.50

0.50

0.50

0.50

0.50

1

1

1

1

1

Dibromomethane

1,2-Dibromoethane

1,3-Dichloropropane

Methyl tert butyl ether

1,2-Dibromo-3-chloropropane

04/07/10

See Narrative

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09 Date Collected: 04/07/10 14:19

Client ID: RIZ-10

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 04/09/10 18:38

Analyst: TT

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichklorofucorethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromodichkoromethane ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westborou	gh Lab				
Chloroform ND ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	0.50	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itaris-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bernache ND ug/l 0.50 1 Bernacher ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1-Dichloroethane	ND		ug/l	0.50	1
1,2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	Chloroform	ND		ug/l	0.50	1
Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromofichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	1
1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroffuoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Eenzene ND ug/l 0.50 1 Tolluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichlorotluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Chloro	Dibromochloromethane	ND		ug/l	0.50	1
Chlorobenzene ND ug/l 0.50 1 Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 P/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.50	1
Trichlorofluoromethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Ethyloenzene ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 <td< td=""><td>Chlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	Chlorobenzene	ND		ug/l	0.50	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	0.50	1
ND	1,2-Dichloroethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Toluene ND ug/l 0.50 1	1,1,1-Trichloroethane	ND		ug/l	0.50	1
cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Ehylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromodichloromethane	ND		ug/l	0.50	1
Bromoform ND ug/l 0.50 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Benzene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
trans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
cis-1,2-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND		ug/l	0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09 Date Collected: 04/07/10 14:19

Client ID: RIZ-10 Date Received: 04/07/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab				
1,3-Dichlorobenzene	ND		ug/l	0.50	1
1,4-Dichlorobenzene	ND		ug/l	0.50	1
Styrene	ND		ug/l	0.50	1
o-Xylene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	0.50	1
2,2-Dichloropropane	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
1,2,3-Trichloropropane	ND		ug/l	0.50	1
Bromochloromethane	ND		ug/l	0.50	1
n-Butylbenzene	ND		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	0.50	1
Hexachlorobutadiene	ND		ug/l	0.50	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	89		80-120	

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 04/09/10 13:54

Analyst: TT

arameter	Result	Qualifier	Units	RDL	
platile Organics by GC/MS -	Westborough La	b for sample(s):	01,05,09	Batch:	WG407461-2
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 04/09/10 13:54

Analyst: TT

arameter	Result	Qualifier	Units	RDL	
olatile Organics by GC/MS - V	Vestborough La	b for sample(s):	: 01,05,09	Batch:	WG407461-2
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 04/09/10 13:54

Analyst: TT

Parameter Result Qualifier Units RDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01,05,09 Batch: WG407461-2

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

	Acceptance								
Surrogate	%Recovery	Qualifier	Criteria						
1,2-Dichlorobenzene-d4	102		80-120						
4-Bromofluorobenzene	93		80-120						

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

arameter	LCS %Recovery Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	ab Associated sample	(s): 01,05,09 Batch	: WG407461-1			
Methylene chloride	97	-	70-130	-		
1,1-Dichloroethane	101	-	70-130	-		
Chloroform	104	-	70-130	-		
Carbon tetrachloride	98	-	70-130	-		
1,2-Dichloropropane	102	-	70-130	-		
Dibromochloromethane	113	-	70-130	-		
1,1,2-Trichloroethane	120	-	70-130	-		
Tetrachloroethene	119	-	70-130	-		
Chlorobenzene	94	-	70-130	-		
Trichlorofluoromethane	97	-	70-130	-		
1,2-Dichloroethane	102	-	70-130	-		
1,1,1-Trichloroethane	102	-	70-130	-		
Bromodichloromethane	98	-	70-130	-		
trans-1,3-Dichloropropene	115	-	70-130	-		
cis-1,3-Dichloropropene	111	-	70-130	-		
Bromoform	88	-	70-130	-		
1,1,2,2-Tetrachloroethane	95	-	70-130	-		
Benzene	106	-	70-130	-		
Toluene	125	-	70-130	-		
Ethylbenzene	92	-	70-130	-		
p/m-Xylene	94	-	70-130	-		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,05,09	Batch	: WG407	7461-1			
Chloromethane	96		-			70-130	-		
Bromomethane	93		-			70-130	-		
Vinyl chloride	106		-			70-130	-		
Chloroethane	88		-			70-130	-		
1,1-Dichloroethene	96		-			70-130	-		
trans-1,2-Dichloroethene	97		-			70-130	-		
cis-1,2-Dichloroethene	107		-			70-130	-		
Trichloroethene	101		-			70-130	-		
1,2-Dichlorobenzene	105		-			70-130	-		
1,3-Dichlorobenzene	104		-			70-130	-		
1,4-Dichlorobenzene	104		-			70-130	-		
Styrene	94		-			70-130	-		
o-Xylene	94		-			70-130	-		
1,1-Dichloropropene	103		-			70-130	-		
2,2-Dichloropropane	102		-			70-130	-		
1,1,1,2-Tetrachloroethane	88		-			70-130	-		
1,2,3-Trichloropropane	84		-			70-130	-		
Bromochloromethane	109		-			70-130	-		
n-Butylbenzene	104		-			70-130	-		
Dichlorodifluoromethane	90		-			70-130	-		
Hexachlorobutadiene	103		-			70-130	-		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated s	ample(s):	01,05,09 Ba	atch: WG4	107461-1			
Isopropylbenzene	92		-		70-130	-		
p-isopropyltoluene	91		-		70-130	-		
Naphthalene	93		-		70-130	-		
n-Propylbenzene	91		-		70-130	-		
sec-Butylbenzene	92		-		70-130	-		
tert-Butylbenzene	92		-		70-130	-		
1,2,3-Trichlorobenzene	102		-		70-130	-		
1,2,4-Trichlorobenzene	101		-		70-130	-		
1,2,4-Trimethylbenzene	94		-		70-130	-		
1,3,5-Trimethylbenzene	92		-		70-130	-		
Bromobenzene	92		-		70-130	-		
o-Chlorotoluene	91		-		70-130	-		
p-Chlorotoluene	93		-		70-130	-		
Dibromomethane	105		-		70-130	-		
1,2-Dibromoethane	114		-		70-130	-		
1,2-Dibromo-3-chloropropane	99		-		70-130	-		
1,3-Dichloropropane	128		-		70-130	-		
Methyl tert butyl ether	95		-		70-130	-		

Lab Number: L1004931

Report Date: 04/15/10

	LCS		LCSD		%Recovery			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 Batch: WG407461-1

WALPOLE PARK SOUTH

12700058

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
1,2-Dichlorobenzene-d4	98				80-120
4-Bromofluorobenzene	89				80-120

Project Name:

Project Number:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS -	- Westborough	n Lab Assoc	ciated sample	e(s): 01,05,09	QC Bat	tch ID: WG	3407461-5 (QC Sam _l	ple: L1004	819-01	Client ID: MS
Methylene chloride	ND	4	3.9	97		-	-		70-130	-	20
1,1-Dichloroethane	ND	4	4.4	111		-	-		70-130	-	20
Chloroform	ND	4	4.7	117		-	-		70-130	-	20
Carbon tetrachloride	ND	4	4.8	120		-	-		70-130	-	20
1,2-Dichloropropane	ND	4	4.6	114		-	-		70-130	-	20
Dibromochloromethane	ND	4	4.9	123		-	-		70-130	-	20
1,1,2-Trichloroethane	ND	4	5.4	136	Q	-	-		70-130	-	20
Tetrachloroethene	ND	4	5.4	136	Q	-	-		70-130	-	20
Chlorobenzene	ND	4	4.6	115		-	-		70-130	-	20
Trichlorofluoromethane	ND	4	4.6	115		-	-		70-130	-	20
1,2-Dichloroethane	ND	4	4.6	115		-	-		70-130	-	20
1,1,1-Trichloroethane	ND	4	4.9	123		-	-		70-130	-	20
Bromodichloromethane	ND	4	4.4	109		-	-		70-130	-	20
trans-1,3-Dichloropropene	ND	4	4.4	111		-	-		70-130	-	20
cis-1,3-Dichloropropene	ND	4	5.0	124		-	-		70-130	-	20
Bromoform	ND	4	4.0	100		-	-		70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.6	114		-	-		70-130	-	20
Benzene	ND	4	4.4	111		-	-		70-130	-	20
Toluene	ND	4	5.3	133	Q	-	-		70-130	-	20
Ethylbenzene	ND	4	4.4	111		-	-		70-130	-	20
p/m-Xylene	ND	8	8.9	111		-	-		70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS Sample	- Westborough	n Lab Assoc	iated sample	(s): 01,05,09	QC Bat	ch ID: WG	3407461-5 C	QC Samp	ole: L1004	819-01	Client ID: MS
Chloromethane	ND	4	5.2	131	Q	-	-		70-130	-	20
Bromomethane	ND	4	4.0	101		-	-		70-130	-	20
Vinyl chloride	ND	4	6.9	173	Q	-	-		70-130	-	20
Chloroethane	ND	4	4.3	107		-	-		70-130	-	20
1,1-Dichloroethene	ND	4	4.1	103		-	-		70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2	105		-	-		70-130	-	20
cis-1,2-Dichloroethene	ND	4	4.7	118		-	-		70-130	-	20
Trichloroethene	ND	4	4.4	110		-	-		70-130	-	20
1,2-Dichlorobenzene	ND	4	4.3	108		-	-		70-130	-	20
1,3-Dichlorobenzene	ND	4	4.2	106		-	-		70-130	-	20
1,4-Dichlorobenzene	ND	4	4.1	103		-	-		70-130	-	20
Styrene	ND	4	4.2	105		-	-		70-130	-	20
o-Xylene	ND	4	4.4	111		-	-		70-130	-	20
1,1-Dichloropropene	ND	4	4.7	118		-	-		70-130	-	20
2,2-Dichloropropane	ND	4	4.7	119		-	-		70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	4.0	101		-	-		70-130	-	20
1,2,3-Trichloropropane	ND	4	4.2	106		-	-		70-130	-	20
Bromochloromethane	ND	4	4.6	115		-	-		70-130	-	20
n-Butylbenzene	ND	4	4.5	113		-	-		70-130	-	20
Dichlorodifluoromethane	ND	4	5.6	140	Q	-	-		70-130	-	20
Hexachlorobutadiene	ND	4	3.9	99		-	-		70-130	-	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS cample	- Westborough	Lab Associ	ated sample	(s): 01,05,09	QC Bato	ch ID: WG	407461-5 (QC Sam	ple: L1004	819-01	Client	ID: MS
Isopropylbenzene	ND	4	3.9	97		-	-		70-130	-		20
p-Isopropyltoluene	ND	4	4.2	104		-	-		70-130	-		20
Naphthalene	ND	4	3.8	95		-	-		70-130	-		20
n-Propylbenzene	ND	4	4.5	112		-	-		70-130	-		20
sec-Butylbenzene	ND	4	4.4	110		-	-		70-130	-		20
tert-Butylbenzene	ND	4	4.2	106		-	-		70-130	-		20
1,2,3-Trichlorobenzene	ND	4	3.9	98		-	-		70-130	-		20
1,2,4-Trichlorobenzene	ND	4	3.6	91		-	-		70-130	-		20
1,2,4-Trimethylbenzene	ND	4	4.4	110		-	-		70-130	-		20
1,3,5-Trimethylbenzene	ND	4	4.3	108		-	-		70-130	-		20
Bromobenzene	ND	4	4.3	107		-	-		70-130	-		20
o-Chlorotoluene	ND	4	4.3	107		-	-		70-130	-		20
p-Chlorotoluene	ND	4	4.2	106		-	-		70-130	-		20
Dibromomethane	ND	4	4.3	109		-	-		70-130	-		20
1,2-Dibromoethane	ND	4	4.2	105		-	-		70-130	-		20
1,2-Dibromo-3-chloropropane	ND	4	4.0	101		-	-		70-130	-		20
1,3-Dichloropropane	ND	4	5.3	134	Q	-	-		70-130	-		20
Methyl tert butyl ether	ND	4	4.1	103	<u> </u>	-	-		70-130	-		20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931

Report Date:

04/15/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407461-5 QC Sample: L1004819-01 Client ID: MS Sample

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	
1,2-Dichlorobenzene-d4	99		80-120	
4-Bromofluorobenzene	100		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931

Report Date:

04/15/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01,05,09	QC Batch ID: WG40)7461-6 QC	Sample: L100	04819-02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,05,09 Bample QC Batch ID: WG407461-6 QC Sample: L1004819-02 Client ID: DUSAmple Ethylbenzere ND ND ND ug1 NC 20 p/m-Xylene ND ND ND ug1 NC 20 Chloromethane ND ND ND ug1 NC 20 Bromomethane ND ND ND ug1 NC 20 Vinyl chloride ND ND ND ug1 NC 20 Chloroethane ND ND ND ug1 NC 20 1,1-Dichloroethene ND ND ND ug1 NC 20 trans-1,2-Dichloroethene ND ND ND ug1 NC 20 Trichloroethene ND ND ND ug1 NC 20 1,2-Dichloroethezene ND ND ND ug1 NC 20 1,3-Dichloroethezene ND <t< th=""><th>Parameter</th><th>Native Sample</th><th>Duplicate Sample</th><th>Units</th><th>RPD</th><th>RPD Limits</th></t<>	Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
p/m-Xylene ND ND ug/l NC 20 Chloromethane ND ND ND ug/l NC 20 Bromomethane ND ND ND ug/l NC 20 Vinyl chloride ND ND ND ug/l NC 20 Chloroethane ND ND ND ug/l NC 20 1,1-Dichloroethane ND ND ND ug/l NC 20 trans-1,2-Dichloroethane ND ND ND ug/l NC 20 trans-1,2-Dichloroethane ND ND ND ug/l NC 20 Trichloroethane ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC		Associated sample(s): 01,05,09	QC Batch ID: WG40	07461-6 QC	Sample: L10048	19-02 Client ID: DUP
Chloromethane ND ND ug/l NC 20 Bromomethane ND ND ND ug/l NC 20 Vinyl chloride ND ND ND ug/l NC 20 Chloroethane ND ND ND ug/l NC 20 1,1-Dichloroethene ND ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ND ug/l NC 20 dis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l	Ethylbenzene	ND	ND	ug/l	NC	20
Bromomethane ND ND ug/l NC 20 Vinyl chloride ND ND ND ug/l NC 20 Chloroethane ND ND ND ug/l NC 20 1,1-Dichloroethene ND ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l	p/m-Xylene	ND	ND	ug/l	NC	20
Vinyl chloride ND ND ug/l NC 20 Chloroethane ND ND ND ug/l NC 20 1,1-Dichloroethene ND ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 0-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l <t< td=""><td>Chloromethane</td><td>ND</td><td>ND</td><td>ug/l</td><td>NC</td><td>20</td></t<>	Chloromethane	ND	ND	ug/l	NC	20
Chloroethane ND ND ug/l NC 20 1,1-Dichloroethene ND ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 0-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l	Bromomethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 0-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ND	Vinyl chloride	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 0-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	Chloroethane	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene ND ND ug/l NC 20 Trichloroethene ND ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 o-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	1,1-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ND NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 0-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene ND ND ug/l NC 20 1,3-Dichlorobenzene ND ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 o-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 o-Xylene ND ND ND ug/l NC 20 1,1-Dichloropropene ND ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	Trichloroethene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene ND ND ug/l NC 20 Styrene ND ND ND ug/l NC 20 o-Xylene ND ND ug/l NC 20 1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ND ug/l NC 20	1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene ND ND ug/l NC 20 o-Xylene ND ND ug/l NC 20 1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20	1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
o-Xylene ND ND ug/l NC 20 1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20	1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20	Styrene	ND	ND	ug/l	NC	20
2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20	o-Xylene	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane ND ND ug/l NC 20	1,1-Dichloropropene	ND	ND	ug/l	NC	20
	2,2-Dichloropropane	ND	ND	ug/l	NC	20
1.2.3-Trichloropropane ND ND ug/l NC 20	1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
7.55 - 7.51 - 1.52 - 2.	1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
/olatile Organics by GC/MS - Westborough Lab Sample	Associated sample(s): 01,05,09	QC Batch ID: WG40	07461-6 QC	Sample: L100481	9-02 Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931

Report Date:

04/15/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough L Sample	ab Associated sample(s): 01,05,09	QC Batch ID: WG4	07461-6 QC	Sample: L10048 ²	19-02 Client ID: DUP
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	103		104		80-120	
4-Bromofluorobenzene	92		93		80-120	

SEMIVOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-01 Date Collected: 04/07/10 12:32

Client ID: GHC-5 Date Received: 04/07/10

Sample Location: WALPOLE, MA Field Prep: See Narrative
Matrix: Water Extraction Method: EPA 625

Analytical Method: 5,625 Extraction Date: 04/13/10 14:03

Analytical Date: 04/15/10 05:53
Analyst: PS

Parameter Result Qualifier Units RDL **Dilution Factor** Base/Neutral Extractables by GC/MS - Westborough Lab Acenaphthene ND ug/l 5.0 1 Benzidine ND ug/l 50 1 1,2,4-Trichlorobenzene ND 5.0 ug/l 1 Hexachlorobenzene ND 5.0 ug/l 1 ND Bis(2-chloroethyl)ether ug/l 5.0 1 ND 6.0 1 2-Chloronaphthalene ug/l 3,3'-Dichlorobenzidine ND ug/l 50 1 ND 6.0 2,4-Dinitrotoluene ug/l 1 2,6-Dinitrotoluene ND 5.0 ug/l 1 Azobenzene ND ug/l 5.0 1 Fluoranthene ND ug/l 5.0 1 4-Chlorophenyl phenyl ether ND 5.0 1 ug/l 4-Bromophenyl phenyl ether ND ug/l 5.0 1 ND Bis(2-chloroisopropyl)ether ug/l 5.0 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 1 Hexachlorobutadiene ND ug/l 10 1 ND Hexachlorocyclopentadiene ug/l 30 1 Hexachloroethane ND 5.0 1 ug/l ND 5.0 Isophorone ug/l 1 Naphthalene ND 5.0 ug/l 1 Nitrobenzene ND ug/l 5.0 1 NDPA/DPA ND 15 1 ug/l n-Nitrosodi-n-propylamine ND ug/l 5.0 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 1 Butyl benzyl phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-octylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 ND Dimethyl phthalate ug/l 5.0 1 ND 5.0 Benzo(a)anthracene ug/l 1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-01 Date Collected: 04/07/10 12:32

Client ID: GHC-5 Date Received: 04/07/10
Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL **Dilution Factor Parameter** Result Qualifier Units Base/Neutral Extractables by GC/MS - Westborough Lab ND 5.0 Benzo(a)pyrene ug/l 1 ND 5.0 1 Benzo(b)fluoranthene ug/l Benzo(k)fluoranthene ND ug/l 5.0 1 5.0 Chrysene ND ug/l 1 Acenaphthylene ND 5.0 ug/l 1 Anthracene ND ug/l 5.0 1 Benzo(ghi)perylene ND ug/l 5.0 1 Fluorene ND ug/l 5.0 1 Phenanthrene ND ug/l 5.0 1 Dibenzo(a,h)anthracene ND ug/l 5.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 7.0 1 Pyrene ND ug/l 5.0 1 Aniline ND ug/l 20 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND 5.0 ug/l 1 3-Nitroaniline ND ug/l 5.0 1 ND 4-Nitroaniline ug/l 7.0 1 Dibenzofuran ND 5.0 1 ug/l 2-Methylnaphthalene ND ug/l 5.0 1 ND 50 n-Nitrosodimethylamine ug/l 1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	48		23-120	
2-Fluorobiphenyl	49		15-120	
4-Terphenyl-d14	78		33-120	

04/07/10

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-05 Date Collected: 04/07/10 13:39

Client ID: RIZ-2 Date Received:

Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Extraction Method: EPA 625

Matrix: Water Extraction Method: EPA 625
Analytical Method: 5,625 Extraction Date: 04/13/10 14:03

Analytical Method: 5,625 Extraction Date: 04/13/10 14:03
Analytical Date: 04/15/10 06:18

Analyst: PS

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Base/Neutral Extractables by GC/MS - We	estborough Lab				
Acenaphthene	ND		ug/l	5.0	1
Benzidine	ND		ug/l	50	1
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1
Hexachlorobenzene	ND		ug/l	5.0	1
Bis(2-chloroethyl)ether	ND		ug/l	5.0	1
2-Chloronaphthalene	ND		ug/l	6.0	1
3,3'-Dichlorobenzidine	ND		ug/l	50	1
2,4-Dinitrotoluene	ND		ug/l	6.0	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1
Azobenzene	ND		ug/l	5.0	1
Fluoranthene	ND		ug/l	5.0	1
4-Chlorophenyl phenyl ether	ND		ug/l	5.0	1
4-Bromophenyl phenyl ether	ND		ug/l	5.0	1
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	1
Hexachlorobutadiene	ND		ug/l	10	1
Hexachlorocyclopentadiene	ND		ug/l	30	1
Hexachloroethane	ND		ug/l	5.0	1
Isophorone	ND		ug/l	5.0	1
Naphthalene	ND		ug/l	5.0	1
Nitrobenzene	ND		ug/l	5.0	1
NDPA/DPA	ND		ug/l	15	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0	1
Butyl benzyl phthalate	ND		ug/l	5.0	1
Di-n-butylphthalate	ND		ug/l	5.0	1
Di-n-octylphthalate	ND		ug/l	5.0	1
Diethyl phthalate	ND		ug/l	5.0	1
Dimethyl phthalate	ND		ug/l	5.0	1
Benzo(a)anthracene	ND		ug/l	5.0	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-05 Date Collected: 04/07/10 13:39

Client ID: RIZ-2 Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL **Dilution Factor Parameter** Result Qualifier Units Base/Neutral Extractables by GC/MS - Westborough Lab ND 5.0 Benzo(a)pyrene ug/l 1 ND 5.0 1 Benzo(b)fluoranthene ug/l Benzo(k)fluoranthene ND ug/l 5.0 1 5.0 Chrysene ND ug/l 1 Acenaphthylene ND 5.0 ug/l 1 Anthracene ND ug/l 5.0 1 Benzo(ghi)perylene ND ug/l 5.0 1 Fluorene ND ug/l 5.0 1 Phenanthrene ND ug/l 5.0 1 Dibenzo(a,h)anthracene ND ug/l 5.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 7.0 1 Pyrene ND ug/l 5.0 1 Aniline ND ug/l 20 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND 5.0 ug/l 1 3-Nitroaniline ND ug/l 5.0 1 ND 4-Nitroaniline ug/l 7.0 1 Dibenzofuran ND 5.0 1 ug/l 2-Methylnaphthalene ND ug/l 5.0 1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	56		23-120	
2-Fluorobiphenyl	59		15-120	
4-Terphenyl-d14	81		33-120	

ND

50

1

ug/l

n-Nitrosodimethylamine

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09 Date Collected: 04/07/10 14:19

Client ID: RIZ-10 Date Received: 04/07/10

Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Extraction Method: EPA 625

Analytical Method: 5,625 Extraction Date: 04/13/10 14:03

Analytical Date: 04/14/10 16:59

Analyst: PS

Parameter	Result	Qualifier U	nits RDL	Dilution Factor
Base/Neutral Extractables by GC/MS -	Westborough Lab			
Acenaphthene	ND	u	g/l 5.0	1
Benzidine	ND	u	g/l 50	1
1,2,4-Trichlorobenzene	ND	u	g/l 5.0	1
Hexachlorobenzene	ND	u	g/l 5.0	1
Bis(2-chloroethyl)ether	ND	u	g/l 5.0	1
2-Chloronaphthalene	ND	u	g/l 6.0	1
3,3'-Dichlorobenzidine	ND	u	g/l 50	1
2,4-Dinitrotoluene	ND	u	g/l 6.0	1
2,6-Dinitrotoluene	ND	u	g/l 5.0	1
Azobenzene	ND	u	g/l 5.0	1
Fluoranthene	ND	u	g/l 5.0	1
4-Chlorophenyl phenyl ether	ND	u	g/l 5.0	1
4-Bromophenyl phenyl ether	ND	u	g/l 5.0	1
Bis(2-chloroisopropyl)ether	ND	u	g/l 5.0	1
Bis(2-chloroethoxy)methane	ND	u	g/l 5.0	1
Hexachlorobutadiene	ND	u	g/l 10	1
Hexachlorocyclopentadiene	ND	u	g/l 30	1
Hexachloroethane	ND	u	g/l 5.0	1
Isophorone	ND	u	g/l 5.0	1
Naphthalene	ND	u	g/l 5.0	1
Nitrobenzene	ND	u	g/l 5.0	1
NDPA/DPA	ND	u	g/l 15	1
n-Nitrosodi-n-propylamine	ND	u	g/l 5.0	1
Bis(2-ethylhexyl)phthalate	ND	u	g/l 5.0	1
Butyl benzyl phthalate	ND	u	g/l 5.0	1
Di-n-butylphthalate	ND	u	g/l 5.0	1
Di-n-octylphthalate	ND	u	g/l 5.0	1
Diethyl phthalate	ND	u	g/l 5.0	1
Dimethyl phthalate	ND	u	g/l 5.0	1
Benzo(a)anthracene	ND	u	g/l 5.0	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09 Date Collected: 04/07/10 14:19

Client ID: RIZ-10 Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

RDL **Dilution Factor Parameter** Result Qualifier Units Base/Neutral Extractables by GC/MS - Westborough Lab ND 5.0 Benzo(a)pyrene ug/l 1 ND 5.0 1 Benzo(b)fluoranthene ug/l Benzo(k)fluoranthene ND ug/l 5.0 1 5.0 Chrysene ND ug/l 1 Acenaphthylene ND 5.0 ug/l 1 Anthracene ND ug/l 5.0 1 Benzo(ghi)perylene ND ug/l 5.0 1 Fluorene ND ug/l 5.0 1 Phenanthrene ND ug/l 5.0 1 Dibenzo(a,h)anthracene ND ug/l 5.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 7.0 1 Pyrene ND ug/l 5.0 1 Aniline ND ug/l 20 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND 5.0 ug/l 1 3-Nitroaniline ND ug/l 5.0 1 ND 4-Nitroaniline ug/l 7.0 1 Dibenzofuran ND 5.0 1 ug/l 2-Methylnaphthalene ND ug/l 5.0 1 ND 50 n-Nitrosodimethylamine ug/l 1

	Acceptance								
Surrogate	% Recovery	Qualifier	Criteria						
Nitrobenzene-d5	52		23-120						
2-Fluorobiphenyl	59		15-120						
4-Terphenyl-d14	77		33-120						

Extraction Method: EPA 625

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 04/14/10 15:44 Extraction Date: 04/13/10 14:03

Analyst: PS

Parameter	Result	Qualifier	Units	RDL		
Base/Neutral Extractables by GC/I	MS - Westbo	prough Lab for sa	ample(s):	01,05,09	Batch:	WG407902-1
Acenaphthene	ND		ug/l	5.0		
Benzidine	ND		ug/l	50		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Hexachlorobenzene	ND		ug/l	5.0		
Bis(2-chloroethyl)ether	ND		ug/l	5.0		
2-Chloronaphthalene	ND		ug/l	6.0		
3,3'-Dichlorobenzidine	ND		ug/l	50		
2,4-Dinitrotoluene	ND		ug/l	6.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene	ND		ug/l	5.0		
Fluoranthene	ND		ug/l	5.0		
4-Chlorophenyl phenyl ether	ND		ug/l	5.0		
4-Bromophenyl phenyl ether	ND		ug/l	5.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	5.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	10		
Hexachlorocyclopentadiene	ND		ug/l	30		
Hexachloroethane	ND		ug/l	5.0		
Isophorone	ND		ug/l	5.0		
Naphthalene	ND		ug/l	5.0		
Nitrobenzene	ND		ug/l	5.0		
NDPA/DPA	ND		ug/l	15		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	5.0		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	5.0		
Benzo(a)pyrene	ND		ug/l	5.0		

Extraction Method: EPA 625

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Analytical Method: 5,625

Analytical Date: 04/14/10 15:44 Extraction Date: 04/13/10 14:03

Analyst: PS

Parameter	Result	Qualifier	Units	RDL		
Base/Neutral Extractables by GC	/MS - Westbo	orough Lab fo	r sample(s):	01,05,09	Batch:	WG407902-1
Benzo(b)fluoranthene	ND		ug/l	5.0		
Benzo(k)fluoranthene	ND		ug/l	5.0		
Chrysene	ND		ug/l	5.0		
Acenaphthylene	ND		ug/l	5.0		
Anthracene	ND		ug/l	5.0		
Benzo(ghi)perylene	ND		ug/l	5.0		
Fluorene	ND		ug/l	5.0		
Phenanthrene	ND		ug/l	5.0		
Dibenzo(a,h)anthracene	ND		ug/l	5.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	7.0		
Pyrene	ND		ug/l	5.0		
Aniline	ND		ug/l	20		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	5.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	7.0		
Dibenzofuran	ND		ug/l	5.0		
2-Methylnaphthalene	ND		ug/l	5.0		
n-Nitrosodimethylamine	ND		ug/l	50		

		Acceptance							
Surrogate	%Recovery	Qualifier	Criteria						
NE L			00.400						
Nitrobenzene-d5	63		23-120						
2-Fluorobiphenyl	65		15-120						
4-Terphenyl-d14	90		33-120						

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Report Date: 04/15/10

arameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ase/Neutral Extractables by GC/MS - Westb	orough Lab As	sociated sample(s): 01,08	5,09 Batch:	WG407902-2			
Acenaphthene	70	-		46-118	-		30
1,2,4-Trichlorobenzene	54	-		39-98	-		30
2-Chloronaphthalene	77	-		40-140	-		30
2,4-Dinitrotoluene	81	-		24-96	-		30
2,6-Dinitrotoluene	72	-		40-140	-		30
Fluoranthene	88	-		40-140	-		30
4-Chlorophenyl phenyl ether	73	-		40-140	-		30
n-Nitrosodi-n-propylamine	60	-		41-116	-		30
Butyl benzyl phthalate	82	-		40-140	-		30
Anthracene	83	-		40-140	-		30
Pyrene	81	-		26-127	-		30
P-Chloro-M-Cresol	75	-		23-97	-		30
2-Chlorophenol	61	-		27-123	-		30
2-Nitrophenol	66	-		30-130	-		30
4-Nitrophenol	57	-		10-80	-		30
2,4-Dinitrophenol	52	-		20-130	-		30
Pentachlorophenol	68	-		9-103	-		30
Phenol	31	-		12-110	-		30

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Lab Number: L1004931

Project Number: 12700058 Report Date:

04/15/10

	LCS		LCSD		%Recovery			
<u>Parameter</u>	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits
							'	

Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 Batch: WG407902-2

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
2-Fluorophenol	41				21-120
Phenol-d6	29				10-120
Nitrobenzene-d5	56				23-120
2-Fluorobiphenyl	64				15-120
2,4,6-Tribromophenol	78				10-120
4-Terphenyl-d14	79				33-120

Matrix Spike Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Report Date: 04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qua	Recovery I Limits	RPD	Qual	RPD <u>Limit</u> s
Base/Neutral Extractables b MS Sample	y GC/MS - Wes	stborough La	ab Associated	d sample(s): 0	1,05,09	QC Batc	h ID: WG407902-3	QC Samp	le: L100)4952-01	Client ID:
Acenaphthene	ND	97.6	73	75		-	-	46-118	-		30
1,2,4-Trichlorobenzene	ND	97.6	62	64		-	-	39-98	-		30
2-Chloronaphthalene	ND	97.6	83	85		-	-	40-140	-		30
2,4-Dinitrotoluene	ND	97.6	83	85		-	-	24-96	-		30
2,6-Dinitrotoluene	ND	97.6	78	80		-	-	40-140	-		30
Fluoranthene	ND	97.6	86	88		-	-	40-140	-		30
4-Chlorophenyl phenyl ether	ND	97.6	75	77		-	-	40-140	-		30
n-Nitrosodi-n-propylamine	ND	97.6	65	67		-	-	41-116	-		30
Butyl benzyl phthalate	ND	97.6	85	87		-	-	40-140	-		30
Anthracene	ND	97.6	79	81		-	-	40-140	-		30
Pyrene	ND	97.6	82	84		-	-	26-127	-		30
P-Chloro-M-Cresol	ND	97.6	81	83		-	-	23-97	-		30
2-Chlorophenol	ND	97.6	67	69		-	-	27-123	-		30
2-Nitrophenol	ND	97.6	72	74		-	-	30-130	-		30
4-Nitrophenol	ND	97.6	77	79		-	-	10-80	-		30
2,4-Dinitrophenol	ND	97.6	ND	64		-	-	20-130	-		30
Pentachlorophenol	ND	97.6	78	80		-	-	9-103	-		30
Phenol	ND	97.6	54	55		-	-	12-110	-		30

Matrix Spike Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 Lab Number:

L1004931

Report Date:

04/15/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407902-3 QC Sample: L1004952-01 Client ID:

MS Sample

	MS	;	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
2,4,6-Tribromophenol	81				10-120	
2-Fluorobiphenyl	72				15-120	
2-Fluorophenol	64				21-120	
4-Terphenyl-d14	85				33-120	
Nitrobenzene-d5	65				23-120	
Phenol-d6	55				10-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931 **Report Date:** 04/15/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
ase/Neutral Extractables by GC/MS - Westborough L JP Sample	ab Associated sample(s):	01,05,09 QC Batch ID:	WG407902-4	QC Sam	nple: L1004952-01 Client ID:
Acenaphthene	ND	ND	ug/l	NC	30
Benzidine	ND	ND	ug/l	NC	30
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	30
Hexachlorobenzene	ND	ND	ug/l	NC	30
Bis(2-chloroethyl)ether	ND	ND	ug/l	NC	30
2-Chloronaphthalene	ND	ND	ug/l	NC	30
3,3'-Dichlorobenzidine	ND	ND	ug/l	NC	30
2,4-Dinitrotoluene	ND	ND	ug/l	NC	30
2,6-Dinitrotoluene	ND	ND	ug/l	NC	30
Azobenzene	ND	ND	ug/l	NC	30
Fluoranthene	ND	ND	ug/l	NC	30
4-Chlorophenyl phenyl ether	ND	ND	ug/l	NC	30
4-Bromophenyl phenyl ether	ND	ND	ug/l	NC	30
Bis(2-chloroisopropyl)ether	ND	ND	ug/l	NC	30
Bis(2-chloroethoxy)methane	ND	ND	ug/l	NC	30
Hexachlorobutadiene	ND	ND	ug/l	NC	30
Hexachlorocyclopentadiene	ND	ND	ug/l	NC	30
Hexachloroethane	ND	ND	ug/l	NC	30
Isophorone	ND	ND	ug/l	NC	30

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931 **Report Date:** 04/15/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Base/Neutral Extractables by GC/MS - Westborough Lab DUP Sample	Associated sample(s):	01,05,09 QC Batch ID:	WG407902-4	QC Samp	ble: L1004952-01 Client ID:
Naphthalene	ND	ND	ug/l	NC	30
Nitrobenzene	ND	ND	ug/l	NC	30
NDPA/DPA	ND	ND	ug/l	NC	30
n-Nitrosodi-n-propylamine	ND	ND	ug/l	NC	30
Bis(2-ethylhexyl)phthalate	37	46	ug/l	22	30
Butyl benzyl phthalate	ND	ND	ug/l	NC	30
Di-n-butylphthalate	ND	ND	ug/l	NC	30
Di-n-octylphthalate	ND	ND	ug/l	NC	30
Diethyl phthalate	ND	ND	ug/l	NC	30
Dimethyl phthalate	ND	ND	ug/l	NC	30
Benzo(a)anthracene	ND	ND	ug/l	NC	30
Benzo(a)pyrene	ND	ND	ug/l	NC	30
Benzo(b)fluoranthene	ND	ND	ug/l	NC	30
Benzo(k)fluoranthene	ND	ND	ug/l	NC	30
Chrysene	ND	ND	ug/l	NC	30
Acenaphthylene	ND	ND	ug/l	NC	30
Anthracene	ND	ND	ug/l	NC	30
Benzo(ghi)perylene	ND	ND	ug/l	NC	30
Fluorene	ND	ND	ug/l	NC	30

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Report Date: 04/15/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Base/Neutral Extractables by GC/MS - Westborough La DUP Sample	ab Associated sample(s):	01,05,09 QC Batch ID:	WG407902-4	QC Samp	le: L1004952-01 Client ID:
Phenanthrene	ND	ND	ug/l	NC	30
Dibenzo(a,h)anthracene	ND	ND	ug/l	NC	30
Indeno(1,2,3-cd)pyrene	ND	ND	ug/l	NC	30
Pyrene	ND	ND	ug/l	NC	30
Aniline	ND	ND	ug/l	NC	30
4-Chloroaniline	ND	ND	ug/l	NC	30
1-Methylnaphthalene	ND	ND	ug/l	NC	30
2-Nitroaniline	ND	ND	ug/l	NC	30
3-Nitroaniline	ND	ND	ug/l	NC	30
4-Nitroaniline	ND	ND	ug/l	NC	30
Dibenzofuran	ND	ND	ug/l	NC	30
2-Methylnaphthalene	ND	ND	ug/l	NC	30
n-Nitrosodimethylamine	ND	ND	ug/l	NC	30

			Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Nitrobenzene-d5	58	71	23-120	
2-Fluorobiphenyl	58	74	15-120	
4-Terphenyl-d14	81	93	33-120	

Lab Number: **Project Name:** WALPOLE PARK SOUTH L1004931

04/15/10 **Project Number:** Report Date: 12700058

Parameter Native Sample Duplicate Sample Units RPD **RPD Limits** Base/Neutral Extractables by GC/MS - Westborough Lab Associated sample(s): 01,05,09 QC Batch ID: WG407902-4 QC Sample: L1004952-01 Client ID:

DUP Sample

Acceptance Surrogate Criteria %Recovery Qualifier %Recovery Qualifier

METALS

64,7470A

60,6010B

60,6010B

ΕZ

ΑI

ΑI

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-01

Client ID: GHC-5

Sample Location: WALPOLE, MA

ND

ND

ND

Matrix: Water

Mercury, Dissolved

Selenium, Dissolved

Silver, Dissolved

Date Collected: 04/07/10 12:32

04/08/10 17:10 04/09/10 11:53 EPA 7470A

04/08/10 09:35 04/09/10 10:57 EPA 3005A

04/08/10 09:35 04/09/10 10:57 EPA 3005A

Date Received: 04/07/10

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Westbord	ough Lab								
Sodium, Total	59		mg/l	2.0	1	04/08/10 10:00	04/09/10 13:39	EPA 3005A	60,6010B	Al
MCP Dissolved Met		tborough La								
Arsenic, Dissolved	ND		mg/l	0.005	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.171		mg/l	0.010	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	Al
Lead, Dissolved	ND		mg/l	0.010	1	04/08/10 09:35	04/09/10 10:57	EPA 3005A	60,6010B	Al

1

1

1

0.0002

0.010

0.007

mg/l

mg/l

mg/l

04/07/10 13:39

04/07/10

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Date Collected:

Date Received:

Lab ID: L1004931-05

Client ID: RIZ-2

Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Westbord	ough Lab								
Sodium, Total	68		mg/l	2.0	1	04/08/10 10:00	04/09/10 13:46	EPA 3005A	60,6010B	Al

MCP Dissolved Me	etals - Westbor	ough Lab							
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.090	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:55	EPA 7470A	64,7470A	EZ
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 11:03	EPA 3005A	60,6010B	AI

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

ΑI

ΑI

ΑI

ΑI

ΑI

ΕZ

ΑI

ΑI

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09

Client ID: RIZ-10

Sample Location: WALPOLE, MA

ND

ND

ND

ND

ND

ND

ND

0.030

Matrix: Water

Arsenic, Dissolved

Barium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Silver, Dissolved

Date Collected: 04/07/10 14:19

Date Received: 04/07/10

04/08/10 09:35 04/09/10 11:06 EPA 3005A

04/08/10 17:10 04/09/10 11:56 EPA 7470A

04/08/10 09:35 04/09/10 11:06 EPA 3005A

04/08/10 09:35 04/09/10 11:06 EPA 3005A

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Total Metals -	Westbord	ough Lab								
Sodium, Total	84		mg/l	2.0	1	04/08/10 10:00	04/09/10 13:49	EPA 3005A	60,6010B	AI
MCP Dissolved Met	tals - Wes	tborough Lab)							

1

1

1

1

1

1

1

1

0.005

0.010

0.004

0.01

0.010

0.0002

0.010

0.007

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

Project Name: WALPOLE PARK SOUTH **Lab Number:** L1004931

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	s - Westborough Lab fo	r sample	(s): 01,	05,09 Bat	ch: WG40726	6-1		
Arsenic, Dissolved	ND	mg/l	0.005	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	04/08/10 09:35	04/09/10 10:47	60,6010B	Al
Silver, Dissolved	ND	mg/l	0.007	1	04/08/10 09:35	04/09/10 10:47	60,6010B	Al

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier Units		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Total Metals	- Westborough La	b for sample(s):	01,05,09	Batch:	WG407276-1			
Sodium, Total	ND	mg/l	2.0	1	04/08/10 10:00	04/09/10 13:19	60,6010B	Al

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metal	ls - Westborough Lab fo	r sample	e(s): 01,	05,09 Bat	ch: WG40734	5-1		
Mercury, Dissolved	ND	mg/l	0.0002	1	04/08/10 17:10	04/09/10 11:48	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1

L1004931

Report Date:

04/15/10

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated samp	ole(s): 01	,05,09 Batch	WG407266-2	2 WG407266-3			
Arsenic, Dissolved	112		113		80-120	1		20
Barium, Dissolved	100		100		80-120	0		20
Cadmium, Dissolved	113		113		80-120	0		20
Chromium, Dissolved	95		100		80-120	5		20
Lead, Dissolved	107		107		80-120	0		20
Selenium, Dissolved	115		115		80-120	0		20
Silver, Dissolved	97		98		80-120	1		20
MCP Total Metals - Westborough Lab Asso	ciated sample(s)	: 01,05,0	9 Batch: W	G407276-2 W	G407276-3			
Sodium, Total	98		100		80-120	2		20
MCP Dissolved Metals - Westborough Lab	Associated samp	ole(s): 01	,05,09 Batch	WG407345-2	2 WG407345-3			
Mercury, Dissolved	115		115		80-120	0		20

INORGANICS & MISCELLANEOUS

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-01 Date Collected: 04/07/10 12:32

Client ID: GHC-5 Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:49	30,4500NO3-F	DD
Nitrogen, Nitrate	6.5		mg/l	0.10	1	-	04/08/10 19:49	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.0	1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		mg/l	0.15	5	-	04/10/10 21:31	1,9065	TH

L1004931

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: Report Date: 04/15/10 12700058

SAMPLE RESULTS

Lab ID: Date Collected: L1004931-02 04/07/10 12:56

GHC-5-A Client ID: Date Received: 04/07/10 WALPOLE, MA Not Specified Sample Location: Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	s - Westborough	Lab							
Coliform Fecal (MF)	ND		col/100ml	10	10	_	04/07/10 20:35	30 9222D	.IT

L1004931

04/15/10

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 **Report Date:**

SAMPLE RESULTS

Lab ID: L1004931-03

GHC-5-B Client ID: WALPOLE, MA Sample Location:

Matrix: Water Date Collected: 04/07/10 12:57

Date Received: 04/07/10

Lab Number:

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis -	Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	10	10	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH

Lab Number:

L1004931

Project Number: 12700058

Report Date:

04/15/10

SAMPLE RESULTS

Lab ID:

L1004931-04

Client ID:

GHC-5-C

Sample Location: WALPOLE, MA

Matrix:

Water

Date Collected:

04/07/10 12:58

Date Received:

04/07/10

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	- Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	10	10	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-05

Client ID: RIZ-2

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 04/07/10 13:39

Date Received: 04/07/10

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:50	30,4500NO3-F	DD
Nitrogen, Nitrate	0.47		mg/l	0.10	1	-	04/08/10 19:50	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.0	1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		mg/l	0.03	1	-	04/10/10 21:32	1,9065	TH

L1004931

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-06

RIZ-2-A Client ID: Sample Location: WALPOLE, MA

Matrix: Water Date Collected: 04/07/10 13:55

Date Received: 04/07/10 Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	s - Westborough	ı Lab							
Coliform, Fecal (MF)	ND		col/100ml	2.0	2	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH

Lab Number:

L1004931

Project Number: 12700058

Report Date:

04/15/10

SAMPLE RESULTS

Lab ID: L1004931-07

Client ID: RIZ-2-B Sample Location: WALPOLE, MA

Matrix: Water

Date Collected:

04/07/10 13:56

Date Received: Field Prep:

04/07/10

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis -	- Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	2.0	2	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH

Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-08

RIZ-2-C Client ID: Sample Location: WALPOLE, MA

Matrix: Water Date Collected: 04/07/10 13:57

Date Received: 04/07/10

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis -	- Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	2.0	2	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-09 Date Collected: 04/07/10 14:19

Client ID: RIZ-10 Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Nitrogen, Nitrite	ND		mg/l	0.05	1	-	04/08/10 19:51	30,4500NO3-F	DD
Nitrogen, Nitrate	1.0		mg/l	0.10	1	-	04/08/10 19:51	30,4500NO3-F	DD
Oil & Grease, Hem-Grav	ND		mg/l	4.4	1.1	04/08/10 11:00	04/09/10 09:15	74,1664A	JO
Phenolics, Total	ND		mg/l	0.15	5	-	04/10/10 21:33	1,9065	TH

L1004931

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-10 Date Collected: 04/07/10 14:32

Client ID: RIZ-10-A Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analys	is - Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	10	10	-	04/07/10 20:35	30,9222D	JT

L1004931

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058 **Report Date:** 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-11

RIZ-10-B Client ID: WALPOLE, MA Sample Location:

Matrix: Water Date Collected: 04/07/10 14:33

Date Received: 04/07/10 Field Prep:

Lab Number:

Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	- Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	10	10	-	04/07/10 20:35	30,9222D	JT

L1004931

04/07/10 14:34

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058 Report Date: 04/15/10

SAMPLE RESULTS

Lab ID: L1004931-12 Date Collected:

Client ID: RIZ-10-C Date Received: 04/07/10 Sample Location: WALPOLE, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis	s - Westborough	Lab							
Coliform, Fecal (MF)	ND		col/100ml	10	10	-	04/07/10 20:35	30,9222D	JT

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier Unit	s RDI	Dilution Factor		Date repared	Date Analyzed	Analytical Method	Analyst
Microbiological Analy	sis - Westborough	Lab for samp	ole(s): 02-	04,06-08	,10-12	Batch: WO	G407183-1		
Coliform, Fecal (MF)	ND	col/1	00ml 1.0) 1		-	04/07/10 20:35	30,9222D	JT
General Chemistry - '	Westborough Lab	for sample(s)	: 01,05,09	Batch:	WG407	7254-2			
Oil & Grease, Hem-Grav	ND	m	g/l 4.0) 1	04/	08/10 11:00	04/09/10 09:15	74,1664A	JO
General Chemistry - '	Westborough Lab	for sample(s)	: 01,05,09	Batch:	WG407	7333-2			
Nitrogen, Nitrate	ND	m	g/l 0.1	0 1		-	04/08/10 19:40	30,4500NO3-F	DD
General Chemistry - '	Westborough Lab	for sample(s)	: 01,05,09	Batch:	WG407	7334-2			
Nitrogen, Nitrite	ND	m	g/l 0.0	5 1		-	04/08/10 19:42	30,4500NO3-F	= DD
General Chemistry - '	Westborough Lab	for sample(s)	: 01,05,09	Batch:	WG407	7584-1			
Phenolics, Total	ND	m	g/l 0.0	3 1		-	04/10/10 21:27	1,9065	TH

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

ab Number: L1004931

Report Date: 04/15/10

Parameter	LCS %Recovery	Qual	LCSD %Recover	'Y Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407254-1				
Oil & Grease, Hem-Grav	108		-		78-114	-		18
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407333-1				
Nitrogen, Nitrate	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407334-1				
Nitrogen, Nitrite	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01,05,09	Batch:	WG407584-2				
Phenolics, Total	101		-		70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931

Report Date: 04/15/10

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01,05,	09 QC Batc	h ID: WG407254-3	QC Sample	e: L1004815-02	Client ID:	MS Sample
Oil & Grease, Hem-Grav	ND	43	38	89	-	-	78-114	-	18
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01,05,	09 QC Batc	h ID: WG407333-3	QC Sample	e: L1004954-08	Client ID:	MS Sample
Nitrogen, Nitrate	0.81	4	4.7	97	-	-	83-113	-	17
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01,05,	09 QC Batc	h ID: WG407334-3	QC Sample	e: L1004931-01	Client ID:	GHC-5
Nitrogen, Nitrite	ND	4	4.0	100	-	-	80-120	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01,05,	09 QC Batc	h ID: WG407584-3	QC Sample	e: L1004931-05	Client ID:	RIZ-2
Phenolics, Total	ND	0.8	0.73	91	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number:

L1004931

Report Date:

04/15/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 QC	Batch ID: WG407254-4	QC Sample:	L1004835-03	Client ID: DUP Sample
Oil & Grease, Hem-Grav	ND	ND	mg/l	NC	18
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 QC	Batch ID: WG407333-4	QC Sample:	L1004954-08	Client ID: DUP Sample
Nitrogen, Nitrate	0.81	0.81	mg/l	0	17
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 QC	Batch ID: WG407334-4	QC Sample:	L1004931-01	Client ID: GHC-5
Nitrogen, Nitrite	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated samp	ole(s): 01,05,09 QC	Batch ID: WG407584-4	QC Sample:	L1004931-05	Client ID: RIZ-2
Phenolics, Total	ND	ND	mg/l	NC	20

04151012:21

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931

Project Number: 12700058 **Report Date:** 04/15/10

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent VOA/VPH H2O Preservative Date: NA

B Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis
L1004931-01A	Vial Ascorbic Acid/HCl preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-01B	Vial Ascorbic Acid/HCI preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-01C	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-01D	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-01E	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-01F	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-01G	Amber 1000ml H2SO4 preserved	Α	<2	5.9	Υ	Absent	TPHENOL-9065(28)
L1004931-01H	Plastic 250ml HNO3 preserved	Α	<2	5.9	Υ	Absent	MCP-NA-6010T(180)
L1004931-01I	Plastic 500ml unpreserved	Α	7	5.9	Υ	Absent	NO3-4500(2),NO2-4500NO3(2)
L1004931-01J	Plastic 500ml HNO3 preserved	A	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SE-6010S(180),MCP-CD-6010S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180)
L1004931-02A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-02B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-03A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-03B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-04A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-04B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-05A	Vial Ascorbic Acid/HCI preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-05B	Vial Ascorbic Acid/HCI preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-05C	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-05D	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-05E	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-05F	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-05G	Amber 1000ml H2SO4 preserved	Α	<2	5.9	Υ	Absent	TPHENOL-9065(28)
L1004931-05H	Plastic 250ml HNO3 preserved	Α	<2	5.9	Υ	Absent	MCP-NA-6010T(180)
L1004931-05I	Plastic 500ml unpreserved	Α	7	5.9	Υ	Absent	NO3-4500(2),NO2-4500NO3(2)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L1004931 **Report Date:** 04/15/10

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis
L1004931-05J	Plastic 500ml HNO3 preserved	Α	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SE-6010S(180),MCP-CD-6010S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180)
L1004931-06A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-06B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-07A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-07B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-08A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-08B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-09A	Vial Ascorbic Acid/HCI preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-09B	Vial Ascorbic Acid/HCl preserved	Α	N/A	5.9	Υ	Absent	524.2(14)
L1004931-09C	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-09D	Amber 1000ml HCl preserved	В	N/A	4	Υ	Absent	OG-1664(28)
L1004931-09E	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-09F	Amber 1000ml unpreserved	В	7	4	Υ	Absent	BNEXT-625(7)
L1004931-09G	Amber 1000ml H2SO4 preserved	Α	<2	5.9	Υ	Absent	TPHENOL-9065(28)
L1004931-09H	Plastic 250ml HNO3 preserved	Α	<2	5.9	Υ	Absent	MCP-NA-6010T(180)
L1004931-09I	Plastic 500ml unpreserved	Α	7	5.9	Υ	Absent	NO3-4500(2),NO2-4500NO3(2)
L1004931-09J	Plastic 500ml HNO3 preserved	A	<2	5.9	Y	Absent	MCP-AG-6010S(180),MCP-BA-6010S(180),MCP-SE-6010S(180),MCP-CD-6010S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-AS-6010S(180)
L1004931-10A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-10B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-11A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-11B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-12A	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)
L1004931-12B	Bacteria Cup Na2S2O3 preserved	Α	N/A	5.9	Υ	Absent	F-COLI-MF(.33)

Project Name: WALPOLE PARK SOUTH Lab Number: L1004931
Project Number: 12700058 Report Date: 04/15/10

GLOSSARY

Acronyms

EPA · Environmental Protection Agency.

LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI · Not Ignitable.

RDL - Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RDL. (Metals only.)
- ${f R}$ Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reported detection limit (RDL) for the sample.

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHLab Number:L1004931Project Number:12700058Report Date:04/15/10

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised March 16, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C. SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Aq,Sr,Ti,Tl, V,Zn,Ca,Mq,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. Organic Parameters: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500Cl-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540B, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. **NELAP Accredited.** *Non-Potable Water* (Inorganic Parameters: Chloride EPA 300.0)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

FORM NO: 01-01 (rev. 18-Jan-2010)	T RCP?	IS YOUR BROIECT	PLEASE ANSWER QUESTIONS ABOVE	-04 bHC-5-C	-03 GHC-S-B	-07 bHC-5-A	. 4						#3101 PR-X	(Lab Use Only) Sample ID	ALPHA Lab ID	If MS is required, indicate in Sample Specific Comments which samples and what tests MS to be performed. (Note: All <i>CAM</i> methods for inorganic analyses require MS every 20 soil samples)	Alpha	Charlesh. 10m			inapan MA	Some Start S	Client: The Project Pr	Client Information Project Pro	TEL: 508-822-9300	MANGETTI DI MA
	Battinguished By: Chille		Co	13:58 V	12,21	18:56	125.47	Shire	1242	1245	242	, ohti	1232 bw	ime	Collection Sample	amples and what tests MS to be perform 20 soil samples)	Date Due: $4/14/0$	RUSH (only o	142	Turn-Around Time	,	anager: Karlanan	Project #: 17 7 10/200	-	Project Name: While Pull Soul	Project Information
	1520 (held we +	Preservative WI - B N A	Container Type 46 A6 IN P	<						水	×	×	X	Initials / (Sampler's	ANA Verbly (6 Phenel	127516 (264) (257)		☐ Yes ☐ No/	DYes □ No s		Mr. Thaces State /Fed Program	Regulatory Require	X ADEx	□FAX	Report Informatio
	By: Date/Time	ACI -N	1 P P P	×	X	×	*	X	×				 	1. ~ 4	~ 2	SZX. Z NOZ NOZ NOZ NOZ NOZ NOZ NOZ NOZ NOZ NO	1		Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments)	MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO	MCP Criteria RC	Requirements/Report Limits	eliverables (/c		formation - Data Deliverables Billin
Cooligydiad ams.	98967 (C-17C) (1-15)	pietely. Samples can not be logged in and turnaround time clock will not 8	Please print clearly, legibly and c										77.4	Sample Specific Comments	(Please specify below)	■ Not needed □ Not needed □ Lab to do □ Preservation □ Lab to do	Filtration day		Protocols) Required?	? SDG?(If yes see note in Comment	ONABLE CONFIDENCE PROT	R(6W=1		AP	XSame as Client info PO #:	Billing Information

						,														457		04)12:2	2.1	·	
FORM NO: 01-01 (rev. 18-Jan-2010)	MA MCP or CT RCP?	IS YOUR PROJECT	PLEASE ANSWER QUESTIONS ABOVE!	<u> </u>		- 06							E-21/1 50=1864	(Lab Use Only)	AL DHA SAID	Other Project Specific Requirements/Comments/Detection Limits: If MS is required , indicate in Sample Specific Comments which samples and what tests MS to be performed. (Note: All CAM methods for inorganic analyses require MS every 20 soil samples)	☐ These samples have been previously analyzed by Alpha	Email: A. J. A.	Fax:	Phone	1.2	Address:	Client: ************************************	ation	పర	WESTBORO, MA MANSFIELD, MA	e C
			ABOVE!	5	20	14								Sample ID		ements/Comment beclific Comments which analyses require MS eve	analyzed by Alpha	3 K			A	Pr	14 P				
	Refinquished By:			V 13	2						3	3 (3	1/7/10 /	Date	Collection	s/Detection Limits: h samples and what tests ery 20 soil samples)	1 1 1 1 me. 4/14/10		1.5	Turn-Around Time	ALPHA Quote #:	Project Manager:	Project #:	Project Location:	Project Name:	Project Information	CHAIN OF CUSTODY
	Date/Time	Preservative	Container Type	1357 V 1	1356	1355	753	<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	1350	1348	346	1344	1339 bw /4	ime Matrix	Sample	MS to be performed.		☐ RUSH (only confirmed if pre-approved!) Time:					N. T.	0			PAGE OF _
	17	/ative Mcl - 1	Type H NAR								×	×	*	Initials / O/	1	ANAI Seas (66 Vartals (1)	Ys _i	S	□ Yes □	DAYes □ No □ Yes □ No	7	State /Fed Pr	. ≺		□ FAX	Report Info	Date Rec'd in
	Received By:	N HCl - N	d				×	<u>×</u>	X	*		2 2			te 1 (0)	Phenol	652	7		. 44	ESUMPTIVE CERT	Program	Requirements/Report Limits	☐ Add'l Deliverables	DEMAIL.	formation - Data Deliverables	in Lab: 4/7/10
	Date/Time #17/10 /526	1	P	<u> </u>	∠	≺								4	2/2000 2000	RICES & COLO	net	/ K	asonable Confidence	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SI	AINTY CIT REAS	Criteria [2		ables	San		
See reverse side.		pletely, Samples in and turnaround	Please print clear									:		Sample Specific Comments	(Please specify below)	☐ Not needed ☐ Lab to do Preservation ☐ Lab to do	SAMPLE		Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required? Is Matrix Spike (MS) Required on this SDG?(If yes see note in Comments)	RESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTO	12 6 5 1	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.		Same as Client info PO#:	Billing Information	ALPHA Job#: U\C
Page	start until any ambiguittes are resolved. All samples submitted are subject to Alpha's Terms and Conditions.	pletely. Samples can not be logged in and turnaround time clock will not	Please print clearly, legibly and com-	ಬ	Ŋ	ىع	_		S	-		\$J	ಲ		y below)		SAMPLE HANDLING	0 1	<u> </u>	e in Comments)	ENCE PROIO		ender der State der State der State der State der State der State der State der State der State der State der		# 25.00.00.00.00.00.00		1004931
ì		١.					4.4							- 1				100		£	5.5 K	4	n /	2.1 11	200	5 - 14	

Pa	Pä											3	of the second was	
ae .	See reverse side.			\setminus				, ,		\ 	,		FORM NO: 01-01 (rev. 18-1-n-2010)	EOR MSO
re subject to 78	All samples submitted ar	4(7),0 1520	<u>-</u>		13	11	Ku 1520	4/2				スつて!	MA MOT OF CIRCLE	<u> </u>
s are resolved	start until any ambiguitie	Date/Time		Received By:	Rece		Date/Time	ير _	d By:	Relimquished By:			MA MOD AT OT DO	<u> </u>
it be logged lock will not 28	pletely. Samples can no in and turnaround time c		10/	N HU	7 >	~	Preservative) IECT		<u>ァ</u> く
ily and com-	Please print clearly, legibly and com-		0 9	ON	7	A6UA6	Container Type	Con	J		Ü	JESTIONS ABOV	PLEASE ANSWER QUESTIONS ABOVE!	PLEA
~			X					((Y 1434			-	12	
2			X						\$£4/			1	7	
2			X						1432		4	R12-10-	<u></u>	
_			Χ						/43(V	
		-		×	:				1424					
2				×					1424					
				×					1425					
					×				1424					
2					<u>х</u>	~	- S		1271	:	: :			
<i>w</i>							The	60	/7/co 1419	7		01-2-10	M31-09 []	SBP
Ш	Sample Specific Comments		de	\prec	(C)	0			Date Time		Sample ID	Sam	(Lab Use Only)	(Lab l
	(Please specify below)		1/2	3		Ĵ/	Sampler's	Sample	Collection				ALPHA Lab ID	ALPH
~ 1 0 B	☐ Not needed☐ ☐ Lab to do☐ Preservation☐ Lab to do☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	2 (6)	RIR	Son (c	No-tal	J(v.	ř	be penomie	imples)	nich samples ar every 20 soil sa	es require MS	in sample specific for inorganic analys	It MS is required , indicate in Sample Specific Comments which samples and what tests wis to be performed. (Note: All <i>CAM</i> methods for inorganic analyses require MS every 20 soil samples)	(Note:
ئر ^ا <u>چ</u>	Filtration A. 2.	Low	4.5		16	VAL			on Limits:	nts/Detection	nts/Comme	fic Requiremen	Other Project Specific Requirements/Comments/Detection Limits	Other
DLING T	SAMPLE HANDLING	1	_		ر که وی ک	rsis		Time:	0111111	Date Due: 4/14/10	zed by Alpha	en previously analyz	These samples have been previously analyzed by Alpha	☐ The
		te)s					-approved()	ly confirmed if pre-	☐ RUSH (only confirmed if pre-approved!)	□ Standard				Email:
omments)	Is Matrix Spike (MS) Required on this SDG? (If yes see note in Comments) Are CT RCP (Reasonable Confidence Protocols) Required?	Required on this Sable, Confidence P	Spike (MS) F	Is Matrix Are CT R	i	□ Yes			and Time	Turn-Around Time		7	¥	Phone:
Sec. 5, 23.	endergram (bereichte Ausberger Westell in Stad Geberg der 18	5	Analytical M	Are MCP		□Yes			le #:	ALPHA Quote #:				
PROTO	CT REASONABLE CONFIDENCE PROTO	ġ	GERTAINTY	/IPTIV/		MA MCP P			iger:	Project Manager:				Address:
Carlo School State			Nedall elliellis i veboli elli sa	Aumentena	_	Negatatory	¢	(> m	Project #:				Client:
			□ Add'i Deliverables	□ Addil I	•	D ADEX			tion:	Project Location:			Client Information	Client
	☐ Same as Client info PO#:	☐ Same		O EMAIL	×	□FAX			υ.	Project Name:		TEL: 508-822-9300 FAX: 508-822-3288	-	1
	Billing Information		formation - Data Deliverables	ation - Da		Report in			ormation	Project Information		MANSFIELD, MA	WESTBORO, MA MA	WESTBO
43)	ацрна Job #: ЦЮЦ93	ALPHA	011	in Lab: 4/7/10		Date Rec'd	\f\{\partial \nabla \na	PAGE √3	•	CUS	Z Q	CHAIN OF CUSTODY		
		20 SS SE MICHAEL ST. 20				100000000000000000000000000000000000000								

ANALYTICAL REPORT

Lab Number: L1008812

Client: Tetra Tech Rizzo

1 Grant Street

Framingham, MA 01701-9005

ATTN: Ian Cannan Phone: (508) 903-2039

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Report Date: 06/21/10

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1008812-01	MW-3	WALPOLE, MA	06/11/10 08:02
L1008812-02	RIZ-3	WALPOLE, MA	06/11/10 08:56
L1008812-03	MW-2	WALPOLE, MA	06/11/10 09:33
L1008812-04	GHC-6	WALPOLE, MA	06/11/10 10:08
L1008812-05	RIZ-9	WALPOLE, MA	06/11/10 11:07
L1008812-06	RIZ-10	WALPOLE, MA	06/11/10 12:30
L1008812-07	RIZ-8	WALPOLE, MA	06/11/10 13:40
L1008812-08	MW-9	WALPOLE, MA	06/11/10 14:10
L1008812-09	20100611-TRIP BLANK	WALPOLE, MA	06/11/10 00:00

Project Name: Lab Number: WALPOLE PARK SOUTH L1008812 **Project Number:** 12700058-003 **Report Date:**

06/21/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP **Analytical Methods.**

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	NO
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
)	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
Ξa	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Ξb	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
=	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.	

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question B:

At the client's request, the analytical method specified in the CAM protocol was not followed.

In reference to question H:

An MS/Dup was performed in lieu of an LCS/LCSD.

In reference to question I:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

Case Narrative (continued)

Metals

L1008812-01 through -08 have elevated detection limits for Antimony and Thallium due to the dilutions required by the high concentrations of non-target analytes.

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Wisters Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 06/21/10

ORGANICS

VOLATILES

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Report Date: Project Number: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: Date Collected: L1008812-01 06/11/10 08:02

Client ID: MW-3 Date Received:

06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water Analytical Method: 16,524.2 06/14/10 09:52 Analytical Date:

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH **Lab Number:** L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-01 Date Collected: 06/11/10 08:02

Client ID: MW-3 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 08:02

See Narrative

06/11/10

Date Collected:

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-01

Client ID: MW-3

Sample Location: WALPOLE, MA

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	96		80-120	

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Report Date: Project Number: 12700058-003 06/21/10

SAMPLE RESULTS

Date Collected: Lab ID: L1008812-02 06/11/10 08:56

Client ID: RIZ-3

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/14/10 11:40

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-02 Date Collected: 06/11/10 08:56

Client ID: RIZ-3 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

VIII 022, III 1			o.aop.		Coortananto	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	ı Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 08:56

See Narrative

06/11/10

Date Collected:

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-02

Client ID: RIZ-3

Sample Location: WALPOLE, MA

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	96		80-120

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

SAMPLE RESULTS

Lab ID: L1008812-03

Client ID: MW-2

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/14/10 12:17

Analyst: TT

Date Collected: 06/11/10 09:33 Date Received: 06/11/10

Field Prep: See Narrative

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	1.2		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-03 Date Collected: 06/11/10 09:33

Client ID: MW-2 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-03

Client ID: MW-2

Sample Location: WALPOLE, MA

Date Collected:

06/11/10 09:33

Date Received:

06/11/10

Field Prep:

See Narrative

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	96		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

Report Date: 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-04

Client ID: GHC-6

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/14/10 12:54

Analyst: TT

Date Collected: 06/11/10 10:08 Date Received: 06/11/10

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-04 Date Collected: 06/11/10 10:08

Client ID: GHC-6 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 10:08

See Narrative

06/11/10

Project Name: Lab Number: WALPOLE PARK SOUTH L1008812

Project Number: Report Date: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-04

Client ID: GHC-6

Parameter

Sample Location: WALPOLE, MA

Field Prep: MDL Qualifier Units RL Result **Dilution Factor**

Date Collected:

Date Received:

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	96		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

SAMPLE RESULTS

Lab ID: L1008812-05

Client ID: RIZ-9

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/14/10 13:31

Analyst: TT

Date Collected: 06/11/10 11:07

Date Received: 06/11/10
Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-05 Date Collected: 06/11/10 11:07

Client ID: RIZ-9 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

• • • • • • • • • • • • • • • • • • •				аор.		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 11:07

See Narrative

06/11/10

Date Collected:

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-05

Client ID: RIZ-9

Sample Location: WALPOLE, MA

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	96		80-120

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

Report Date: 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-06

Client ID: RIZ-10

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/14/10 14:08

Analyst: TT

Date Collected: 06/11/10 12:30

Date Received: 06/11/10
Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-06 Date Collected: 06/11/10 12:30

Client ID: RIZ-10 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 12:30

See Narrative

06/11/10

Date Collected:

Date Received:

Field Prep:

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-06

Client ID: RIZ-10

Parameter

Sample Location: WALPOLE, MA

Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichlorobenzene-d4	103		80-120
4-Bromofluorobenzene	98		80-120

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Report Date: **Project Number:** 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: Date Collected: L1008812-07 06/11/10 13:40

Client ID: RIZ-8

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water Analytical Method: 16,524.2 06/14/10 14:46 Analytical Date:

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-07 Date Collected: 06/11/10 13:40

Client ID: RIZ-8 Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 13:40

Date Collected:

Project Name: Lab Number: WALPOLE PARK SOUTH L1008812

Project Number: Report Date: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-07

Client ID: RIZ-8

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter MDL Qualifier Units RL Result **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	97		80-120	

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Report Date: Project Number: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: Date Collected: L1008812-08 06/11/10 14:10

Client ID: MW-9

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Matrix: Water Analytical Method: 16,524.2 06/14/10 15:23 Analytical Date:

Analyst: TT

Volatile Organics by GC/MS - Westborough Lab Methylene chloride ,1-Dichloroethane Chloroform Carbon tetrachloride ,2-Dichloropropane Dibromochloromethane	ND ND ND ND	ug/l ug/l	0.50 0.50	 1
,1-Dichloroethane Chloroform Carbon tetrachloride ,2-Dichloropropane	ND ND ND	ug/l		 1
Chloroform Carbon tetrachloride ,2-Dichloropropane	ND ND		0.50	
Carbon tetrachloride ,2-Dichloropropane	ND			 1
,2-Dichloropropane		ug/l	0.50	 1
· ·	ND	ug/l	0.50	 1
Dibromochloromethane	· ·-	ug/l	0.50	 1
	ND	ug/l	0.50	 1
,1,2-Trichloroethane	ND	ug/l	0.50	 1
etrachloroethene	ND	ug/l	0.50	 1
Chlorobenzene	ND	ug/l	0.50	 1
richlorofluoromethane	ND	ug/l	0.50	 1
,2-Dichloroethane	ND	ug/l	0.50	 1
,1,1-Trichloroethane	ND	ug/l	0.50	 1
Bromodichloromethane	ND	ug/l	0.50	 1
rans-1,3-Dichloropropene	ND	ug/l	0.50	 1
sis-1,3-Dichloropropene	ND	ug/l	0.50	 1
Bromoform	ND	ug/l	0.50	 1
,1,2,2-Tetrachloroethane	ND	ug/l	0.50	 1
Benzene	ND	ug/l	0.50	 1
oluene	ND	ug/l	0.50	 1
Ethylbenzene	ND	ug/l	0.50	 1
/m-Xylene	ND	ug/l	0.50	 1
Chloromethane	ND	ug/l	0.50	 1
Bromomethane	ND	ug/l	0.50	 1
/inyl chloride	ND	ug/l	0.50	 1
Chloroethane	ND	ug/l	0.50	 1
,1-Dichloroethene	ND	ug/l	0.50	 1
rans-1,2-Dichloroethene	ND	ug/l	0.50	 1
sis-1,2-Dichloroethene	ND	ug/l	0.50	 1
richloroethene	ND	ug/l	0.50	 1
,2-Dichlorobenzene	ND	ug/l	0.50	 1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-08 Date Collected: 06/11/10 14:10

Client ID: Date Received: 06/11/10

Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	0.50		1
1,4-Dichlorobenzene	ND		ug/l	0.50		1
Styrene	ND		ug/l	0.50		1
o-Xylene	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	0.50		1
2,2-Dichloropropane	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
1,2,3-Trichloropropane	ND		ug/l	0.50		1
Bromochloromethane	ND		ug/l	0.50		1
n-Butylbenzene	ND		ug/l	0.50		1
Dichlorodifluoromethane	ND		ug/l	0.50		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.50		1
n-Propylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	0.50		1
o-Chlorotoluene	ND		ug/l	0.50		1
p-Chlorotoluene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	0.50		1
1,2-Dibromoethane	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
1,3-Dichloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 14:10

Date Collected:

Project Name: Lab Number: WALPOLE PARK SOUTH L1008812

Project Number: Report Date: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-08

Client ID: MW-9

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: See Narrative

Parameter MDL Qualifier Units RL Result **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	104		80-120	
4-Bromofluorobenzene	97		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-09

Client ID: 20100611-TRIP BLANK

Sample Location: WALPOLE, MA

Matrix: Water
Analytical Method: 16,524.2
Analytical Date: 06/14/10 16:00

Analyst: TT

Date Collected:	06/11/10 00:00
Date Received:	06/11/10
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbore	ough Lab					
Methylene chloride	ND		ug/l	0.50		1
1,1-Dichloroethane	ND		ug/l	0.50		1
Chloroform	ND		ug/l	0.50		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	0.50		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.50		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.50		1
Ethylbenzene	ND		ug/l	0.50		1
p/m-Xylene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	0.50		1
Bromomethane	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	0.50		1
Chloroethane	ND		ug/l	0.50		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.50		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	0.50		1

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: Report Date: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: Date Collected: L1008812-09 06/11/10 00:00

Client ID: 20100611-TRIP BLANK Date Received: 06/11/10 Field Prep: Not Specified

Sample Location: WALPOLE, MA

1,3-Dichlorobenzene ND ug/l 0.50 1 1,4-Dichlorobenzene ND ug/l 0.50 1 1,4-Dichlorobenzene ND ug/l 0.50 1 1,5-Dichlorobenzene ND ug/l 0.50 1 0-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND ugl 0.50 1 Styrene ND ugl 0.50 1 c-Xylene ND ugl 0.50 1 1,1-Dichloropropene ND ugl 0.50 1 1,1-1,2-Tetrachloropethane ND ugl 0.50 1 1,2,3-Trichloropropane ND ugl 0.50 1 Bromochloromethane ND ugl 0.50 1 Bromochloromethane ND ugl 0.50 1 I-Butylbenzene ND ugl 0.50 1 Dichlorodifluoromethane ND ugl 0.50 1 Hexachlorobutadiene ND ugl 0.50 1 Isopropylbenzene ND ugl 0.50 1 Isopropylbenzene ND ugl 0.50 1	Volatile Organics by GC/MS - Westbo	orough Lab					
Skyrene ND ugl 0.50 1 c-Xylene ND ugl 0.50 1 1.1-Dichloropropene ND ugl 0.50 1 2,2-Dichloropropane ND ugl 0.50 1 1,1,1,2-Etarchloroethane ND ugl 0.50 1 1,1,2-Etrachloropropane ND ugl 0.50 1 1,2,2-Trichloropropane ND ugl 0.50 1 Bromochloromethane ND ugl 0.50 1 Bromochloromethane ND ugl 0.50 1 Hexachlorobutadiene ND ugl 0.50 1 Hexachlorobutadiene ND ugl 0.50 1 p-Isopropylibulene ND ugl 0.50 1 Naphthalene ND ugl 0.50 1	1,3-Dichlorobenzene	ND		ug/l	0.50		1
o-Xylene ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1.1,1,2-Tetrachloropethane ND ug/l 0.50 1 1.2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifloromethane ND ug/l 0.50 1 Dichlorodifloromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	1,4-Dichlorobenzene	ND		ug/l	0.50		1
1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 D-Butylbenzene ND ug/l 0.50 1 D-Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 see-Butylbenzene ND ug/l 0.50 1	Styrene	ND		ug/l	0.50		1
2,2-Dichloropropane ND ug/l 0,50 1 1,1,1,2-Tetrachloroethane ND ug/l 0,50 1 1,2,3-Trichloropropane ND ug/l 0,50 1 Bromochloromethane ND ug/l 0,50 1 n-Butybenzene ND ug/l 0,50 1 Dichlorodiffuoromethane ND ug/l 0,50 1 Hexachlorobutadiene ND ug/l 0,50 1 Bopropyblenzene ND ug/l 0,50 1 Isopropyblenzene ND ug/l 0,50 1 Naphthalene ND ug/l 0,50 1 n-Propyblenzene ND ug/l 0,50 1 sec-Butybenzene ND ug/l 0,50 1 tert-Butybenzene ND ug/l 0,50 1 <td>o-Xylene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	o-Xylene	ND		ug/l	0.50		1
1,1,1,2-Tetrachloroethane ND ug/l 0,50 1 1,2,3-Trichloropropane ND ug/l 0,50 1 Bromochloromethane ND ug/l 0,50 1 n-Butylbenzene ND ug/l 0,50 1 Dichlorodiffluoromethane ND ug/l 0,50 1 Hexachlorobutadiene ND ug/l 0,50 1 Isopropylbenzene ND ug/l 0,50 1 Isopropylbenzene ND ug/l 0,50 1 Isopropylbenzene ND ug/l 0,50 1 Naphthalene ND ug/l 0,50 1 n-Propylbenzene ND ug/l 0,50 1 sec-Butylbenzene ND ug/l 0,50 1 tert-Butylbenzene ND ug/l 0,50 1 <	1,1-Dichloropropene	ND		ug/l	0.50		1
1,2,3-Trichloropropane ND ug/l 0.50 1	2,2-Dichloropropane	ND		ug/l	0.50		1
Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodiffluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1	1,2,3-Trichloropropane	ND		ug/l	0.50		1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 </td <td>Bromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	Bromochloromethane	ND		ug/l	0.50		1
Hexachlorobutadiene ND Ug/l 0.50 1	n-Butylbenzene	ND		ug/l	0.50		1
Sopropyltoluene ND	Dichlorodifluoromethane	ND		ug/l	0.50		1
P-Isopropyltoluene ND ug/l 0.50 1	Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1	Isopropylbenzene	ND		ug/l	0.50		1
n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1 </td <td>p-Isopropyltoluene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td></td> <td>1</td>	p-Isopropyltoluene	ND		ug/l	0.50		1
sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Naphthalene	ND		ug/l	0.50		1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 1 p-Chlorotoluene ND ug/l 0.50 1 1 p-Chlorotoluene ND ug/l 0.50 1 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	sec-Butylbenzene	ND		ug/l	0.50		1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene	ND		ug/l	0.50		1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene	ND		ug/l	0.50		1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene	ND		ug/l	0.50		1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene	ND		ug/l	0.50		1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene	ND		ug/l	0.50		1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene	ND		ug/l	0.50		1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene	ND		ug/l	0.50		1
1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene	ND		ug/l	0.50		1
1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane	ND		ug/l	0.50		1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane	ND		ug/l	0.50		1
	1,2-Dibromo-3-chloropropane	ND		ug/l	0.50		1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane	ND		ug/l	0.50		1
	Methyl tert butyl ether	ND		ug/l	0.50		1

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	1

06/11/10 00:00

Date Collected:

Project Name: Lab Number: WALPOLE PARK SOUTH L1008812

Project Number: Report Date: 12700058-003 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-09

Client ID: 20100611-TRIP BLANK

Date Received: 06/11/10 Sample Location: WALPOLE, MA Field Prep: Not Specified

Parameter MDL Result Qualifier Units RL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	100		80-120	
4-Bromofluorobenzene	97		80-120	

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/14/10 07:26

Analyst: TT

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	o for sample(s):	01-09	Batch: WG4	17697-2
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
1,3-Dichlorobenzene	ND		ug/l	0.50	

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

Method Blank Analysis Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/14/10 07:26

Analyst: TT

Parameter	Result	Qualifier	Units	R	L MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-09	Batch:	WG417697-2
1,4-Dichlorobenzene	ND		ug/l	0.5	50
Styrene	ND		ug/l	0.5	50
o-Xylene	ND		ug/l	0.5	50
1,1-Dichloropropene	ND		ug/l	0.5	50
2,2-Dichloropropane	ND		ug/l	0.5	50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.5	50
1,2,3-Trichloropropane	ND		ug/l	0.5	50
Bromochloromethane	ND		ug/l	0.5	50
n-Butylbenzene	ND		ug/l	0.5	50
Dichlorodifluoromethane	ND		ug/l	0.5	50
Hexachlorobutadiene	ND		ug/l	0.5	50
Isopropylbenzene	ND		ug/l	0.5	50
p-Isopropyltoluene	ND		ug/l	0.5	50
Naphthalene	ND		ug/l	0.5	50
n-Propylbenzene	ND		ug/l	0.5	50
sec-Butylbenzene	ND		ug/l	0.5	50
tert-Butylbenzene	ND		ug/l	0.5	50
1,2,3-Trichlorobenzene	ND		ug/l	0.5	50
1,2,4-Trichlorobenzene	ND		ug/l	0.5	50
1,2,4-Trimethylbenzene	ND		ug/l	0.5	50
1,3,5-Trimethylbenzene	ND		ug/l	0.5	50
Bromobenzene	ND		ug/l	0.5	50
o-Chlorotoluene	ND		ug/l	0.5	50
p-Chlorotoluene	ND		ug/l	0.5	50
Dibromomethane	ND		ug/l	0.5	50
1,2-Dibromoethane	ND		ug/l	0.5	50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.5	50
1,3-Dichloropropane	ND		ug/l	0.5	50
Methyl tert butyl ether	ND		ug/l	0.5	50

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

Method Blank Analysis
Batch Quality Control

Analytical Method: 16,524.2 Analytical Date: 06/14/10 07:26

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	
Valatila Organica by CC/MS	Weatherough Le	h for comple	(a): 01 00	Potob: WC4	17607 2	

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-09 Batch: WG417697-2

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

		4	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	97		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-09	Batch:	WG417697-	1			
Methylene chloride	107			-		70-130	-		
1,1-Dichloroethane	106			-		70-130	-		
Chloroform	102			-		70-130	-		
Carbon tetrachloride	86			-		70-130	-		
1,2-Dichloropropane	107			-		70-130	-		
Dibromochloromethane	95			-		70-130	-		
1,1,2-Trichloroethane	102			-		70-130	-		
Tetrachloroethene	106			-		70-130	-		
Chlorobenzene	97			-		70-130	-		
Trichlorofluoromethane	102			-		70-130	-		
1,2-Dichloroethane	99			-		70-130	-		
1,1,1-Trichloroethane	99			-		70-130	-		
Bromodichloromethane	94			-		70-130	-		
trans-1,3-Dichloropropene	79			-		70-130	-		
cis-1,3-Dichloropropene	84			-		70-130	-		
Bromoform	86			-		70-130	-		
1,1,2,2-Tetrachloroethane	94			-		70-130	-		
Benzene	109			-		70-130	-		
Toluene	108			-		70-130	-		
Ethylbenzene	98			-		70-130	-		
p/m-Xylene	100			-		70-130	-		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	LCS %Recovery (LCS Qual %Reco		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated sar	mple(s): 01-09 l	Batch: WG4176	697-1			
Chloromethane	119	-		70-130	-		
Bromomethane	116	-		70-130	-		
Vinyl chloride	117	-		70-130	-		
Chloroethane	112	-		70-130	-		
1,1-Dichloroethene	109	-		70-130	-		
trans-1,2-Dichloroethene	109	-		70-130	-		
cis-1,2-Dichloroethene	104	-		70-130	-		
Trichloroethene	103	-		70-130	-		
1,2-Dichlorobenzene	91	-		70-130	-		
1,3-Dichlorobenzene	94	-		70-130	-		
1,4-Dichlorobenzene	93	-		70-130	-		
Styrene	97	-		70-130	-		
o-Xylene	97	-		70-130	-		
1,1-Dichloropropene	104	-		70-130	-		
2,2-Dichloropropane	78	-		70-130	-		
1,1,1,2-Tetrachloroethane	92	-		70-130	-		
1,2,3-Trichloropropane	92	-		70-130	-		
Bromochloromethane	101	-		70-130	-		
n-Butylbenzene	96	-		70-130	-		
Dichlorodifluoromethane	122	-		70-130	-		
Hexachlorobutadiene	98	-		70-130	-		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-09	Batch:	WG417697-	-1			
Isopropylbenzene	97			-		70-130	-		
p-Isopropyltoluene	98			-		70-130	-		
Naphthalene	74			-		70-130	-		
n-Propylbenzene	98			-		70-130	-		
sec-Butylbenzene	97			-		70-130	-		
tert-Butylbenzene	97			-		70-130	-		
1,2,3-Trichlorobenzene	82			-		70-130	-		
1,2,4-Trichlorobenzene	86			-		70-130	-		
1,2,4-Trimethylbenzene	98			-		70-130	-		
1,3,5-Trimethylbenzene	98			-		70-130	-		
Bromobenzene	96			-		70-130	-		
o-Chlorotoluene	100			-		70-130	-		
p-Chlorotoluene	99			-		70-130	-		
Dibromomethane	98			-		70-130	-		
1,2-Dibromoethane	91			-		70-130	-		
1,2-Dibromo-3-chloropropane	78			-		70-130	-		
1,3-Dichloropropane	100			-		70-130	-		
Methyl tert butyl ether	101			-		70-130	-		

Lab Control Sample Analysis

WALPOLE PARK SOUTH

Batch Quality Control

Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

LCS LCSD %Recovery

Parameter %Recovery Qual %Recovery Qual Limits RPD Qual RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 Batch: WG417697-1

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
1,2-Dichlorobenzene-d4	98				80-120	
4-Bromofluorobenzene	98				80-120	

Project Name:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

rameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD		RPD <u>Limit</u> s
olatile Organics by GC/MS - ample	- Westborough	Lab Associ	ated sample	(s): 01-09 Q	QC Batch ID: WG417	7697-3 QC	Sample: L1008822	2-01	Client ID:	MS
Methylene chloride	ND	4	4.5	112		-	70-130	-		20
1,1-Dichloroethane	ND	4	4.5	113	-	-	70-130	-		20
Chloroform	27	4	31	102	-	-	70-130	-		20
Carbon tetrachloride	ND	4	4.0	101	-	-	70-130	-		20
1,2-Dichloropropane	ND	4	4.5	113	-	-	70-130	-		20
Dibromochloromethane	4.8	4	8.8	100	-	-	70-130	-		20
1,1,2-Trichloroethane	ND	4	4.3	108	-	-	70-130	-		20
Tetrachloroethene	ND	4	4.6	116	-	-	70-130	-		20
Chlorobenzene	ND	4	4.1	104	-	-	70-130	-		20
Trichlorofluoromethane	ND	4	4.6	114	-	-	70-130	-		20
1,2-Dichloroethane	ND	4	4.1	102	-	-	70-130	-		20
1,1,1-Trichloroethane	ND	4	4.3	108	-	-	70-130	-		20
Bromodichloromethane	10	4	14	100	-	-	70-130	-		20
trans-1,3-Dichloropropene	ND	4	3.1	77	-	-	70-130	-		20
cis-1,3-Dichloropropene	ND	4	4.0	99	-	-	70-130	-		20
Bromoform	0.59	4	4.2	91		-	70-130	-		20
1,1,2,2-Tetrachloroethane	ND	4	3.8	96		-	70-130	-		20
Benzene	ND	4	4.5	112		-	70-130	-		20
Toluene	ND	4	4.5	112		-	70-130	-		20
Ethylbenzene	ND	4	4.4	110		-	70-130	-		20
p/m-Xylene	1.2	8	9.4	102		-	70-130	-		20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough	Lab Assoc	iated sample	(s): 01-09 Q	C Batch	ID: WG41	7697-3 QC	Sample	: L100882	2-01	Client ID:	MS
Chloromethane	ND	4	4.0	101		-	-		70-130	-		20
Bromomethane	ND	4	4.6	116		-	-		70-130	-		20
Vinyl chloride	ND	4	5.9	148	Q	-	-		70-130	-		20
Chloroethane	ND	4	4.9	122		-	-		70-130	-		20
1,1-Dichloroethene	ND	4	4.6	115		-	-		70-130	-		20
trans-1,2-Dichloroethene	ND	4	4.5	113		-	-		70-130	-		20
cis-1,2-Dichloroethene	ND	4	4.6	116		-	-		70-130	-		20
Trichloroethene	ND	4	4.3	108		-	-		70-130	-		20
1,2-Dichlorobenzene	ND	4	3.8	95		-	-		70-130	-		20
1,3-Dichlorobenzene	ND	4	3.8	95		-	-		70-130	-		20
1,4-Dichlorobenzene	ND	4	3.7	94		-	-		70-130	-		20
Styrene	ND	4	3.7	93		-	-		70-130	-		20
o-Xylene	ND	4	4.4	110		-	-		70-130	-		20
1,1-Dichloropropene	ND	4	4.6	116		-	-		70-130	-		20
2,2-Dichloropropane	ND	4	3.7	94		-	-		70-130	-		20
1,1,1,2-Tetrachloroethane	ND	4	3.9	98		-	-		70-130	-		20
1,2,3-Trichloropropane	ND	4	3.6	91		-	-		70-130	-		20
Bromochloromethane	ND	4	4.5	112		-	-		70-130	-		20
n-Butylbenzene	ND	4	3.9	98		-	-		70-130	-		20
Dichlorodifluoromethane	ND	4	4.2	105		-	-		70-130	-		20
Hexachlorobutadiene	ND	4	3.9	99		-	-		70-130	-		20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD <u>Limit</u> s
olatile Organics by GC/MS -	Westborough	Lab Associ	ated sample	(s): 01-09 Q	C Batch II	D: WG417	7697-3 QC	Sample: L100882	2-01	Client ID:	MS
Isopropylbenzene	ND	4	3.6	90		-	-	70-130	-		20
p-Isopropyltoluene	ND	4	3.9	98		-	-	70-130	-		20
Naphthalene	0.59	4	3.9	82		-	-	70-130	-		20
n-Propylbenzene	ND	4	4.1	102		-	-	70-130	-		20
sec-Butylbenzene	ND	4	4.1	102		-	-	70-130	-		20
tert-Butylbenzene	ND	4	4.1	102		-	-	70-130	-		20
1,2,3-Trichlorobenzene	ND	4	3.4	86		-	-	70-130	-		20
1,2,4-Trichlorobenzene	ND	4	3.4	85		-	-	70-130	-		20
1,2,4-Trimethylbenzene	ND	4	4.0	101		-	-	70-130	-		20
1,3,5-Trimethylbenzene	ND	4	4.0	100		-	-	70-130	-		20
Bromobenzene	ND	4	3.9	98		-	-	70-130	-		20
o-Chlorotoluene	ND	4	4.2	104		-	-	70-130	-		20
p-Chlorotoluene	ND	4	3.9	98		-	-	70-130	-		20
Dibromomethane	ND	4	4.3	108		-	-	70-130	-		20
1,2-Dibromoethane	ND	4	3.7	93		-	-	70-130	-		20
1,2-Dibromo-3-chloropropane	ND	4	3.4	86		-	-	70-130	-		20
1,3-Dichloropropane	ND	4	4.1	103		-	-	70-130	-		20
Methyl tert butyl ether	ND	4	4.2	104		-	-	70-130	-		20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-3 QC Sample: L1008822-01 Client ID: MS Sample

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichlorobenzene-d4	100		80-120
4-Bromofluorobenzene	99		80-120

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

L1008812 06/21/10 Report Date:

Lab Number:

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-4 QC Sample: L1008812-01 Client ID: MW-3 Methylene chloride ND ND ND ugil NC 20 1,1-Dichloroethane ND ND ND ugil NC 20 Carbon tetrachloride ND ND ND ugil NC 20 1,2-Dichloropropane ND ND ND ugil NC 20 Dibromochloromethane ND ND ND ugil NC 20 1,1,2-Trichloroethane ND ND ND ugil NC 20 Chlorobenzene ND ND ND ugil NC 20 1,2-Dichloroethane ND ND ND ugil NC 20 1,1,1-Trichloroethane ND ND ND ugil NC 20 Bromodichloromethane ND ND ND ugil	arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
1,1-Dichloroethane	olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-09	QC Batch ID: WG417697-	4 QC Sample	e: L10088	312-01 Client ID: MW-3
Chloroform ND ND ug/l NC 20 Carbon tetrachloride ND ND ND ug/l NC 20 1,2-Dichloropropane ND ND ND ug/l NC 20 Dibromochloromethane ND ND ND ug/l NC 20 1,1,2-Trichloroethane ND ND ND ug/l NC 20 Tetrachloroethane ND ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND <td< td=""><td>Methylene chloride</td><td>ND</td><td>ND</td><td>ug/l</td><td>NC</td><td>20</td></td<>	Methylene chloride	ND	ND	ug/l	NC	20
Carbon tetrachloride ND ND ug/l NC 20 1,2-Dichloropropane ND ND ND ug/l NC 20 Dibromochloromethane ND ND ND ug/l NC 20 1,1,2-Trichloroethane ND ND ND ug/l NC 20 Tetrachloroethane ND ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 Benzene ND ND ND ug	1,1-Dichloroethane	ND	ND	ug/l	NC	20
1,2-Dichloropropane ND ND ug/l NC 20 Dibromochloromethane ND ND ND ug/l NC 20 1,1,2-Trichloroethane ND ND ND ug/l NC 20 Tetrachloroethane ND ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ND ug/l NC 20 1,2-Dichloroethane ND ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND <td>Chloroform</td> <td>ND</td> <td>ND</td> <td>ug/l</td> <td>NC</td> <td>20</td>	Chloroform	ND	ND	ug/l	NC	20
Dibromochloromethane ND ND ug/l NC 20 1,1,2-Trichloroethane ND ND ND ug/l NC 20 Tetrachloroethene ND ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ND ug/l NC 20 1,2-Dichloroethane ND ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND <t< td=""><td>Carbon tetrachloride</td><td>ND</td><td>ND</td><td>ug/l</td><td>NC</td><td>20</td></t<>	Carbon tetrachloride	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane ND ND ug/l NC 20 Tetrachloroethene ND ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ND ug/l NC 20 1,2-Dichloroethane ND ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	1,2-Dichloropropane	ND	ND	ug/l	NC	20
Tetrachloroethene ND ND ug/l NC 20 Chlorobenzene ND ND ND ug/l NC 20 Trichlorofluoromethane ND ND ug/l NC 20 1,2-Dichloroethane ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	Dibromochloromethane	ND	ND	ug/l	NC	20
Chlorobenzene ND ND ug/l NC 20 Trichlorofluoromethane ND ND ug/l NC 20 1,2-Dichloroethane ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 cis-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Trichlorofluoromethane ND ND ug/l NC 20 1,2-Dichloroethane ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ug/l NC 20 Bromodichloromethane ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	Tetrachloroethene	ND	ND	ug/l	NC	20
1,2-Dichloroethane ND ND ug/l NC 20 1,1,1-Trichloroethane ND ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	Chlorobenzene	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane ND ND ug/l NC 20 Bromodichloromethane ND ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 cis-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	Trichlorofluoromethane	ND	ND	ug/l	NC	20
Bromodichloromethane ND ND ug/l NC 20 trans-1,3-Dichloropropene ND ND ND ug/l NC 20 cis-1,3-Dichloropropene ND ND ND ug/l NC 20 Bromoform ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	1,2-Dichloroethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene ND ND ug/l NC 20 cis-1,3-Dichloropropene ND ND ug/l NC 20 Bromoform ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ND ug/l NC 20	1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene ND ND ug/l NC 20 Bromoform ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ug/l NC 20	Bromodichloromethane	ND	ND	ug/l	NC	20
Bromoform ND ND ug/l NC 20 1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ug/l NC 20	trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane ND ND ug/l NC 20 Benzene ND ND ug/l NC 20	cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Benzene ND ND ug/l NC 20	Bromoform	ND	ND	ug/l	NC	20
	1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Toluene ND ND ug/l NC 20	Benzene	ND	ND	ug/l	NC	20
	Toluene	ND	ND	ug/l	NC	20

ND

ug/l

NC

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812 **Report Date:** 06/21/10

Native Sample Duplicate Sample Units RPD RPD Limits Parameter Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-09 QC Batch ID: WG417697-4 QC Sample: L1008812-01 Client ID: MW-3 NC Ethylbenzene ND ND ug/l 20 p/m-Xylene ND ND ug/l NC 20 Chloromethane ND ND ug/l NC 20 Bromomethane ND ND ug/l NC 20 Vinyl chloride ND ND ug/l NC 20 Chloroethane ND ND ug/l NC 20 1,1-Dichloroethene ND ND ug/l NC 20 trans-1,2-Dichloroethene ND ND ug/l NC 20 cis-1,2-Dichloroethene ND ND ug/l NC 20 Trichloroethene ND ND ug/l NC 20 1,2-Dichlorobenzene ND ND ug/l NC 20 1.3-Dichlorobenzene ND ND ug/l NC 20 1,4-Dichlorobenzene ND ND ug/l NC 20 Styrene ND ND ug/l NC 20 o-Xylene ND ND ug/l NC 20 1,1-Dichloropropene ND ND ug/l NC 20 2,2-Dichloropropane ND ND ug/l NC 20 1,1,1,2-Tetrachloroethane ND ND ug/l NC 20

ND

20

1,2,3-Trichloropropane

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01-09	QC Batch ID: WG41769	7-4 QC Samp	le: L1008812-0	1 Client ID: MW-3
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated sample(s): 01-09	QC Batch ID: WG417697	7-4 QC Samp	le: L100881	2-01 Client ID: MW-3
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	101		101		80-120	
4-Bromofluorobenzene	96		97		80-120	

METALS

06/11/10

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID: L1008812-01

Client ID: MW-3

Sample Location: WALPOLE, MA

Matrix: Water

Lab Number: L1008812

Report Date: 06/21/10

Date Collected: 06/11/10 08:02

Date Received:

Field Prep: See Narrative

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
MCP Dissolved Metals - Westborough Lab											
ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 03:32	EPA 3005A	97,6020A	ВМ	
ND		mg/l	0.005		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
0.036		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	AI	
ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	AI	
ND		mg/l	0.01		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	AI	
ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:34	EPA 7470A	97,7470A	EZ	
ND		mg/l	0.025		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.007		1	06/14/10 13:10	06/17/10 14:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 03:32	EPA 3005A	97,6020A	ВМ	
ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	Al	
ND		mg/l	0.050		1	06/14/10 13:10	06/16/10 17:57	EPA 3005A	97,6010B	AI	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Als - Westborough Land	Als - Westborough Lab ND mg/l ND mg/l 0.036 mg/l ND mg/l	ND mg/l 0.0020 ND mg/l 0.005 0.036 mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.0025 ND mg/l 0.0025 ND mg/l 0.010 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.0010	ND mg/l 0.0020 ND mg/l 0.005 0.036 mg/l 0.010 ND mg/l 0.004 ND mg/l 0.004 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.0002 ND mg/l 0.0002 ND mg/l 0.010 ND mg/l 0.0002 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.010 ND mg/l 0.007 ND mg/l 0.0020 ND mg/l 0.0020 ND mg/l 0.0020	ND	Result Qualifier Units RL MDL Factor Prepared Als - Westborough Lab ND mg/l 0.0020 4 06/12/10 10:30 ND mg/l 0.005 1 06/14/10 13:10 0.036 mg/l 0.010 1 06/14/10 13:10 ND mg/l 0.004 1 06/14/10 13:10 ND mg/l 0.01 1 06/14/10 13:10 ND mg/l 0.010 1 06/14/10 13:10 ND mg/l 0.0002 1 06/17/10 17:30 ND mg/l 0.0025 1 06/14/10 13:10 ND mg/l 0.007 1 06/14/10 13:10 ND mg/l 0.0020 4 06/12/10 10:30 ND mg/l 0.0020 4 06/12/10 10:30 ND mg/l 0.0020 <	Result Qualifier Units RL MDL Factor Prepared Analyzed Als - Westborough Lab ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 03:32 ND mg/l 0.005 1 06/14/10 13:10 06/16/10 17:57 0.036 mg/l 0.010 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.01 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.002 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.025 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.010 1 06/14/10 13:10 06/16/10 17:57 ND mg/l 0.002	ND	ND	

L1008812

Project Name: WALPOLE PARK SOUTH Lab Number:

Project Number: 12700058-003 **Report Date:** 06/21/10

SAMPLE RESULTS

Lab ID: L1008812-02

Client ID: RIZ-3

Sample Location: WALPOLE, MA

Matrix: Water

Date Collected: 06/11/10 08:56

Date Received: 06/11/10

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	stborough L	ab								
Antimony, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	0 06/15/10 03:38	EPA 3005A	97,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Barium, Dissolved	0.161		mg/l	0.010		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Lead, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002		1	06/17/10 17:30	0 06/18/10 11:35	EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Silver, Dissolved	ND		mg/l	0.007		1	06/14/10 13:10	0 06/17/10 15:00	EPA 3005A	97,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	0 06/15/10 03:38	EPA 3005A	97,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050		1	06/14/10 13:10	0 06/16/10 18:00	EPA 3005A	97,6010B	Al

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number: **Report Date:**

L1008812 06/21/10

SAMPLE RESULTS

Lab ID:

L1008812-03

Client ID:

MW-2

Sample Location:

WALPOLE, MA

Matrix:

Water

Date Collected:

06/11/10 09:33

Date Received: Field Prep:

06/11/10

See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Meta	als - Wes	tborough L	ab								
Antimony, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 03:44	EPA 3005A	97,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Barium, Dissolved	0.070		mg/l	0.010		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Lead, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:37	EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	AI
Silver, Dissolved	ND		mg/l	0.007		1	06/14/10 13:10	06/17/10 15:04	EPA 3005A	97,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 03:44	EPA 3005A	97,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050		1	06/14/10 13:10	06/16/10 18:04	EPA 3005A	97,6010B	Al

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

Lab ID: L1008812-04

Client ID: GHC-6

Date Collected:
Date Received:

06/11/10 10:08

Sample Location:

WALPOLE, MA

06/11/10

Matrix:

Water

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	tborough L	ab								
Antimony, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:09	EPA 3005A	97,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	AI
Barium, Dissolved	0.063		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Beryllium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Cadmium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Lead, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Mercury, Dissolved	ND		mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:42	EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Selenium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Silver, Dissolved	ND		mg/l	0.007		1	06/14/10 13:10	06/17/10 14:34	EPA 3005A	97,6010B	Al
Thallium, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:09	EPA 3005A	97,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:24	EPA 3005A	97,6010B	Al
Zinc, Dissolved	ND		mg/l	0.050		1		06/16/10 17:24		97,6010B	Al

SAMPLE RESULTS

Project Name: WALPOLE PARK SOUTH

12700058-003

Lab Number: **Report Date:**

L1008812

06/21/10

Lab ID: L1008812-05

Client ID: RIZ-9

Sample Location: WALPOLE, MA

Matrix: Water

Project Number:

Date Collected:

06/11/10 11:07

Date Received:

06/14/10 13:10 06/16/10 17:34 EPA 3005A

06/11/10

Field Prep:

See Narrative

Dilution Date Date Prep Analytical Method Method Factor **Prepared Analyzed** Qualifier Units RL MDL **Parameter** Result **Analyst** MCP Dissolved Metals - Westborough Lab Antimony, Dissolved ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A 97,6020A ВМ ND 1 97,6010B Arsenic, Dissolved mg/l 0.005 06/14/10 13:10 06/16/10 17:34 EPA 3005A ΑI ND 1 0.010 97,6010B Barium, Dissolved mg/l 06/14/10 13:10 06/16/10 17:34 EPA 3005A ΑI Beryllium, Dissolved ND mg/l 0.004 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ΑI ND 0.004 1 97,6010B Cadmium, Dissolved 06/14/10 13:10 06/16/10 17:34 EPA 3005A ΑI mg/l ND 0.01 1 97,6010B Chromium, Dissolved mg/l 06/14/10 13:10 06/16/10 17:34 EPA 3005A ΑI Lead, Dissolved ND 0.010 --1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ΑI mg/l Mercury, Dissolved ND mg/l 0.0002 1 06/17/10 17:30 06/18/10 11:46 EPA 7470A 97,7470A ΕZ ND 1 97,6010B Nickel, Dissolved 0.025 06/14/10 13:10 06/16/10 17:34 EPA 3005A ΑI mg/l Selenium, Dissolved ND 0.010 --1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B ΑI mg/l Silver, Dissolved ND 0.007 1 06/14/10 13:10 06/17/10 14:44 EPA 3005A 97,6010B mg/l ΑI --Thallium, Dissolved ND 0.0020 4 06/12/10 10:30 06/15/10 04:27 EPA 3005A 97,6020A BM mg/l --Vanadium, Dissolved ND 0.010 1 06/14/10 13:10 06/16/10 17:34 EPA 3005A 97,6010B mg/l ΑI ND 0.050 1 97.6010B ΑI

mg/l

SAMPLE RESULTS

Zinc, Dissolved

Project Name: WALPOLE PARK SOUTH Lab Number:

Report Date:

L1008812

06/21/10

Project Number: 1270

12700058-003

SAMPLE RESULTS

06/11/10 12:30

Lab ID: Client ID: L1008812-06

RIZ-10

Date Collected: 06/11/10
Date Received: 06/11/10

Sample Location:

WALPOLE, MA

Field Prep: See Narrative

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Meta	als - Wes	tborough La	ab								
Antimony, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:33	EPA 3005A	97,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Barium, Dissolved	0.107		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Lead, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:48	EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Silver, Dissolved	ND		mg/l	0.007		1	06/14/10 13:10	06/17/10 14:47	EPA 3005A	97,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:33	EPA 3005A	97,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:37	EPA 3005A	97,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050		1		06/16/10 17:37		97,6010B	Al

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: Report Date: L1008812

06/21/10

SAMPLE RESULTS

mg/l

0.005

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

--

--

--

--

L1008812-07

Client ID: RIZ-8

Sample Location: WALPOLE, MA

ND

Matrix: Water

Lab ID:

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Date Collected:

06/11/10 13:40

Date Received:

06/14/10 13:10 06/16/10 17:50 EPA 3005A

06/17/10 17:30 06/18/10 11:49 EPA 7470A

06/14/10 13:10 06/16/10 17:50 EPA 3005A

06/14/10 13:10 06/16/10 17:50 EPA 3005A

06/14/10 13:10 06/17/10 14:51 EPA 3005A

06/12/10 10:30 06/15/10 04:39 EPA 3005A

06/14/10 13:10 06/16/10 17:50 EPA 3005A

06/14/10 13:10 06/16/10 17:50 EPA 3005A

06/11/10

Field Prep:

See Narrative

97,6010B

97,6010B

97,6010B

97,6010B

97,6010B

97,6010B

97,7470A

97,6010B

97,6010B

97,6010B

97,6020A

97,6010B

97.6010B

ΑI

ΑI

ΑI

ΑI

ΑI

ΑI

ΕZ

ΑI

ΑI

ΑI

BM

ΑI

ΑI

Dilution Date Date Prep Analytical Method **Prepared** Method Factor **Analyzed** Qualifier Units RL MDL **Parameter** Result **Analyst** MCP Dissolved Metals - Westborough Lab Antimony, Dissolved ND mg/l 0.0020 4 06/12/10 10:30 06/15/10 04:39 EPA 3005A 97,6020A BM

1

1

1

1

1

1

1

1

1

1

4

1

1

ALPHA

Project Name: Lab Number: WALPOLE PARK SOUTH 06/21/10

Project Number: 12700058-003

Report Date:

L1008812

SAMPLE RESULTS

Lab ID: L1008812-08

Client ID: MW-9

Sample Location: WALPOLE, MA

Matrix: Water Date Collected: 06/11/10 14:10

Date Received: 06/11/10

Field Prep: See Narrative

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - Wes	stborough L	.ab								
Antimony, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:45	EPA 3005A	97,6020A	ВМ
Arsenic, Dissolved	ND		mg/l	0.005		1	06/14/10 13:10) 06/16/10 17:54	EPA 3005A	97,6010B	AI
Barium, Dissolved	0.064		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	Al
Chromium, Dissolved	ND		mg/l	0.01		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Lead, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:51	EPA 7470A	97,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	Al
Silver, Dissolved	ND		mg/l	0.007		1	06/14/10 13:10	06/17/10 14:54	EPA 3005A	97,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020		4	06/12/10 10:30	06/15/10 04:45	EPA 3005A	97,6020A	ВМ
Vanadium, Dissolved	ND		mg/l	0.010		1	06/14/10 13:10	06/16/10 17:54	EPA 3005A	97,6010B	AI
Zinc, Dissolved	0.051		mg/l	0.050		1	06/14/10 13:10) 06/16/10 17:54	EPA 3005A	97,6010B	AI

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date: 06/21/10

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals -	Westborough Lab for	sample(s): 01-0	8 Bat	ch: WG417	'601-1			
Antimony, Dissolved	ND	mg/l	0.0005		1	06/12/10 10:30	06/14/10 18:34	97,6020A	ВМ
Thallium, Dissolved	ND	mg/l	0.0005		1	06/12/10 10:30	06/14/10 18:34	97,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab for	sample(s)	: 01-0	Bate	ch: WG417	7803-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Barium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Beryllium, Dissolved	ND	mg/l	0.004		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Cadmium, Dissolved	ND	mg/l	0.004		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Chromium, Dissolved	ND	mg/l	0.01		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Lead, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Nickel, Dissolved	ND	mg/l	0.025		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Selenium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Silver, Dissolved	ND	mg/l	0.007		1	06/14/10 13:10	06/17/10 14:07	97,6010B	Al
Vanadium, Dissolved	ND	mg/l	0.010		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al
Zinc, Dissolved	ND	mg/l	0.050		1	06/14/10 13:10	06/16/10 17:15	97,6010B	Al

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metal	s - Westborough Lab for	sample(s	s): 01-08	Bat	ch: WG418	3542-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	06/17/10 17:30	06/18/10 11:28	97,7470A	EZ

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 **Report Date:** 06/21/10

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

L1008812

Report Date:

06/21/10

Parameter	LCS %Recovery (Qual %	LCSD Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample(s): 01-08	Batch:	WG417601-2	WG417601-3			
Antimony, Dissolved	95		96		80-120	1		20
Thallium, Dissolved	96		96		80-120	0		20
MCP Dissolved Metals - Westborough Lab	Associated sample(s): 01-08	Batch:	WG417803-2	WG417803-3			
Arsenic, Dissolved	114		115		80-120	1		20
Barium, Dissolved	98		100		80-120	2		20
Beryllium, Dissolved	100		102		80-120	2		20
Cadmium, Dissolved	109		110		80-120	1		20
Chromium, Dissolved	95		100		80-120	5		20
Lead, Dissolved	107		110		80-120	3		20
Nickel, Dissolved	98		99		80-120	1		20
Selenium, Dissolved	113		115		80-120	2		20
Silver, Dissolved	92		94		80-120	2		20
Vanadium, Dissolved	101		102		80-120	1		20
Zinc, Dissolved	101		102		80-120	1		20
MCP Dissolved Metals - Westborough Lab	Associated sample(s): 01-08	Batch:	WG418542-2	WG418542-3			
Mercury, Dissolved	114		111		80-120	3		20

Matrix Spike Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812

Report Date: 06/21/10

Parameter	Native Sample	MS Added	MS Found %F	MS Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery	/ RPD Qı	RPD _{ual} Limits
MCP Dissolved Metals - V	Vestborough Lab A	Associated s	ample(s): 01-08	QC Bat	ch ID: WG417601-4	QC Sample: L	.1008812-04	Client ID:	GHC-6
Antimony, Dissolved	ND	0.5	0.4899	98		-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1159	96	-	-	75-125	-	20
MCP Dissolved Metals - V	Vestborough Lab /	Associated s	ample(s): 01-08	3 QC Bat	ch ID: WG417803-4	QC Sample: L	.1008812-04	Client ID:	GHC-6
Arsenic, Dissolved	ND	0.12	0.140	117	-	-	75-125	-	20
Barium, Dissolved	0.063	2	2.04	99	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.050	100	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.055	108	-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.20	100	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.533	104	-	-	75-125	-	20
Nickel, Dissolved	ND	0.5	0.472	94	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.137	114	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.047	95	-	-	75-125	-	20
Vanadium, Dissolved	ND	0.5	0.531	106	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.511	102	-	-	75-125	-	20
MCP Dissolved Metals - V	Vestborough Lab /	Associated s	ample(s): 01-08	3 QC Bat	ch ID: WG418542-4	QC Sample: L	.1008812-04	Client ID:	GHC-6
Mercury, Dissolved	ND	0.001	0.0011	115	-		75-125	-	20

Lab Number: L1008812

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 **Report Date:** 06/21/10

Sample Receipt and Container Information

Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1008812-01A	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-01B	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-01C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-02A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-02B	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-02C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-AS-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BB-6010S-10(180),MCP-PB-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-03A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-03B	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L1008812 **Report Date:** 06/21/10

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1008812-03C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-04A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-04B	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-04C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-PB-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-04D	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-PB-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-05A	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-05B	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-05C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-AS-6010S-10(180),MCP-AS-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180),MCP-V-6010S-10(180)
L1008812-06A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)

Lab Number: L1008812

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 **Report Date:** 06/21/10

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1008812-06B	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-06C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-XN-6010S-10(180),MCP-AS-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180),MCP-V-6010S-10(180)
L1008812-07A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-07B	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-07C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-08A	Vial Ascorbic Acid/HCl preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-08B	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-08C	Plastic 250ml HNO3 preserved	A	<2	4	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-BE-6010S-10(180),MCP-BE-6010S-10(180),MCP-BB-6010S-10(180),MCP-NI-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1008812-09A	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	524.2(14)
L1008812-09B	Vial Ascorbic Acid/HCI preserved	Α	N/A	4	Υ	Absent	-

Container Comments

L1008812-01C

L1008812-07C

Project Name:WALPOLE PARK SOUTHLab Number:L1008812Project Number:12700058-003Report Date:06/21/10

GLOSSARY

Acronyms

EPA · Environmental Protection Agency.

 LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD · Laboratory Control Sample Duplicate: Refer to LCS.

MDL • Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS • Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD · Matrix Spike Sample Duplicate: Refer to MS.

NA · Not Applicable.

NC • Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI · Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${\bf E} \qquad \hbox{-Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.}$
- The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.

Report Format: Data Usability Report

Project Name:WALPOLE PARK SOUTHLab Number:L1008812Project Number:12700058-003Report Date:06/21/10

Data Qualifiers

J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 ${\bf ND}$ • Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: WALPOLE PARK SOUTH Lab Number: L1008812

Project Number: 12700058-003 Report Date: 06/21/10

REFERENCES

Methods for the Determination of Organic Compounds in Drinking Water - Supplement II. EPA/600/R-92/129, August 1992.

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2010 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate.

Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates,

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 180.1, 300.0, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. Organic Parameters: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl)

(EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate)

353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C. SM4500H-B.

Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), 314.0, 332.

Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; MF-SM9222D

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn)

(EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Aq,Sr,Ti,Tl, V,Zn,Ca,Mq,Na,K)

245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics)

(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables, 600/4-81-045-PCB-Oil

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 120.1, 300.0, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 420.1, 1664A, SW-846 9010, 9030, 9040B, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. Organic Parameters: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, SM2120B, 2510B, 5310C, SM4500H-B, EPA 200.8, 245.2. Organic Parameters: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. Organic Parameters: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, LACHAT 10-117-07-1A or B, SM4500Cl-E, 4500F-C, SM15 426C, EPA 350.1, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, SM4500-CN-E LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic Parameters</u>: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 5030B, 625, 624. 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NY-DOH.*Refer to MA-DEP Certificate for Potable and Non-Potable Water.
Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476-09-1. **NELAP Accredited.** Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 9251, 9038, 350.1, 353.2, 351.1, 314, 120.1, 9050A, 410.4, 9060, 1664, 420.1, LACHAT 10-107-06-1-B, SM 4500CN-E, 4500H-B, 4500CL-E, 4500F-BC, 4500SO4-E, 426C, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500Norg-C, 4500PE, 2510B, 5540C, 5220D, 5310C, 2540B, 2540C, 2540D, 510C, 4500S2-AD, 3005A, 3015, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8330, 625, 8082, 8151A, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9040B, 9045C, 9065, 420.1, 9012A, 6860, 1311, 1312, 3050B, 9030B, 3051, 9010B, 3540C, SM 510ABC, 4500CN-CE, 2540G, SW-846 7.3, Organic Parameters: EPA 8260B, 8270C, 8330, 8082, 8081A, 8151A, 3545, 3546, 3580, 5035, MassDEP EPH, MassDEP VPH.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **EPA 8260B:** Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). **EPA 625:** 4-Chloroaniline. **EPA 350.1** for Ammonia in a Soil matrix.

FORM NO: 01-01 (rev. 14-OCT-07)	MA MCP or CT RCP?	PLEASE ANSWER QUESTIONS ABOVE:	9 201006/1- Trip Black	8 MW-9	7 812-8	6 R1Z-10	S RIZ-9	F GHC-6	2 mw-2	Q R12-3	8812.1 MW-3	(Lab Use Only) Sample in			Other Project Specific Requirements/Comments/Detection Limits	These samples have been previously analyzed by Alpha	Email: Jan. Cannan Whetertech. 100	Fax: 508 903 -2001	EPhone: 56 9 903- 20 39	Francisher int	Address One Grant St	Client Tetra Tech Rizzo	Client Information	TEL: 508-898-9220 TEL: 508-822-3300 FAX: 508-898-9193 FAX: 508-822-3288		CHAIN OF
	Remoderied By:		6/9/10	0111	0481		167	8001	0933	1 085%	6/11/10 0802	Date Time	ollectio		ments/Detection Limits:	(0)(8)(0)	-	X Standard T RUSH (new confirmed fine)	Turn-Around Time	ALPHA Quote #:	Project Manager hay Junson for Camer	Project # 12700058 003	Project Location: Walpole MA	Project Name: Whole Pour South	Project Information	CUSTODY
1	Date/Time	Container Type V P Preservative A(U) N	15 Agric X	V							6w KX	Initials	Sample Sampler's		₽Va 7		ellectory	appropriate	×	j.		234			Re	PAGE OF Dai
	Received By:	7									×	/ d/ / /see / /see	1	W 55%	<) And 	Ys,		☐ Yes XNo Are CT RC	XYes □ No Are MCP A	MA MCP PRESUMPTIVE CE	MA MCP CAM	State /Fed Program Criteria			Report Information - Data Deliverables	Date Rec'd in Lab: 🏼 💪 🛮 🕻
N	Date/Time																	Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required?	ERTAINTY - CT REASON	R66W-1	Criteria		l scu		$G _{V} \cap \mathcal{V}$ alph
See raverse side:		Please print clearly, legibly and com- pletely. Samples can not be legged						*moder Sike metal				Sample Specific Comments	(Please specify below)	Preservation Lab to do Preservation Lab to do	Mot poded	SAMPLE HANDLING		Protocols) Required?		CERTAINTY - CT REASONABLE CONFIDENCE PROTOCOLS	AND THE STATE OF T		Clo AP	Same as Client info PO#:	Billing Information	ALPHA JOD #: (100 88) 2
	s are resolved 7 re-subject to 2	34 S		4				*		A Record to the Control of the Contr	W		mr		# (ROTOCOLS						5812

Appendix F
Copy of DEP Transmittal Forms (BWSC-104 and BWSC-108)

BWSC104

RESPONSE ACTION OUTCOME (RAO) STATEMENT

Pursuant to 310 CMR 40.1000 (Subpart J)

Rele	ease	Tracking	Number
	_		

For sites with multiple RTNs, enter the Primary RTN above. A. SITE LOCATION: 1. Site Name/Location Aid: _____ 2. Street Address: _ _____ 4. ZIP Code: ___ City/Town: ____ 5. Check here if a Tier Classification Submittal has been provided to DEP for this disposal site. a. Tier IA b. Tier IB c. Tier IC d. Tier II 6. If a Tier I Permit has been issued, provide Permit Number: ___ B. THIS FORM IS BEING USED TO: (check all that apply) 1. List Submittal Date of RAO Statement (if previously submitted): _ mm/dd/yyyy 2. Submit a Response Action Outcome (RAO) Statement a. Check here if this RAO Statement covers additional Release Tracking Numbers (RTNs). RTNs that have been previously linked to a Tier Classified Primary RTN do not need to be listed here. b. Provide additional Release Tracking Number(s) covered by this RAO Statement. 3. Submit a Revised Response Action Outcome Statement a. Check here if this Revised RAO Statement covers additional Release Tracking Numbers (RTNs), not listed on the RAO Statement or previously submitted Revised RAO Statements. RTNs that have been previously linked to a Tier Classified Primary RTN do not need to be listed here. b. Provide additional Release Tracking Number(s) covered by this RAO Statement. 4. Submit a Response Action Outcome Partial (RAO-P) Statement Check above box, if any Response Actions remain to be taken to address conditions associated with this disposal site having the Primary RTN listed in the header section of this transmittal form. This RAO Statement will record only an RAO-Partial Statement for that RTN. A final RAO Statement will need to be submitted that references all RAO-Partial Statements and, if applicable, covers any remaining conditions not covered by the RAO-Partial Statements. Also, specify if you are an Eligible Person or Tenant pursuant to M.G.L. c. 21E s.2, and have no further obligation to conduct response actions on the remaining portion(s) of the disposal site: a. Eligible Person b. Eligible Tenant 5. Submit an optional **Phase I Completion Statement** supporting an RAO Statement 6. Submit a Periodic Review Opinion evaluating the status of a Temporary Solution for a Class C-1 RAO Statement, as specified in 310 CMR 40.1051 (Section F is optional) 7. Submit a Retraction of a previously submitted Response Action Outcome Statement (Sections E & F are not required) (All sections of this transmittal form must be filled out unless otherwise noted above)

Revised: 02/28/2006 Page 1 of 7

B١	N	S	C ₁	O	4
_	, v	J	\mathbf{c}	u	-

Pursuant to 310 CMR 40.1000 (Subpart S	WE (RAO) STATEMENT	se Tracking Number
C. DESCRIPTION OF RESPONSE ACTIONS: (check all that 1. Assessment and/or Monitoring Only	t apply; for volumes, list cumulative amounts) 2. Temporary Covers or Caps	
3. Deployment of Absorbent or Containment Materials	4. Treatment of Water Supplies	,
5. Structure Venting System	6. Engineered Barrier	,
7. Product or NAPL Recovery	8. Fencing and Sign Posting	
Groundwater Treatment Systems	10. Soil Vapor Extraction	
11. Bioremediation	12. Air Sparging	
13. Monitored Natural Attenuation	14. In-situ Chemical Oxidation	
15. Removal of Contaminated Soils	Tatimated valume in aukie varde	
a. Re-use, Recycling or Treatment i. On Site E	Estimated volume in cubic yards	
ii. Off Site	Estimated volume in cubic yards	
iia. Facility Name:	Town:	_ State:
iib. Facility Name:	Town:	State:
iib. I dointy Haino.		
iii. Describe:		
b. Landfill		
i. Cover Estimated volume in cubic yards		
Facility Name:	Town:	State:
ii. Disposal Estimated volume in cubic yards		
Facility Name:	Town:	_ State:
Tuomity Hamo.		
16. Removal of Drums, Tanks or Containers:		
a. Describe Quantity and Amount:		
b. Facility Name:	Town:	_ State:
a Facility Names	Town	Stato
c. Facility Name:	TOWIT.	_ Olale
17. Removal of Other Contaminated Media:		
a. Specify Type and Volume:		
a. opoony typo and volume.		
b. Facility Name:	Town:	State:
c. Facility Name:	Town:	State:

Revised: 02/28/2006 Page 2 of 7

RESPONSE ACTION OUTCOME (RAO) STATEMENT

B۷	٧S	C1	04
----	----	----	----

Release Tracking Number

Pursuant to 310 CMR 40.1000 (Subpart J)	
C. DESCRIPTION OF RESPONSE ACTIONS (cont.): (check all that apply; for volumes, list cumulative amounts)	
18. Other Response Actions:	
Describe:	
19. Use of Innovative Technologies:	
Describe:	
D. SITE USE:	
1. Are the response actions that are the subject of this submittal associated with the <i>redevelopment</i> , <i>reuse</i> or the <i>major</i> expansion of the current use of property(ies) impacted by the presence of oil and/or hazardous materials?	
a. Yes b. No c. Don't know	
2. Is the property a vacant or under-utilized commercial or industrial property ("a brownfield property")?	
a. Yes b. No c. Don't know	
3. Will funds from a state or federal brownfield incentive program be used on one or more of the property(ies) within the disposal site?	
a. Yes b. No c. Don't know If Yes, identify program(s):	
4. Has a Covenant Not to Sue been obtained or sought?	
a. Yes b. No c. Don't know	
5. Check all applicable categories that apply to the person making this submittal:	
b. Community Development Corporation c. Economic Development and Industrial Corporation	
d. Private Developer e. Fiduciary f. Secured Lender g. Municipality	
h. Potential Buyer (non-owner) i. Other, describe:	
This data will be used by MassDEP for information purposes only, and does not represent or create any legal commitment, obligation or liability on the part of the party or person providing this data to MassDEP.	
E. RESPONSE ACTION OUTCOME CLASS:	
Specify the Class of Response Action Outcome that applies to the disposal site, or site of the Threat of Release. Select ONLY one Class.	
1. Class A-1 RAO: Specify one of the following:	
a. Contamination has been reduced to background levels. b. A Threat of Release has been eliminated.	
2. Class A-2 RAO: You MUST provide justification that reducing contamination to or approaching background levels is infeasible.	
3. Class A-3 RAO: You MUST provide an implemented Activity and Use Limitation (AUL) and justification that reducing contamination to or approaching background levels is infeasible.	
4. Class A-4 RAO: You MUST provide an implemented AUL, justification that reducing contamination to or approaching background levels is infeasible, and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface or below an Engineered Barrier is infeasible. If the Permanent Solution relies upon an Engineered Barrier, you must provide or have previously provided a Phase III Remedial Action Plan that justifies the selection of the Engineered Barrier.	

Revised: 02/28/2006 Page 3 of 7

BWS	C1	04
------------	----	----

Pursuant to 310 CMR 40.1000 (Subpart J)
E. RESPONSE ACTION OUTCOME CLASS (cont.):
5. Class B-1 RAO: Specify one of the following:
a. Contamination is consistent with background levels b. Contamination is NOT consistent with background levels.
6. Class B-2 RAO: You MUST provide an implemented AUL.
7. Class B-3 RAO: You MUST provide an implemented AUL and justification that reducing contamination to less than Upper Concentration Limits (UCLs) 15 feet below ground surface is infeasible.
8. Class C-1 RAO: You must submit a plan as specified at 310 CMR 40.0861(2)(h). Indicate type of ongoing response actions.
a. Active Remedial System b. Active Remedial Monitoring Program c. None
d. Other Specify:
9. Class C-2 RAO: You must hold a valid Tier I Permit or Tier II Classification to continue response actions toward a Permanent Solution.
F. RESPONSE ACTION OUTCOME INFORMATION:
1. Specify the Risk Characterization Method(s) used to achieve the RAO described above:
a. Method 1 b. Method 2 c. Method 3
d. Method Not Applicable-Contamination reduced to or consistent with background, or Threat of Release abated
2. Specify all Soil Category(ies) applicable. More than one Soil Category may apply at a Site. Be sure to check off all APPLICABLE categories:
a. S-1/GW-1 d. S-2/GW-1 g. S-3/GW-1
☐ b. S-1/GW-2 ☐ e. S-2/GW-2 ☐ h. S-3/GW-2
c. S-1/GW-3 f. S-2/GW-3 i. S-3/GW-3
3. Specify all Groundwater Category(ies) impacted. A site may impact more than one Groundwater Category. Be sure to check off all IMPACTED categories:
a. GW-1 b. GW-2 c. GW-3 d. No Groundwater Impacted
4. Specify remediation conducted:
a. Check here if soil remediation was conducted.
b. Check here if groundwater remediation was conducted.
5. Specify whether the analytical data used to support the Response Action Outcome was generated pursuant to the Department's Compendium of Analytical Methods (CAM) and 310 CMR 40.1056:
a. CAM used to support all analytical data. b. CAM used to support some of the analytical data.
c. CAM not used.
6. Check here to certify that the Class A, B or C Response Action Outcome includes a Data Usability Assessment and Data Representativeness Evaluation pursuant to 310 CMR 40.1056.
7. Estimate the number of acres this RAO Statement applies to:

Page 4 of 7 Revised: 02/28/2006

BWSC104	
---------	--

Release Tracking Number RESPONSE ACTION OUTCOME (RAO) STATEMENT Pursuant to 310 CMR 40.1000 (Subpart J) G. LSP SIGNATURE AND STAMP: I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief, > if Section B indicates that either an RAO Statement, Phase I Completion Statement and/or Periodic Review Opinion is being provided, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40,0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal. I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete. 1. LSP #: _____ 3. Last Name: _____ First Name: _____ 4. Telephone: ______ 5. Ext.: _____ 6. FAX: ____ 7. Signature: _____ 8. Date: ____ 9. LSP Stamp: mm/dd/vvvv H. PERSON MAKING SUBMITTAL: c. change in the person 1. Check all that apply: a. change in contact name b. change of address undertaking response actions Name of Organization: ______ 3. Contact First Name: ______ 4. Last Name: _____ 6. Title: _____ Street: _______ 8. State: _____ 9. ZIP Code: __ 7. City/Town: ___ 10. Telephone: ______ 12. FAX: _____ 12. FAX: _____

Revised: 02/28/2006 Page 5 of 7

BWS	C1	04
------------	----	----

K	1	RESPONSE ACTION OUTCOME (RAO) STATEMENT	Release Tracking Number
	-(d):	Pursuant to 310 CMR 40.1000 (Subpart J)	
. RE	LATIONSHIP 1	TO RELEASE OR THREAT OF RELEASE OF PERSON MAKING SUBMITTAL:	
	1. RP or PRF	P a. Owner b. Operator c. Generator d. Transpo	rter
		e. Other RP or PRP Specify:	
	2. Fiduciary,	Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E,	s. 2)
	3. Agency or	Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))	
	4. Any Other	Person Making Submittal Specify Relationship:	
J. RI	EQUIRED ATT	ACHMENT AND SUBMITTALS:	
		re if the Response Action(s) on which this opinion is based, if any, are (were) subval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement ereof.	
		re to certify that the Chief Municipal Officer and the Local Board of Health have be ement that relies on the public way/rail right-of-way exemption from the requireme	
		re to certify that the Chief Municipal Officer and the Local Board of Health have be ent with instructions on how to obtain a full copy of the report.	en notified of the submittal of a
	the Disposal	re to certify that documentation is attached specifying the location of the Site, or the Site subject to this RAO Statement. If submitting an RAO Statement for a PORTI ent the location and boundaries for both the portion subject to this submittal and, e.	ON of a Disposal Site, you
	disposal site	e to certify that, pursuant to 310 CMR 40.1406, notice was provided to the owner (boundaries, or notice was not required because the disposal site boundaries are ducting response actions. (check all that apply)	
	a. Notice	e was provided prior to, or concurrent with the submittal of a Phase II Completion	Statement to the Department.
	b. Notice	e was provided prior to, or concurrent with the submittal of this RAO Statement to	the Department.
	C. Notice	e not required. d. Total number of property owners notified, if applicable:	
	copy of each	re if required to submit one or more AULs. You must submit an AUL Transmittal implemented AUL related to this RAO Statement. Specify the type of AUL(s) below, B-3 RAO Statements)	
	a. Notice	e of Activity and Use Limitation b. Number of Notices submitted:	
	c. Grant	of Environmental Restriction d. Number of Grants submitted:	
		Compliance Fee is required for any of the RTNs listed on this transmittal form, chee was submitted to DEP, P. O. Box 4062, Boston, MA 02211.	neck here to certify that an RAO
		re if any non-updatable information provided on this form is incorrect, e.g. Site Aco the DEP Regional Office.	Idress/Location Aid. Send
	9. Check her	re to certify that the LSP Opinion containing the material facts, data, and other info	ormation is attached.

Page 6 of 7 Revised: 02/28/2006

BW	SC1	104
----	-----	-----

	ISE ACTION OUTCOME (RAO 310 CMR 40.1000 (Subpart J)) STATEMENT	Release Tracking Number
. CERTIFICATION OF PERSON	MAKING SUBMITTAL:		
xamined and am familiar with the ansmittal form, (ii) that, based of atterial information contained in the I am fully authorized to make thit on whose behalf this submitty on whose behalf this submitty.	, attest under the pa ne information contained in this submitta on my inquiry of those individuals immedi in this submittal is, to the best of my know this attestation on behalf of the entity leg nittal is made am/is aware that there are t, for willfully submitting false, inaccurate	I, including any and all doc ately responsible for obtai ledge and belief, true, acc pally responsible for this su significant penalties, inclu	cuments accompanying this ining the information, the urate and complete, and (iii) ubmittal. I/the person or ding, but not limited to,
Ву:	Signature	3. Title:	
For:(Name of person	or entity recorded in Section H)	5. Date:	mm/dd/yyyy
_	s of the person providing certification is d	ifferent from address reco	rded in Section H.
	9. 9	State: 10. 2	ZIP Code:
1. Telephone:	12. Ext.:	13. FAX:	
BILLABLE YE SECTIONS C	IBJECT TO AN ANNUAL COMPLIANCE AS EAR FOR THIS DISPOSAL SITE. YOU MUS IF THIS FORM OR DEP MAY RETURN THE OMPLETE FORM, YOU MAY BE PENALIZE	T LEGIBLY COMPLETE AL DOCUMENT AS INCOMPL	L RELEVANT ETE. IF YOU
Date Stamp (DEP USE ON	JLY:)		

Revised: 02/28/2006 Page 7 of 7

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL
FORM & PHASE I COMPLETION STATEMENT

Release Tracking Number

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

		LOCATION:
1. S	Site I	Name:
2. S	Stree	et Address:
3. C	City/	Town: 4. ZIP Code:
	5	Check here if a Tier Classification Submittal has been provided to DEP for this disposal site.
	J.	
		a. Tier IA b. Tier IB c. Tier IC d. Tier II
6. If	app	olicable, provide the Permit Number:
В. Т	HIS	FORM IS BEING USED (check all that apply)
		Submit a Phase I Completion Statement , pursuant to 310 CMR 40.0484.
		Submit a Revised Phase I Completion Statement, pursuant to 310 CMR 40.0484.
		Submit a Phase II Scope of Work, pursuant to 310 CMR 40.0834.
		Submit an interim Phase II Report . This report does not satisfy the response action deadline requirements in
		0 CMR 40.0500.
	5.	Submit a final Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.
	6.	Submit a Revised Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.
	7.	Submit a Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.
	8.	Submit a Revised Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.
	9.	Submit a Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.
	10	Submit a Modified Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.
	11	Submit an As-Built Construction Report, pursuant to 310 CMR 40.0875.
	12	Submit a Phase IV Status Report , pursuant to 310 CMR 40.0877.
	13	Submit a Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.
		Specify the outcome of Phase IV activities: (check one)
		a. Phase V Operation, Maintenance or Monitoring of the Comprehensive Remedial Action is necessary to achieve a Response Action Outcome.
		b. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
		c. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) has been or will be submitted to DEP.
		d. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) has been or will be submitted to DEP.

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release	Tracking Number
_	

BWSC108

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

	(,,,,,,,
. THIS	FORM IS BEING USED TO (cont.):(check all that apply)
14	. Submit a Revised Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.
15	. Submit a Phase V Status Report , pursuant to 310 CMR 40.0892.
16	. Submit a Remedial Monitoring Report. (This report can only be submitted through eDEP.)
a.	Type of Report: (check one) i. Initial Report ii. Interim Report iii. Final Report
b.	Frequency of Submittal: (check all that apply) i. A Remedial Monitoring Report(s) submitted monthly to address an Imminent Hazard.
	ii. A Remedial Monitoring Report(s) submitted monthly to address a Condition of Substantial Release Migration.iii. A Remedial Monitoring Report(s) submitted concurrent with a Status Report.
C.	Status of Site: (check one) 🔲 i. Phase IV 🔲 ii. Phase V 🔲 iii. Remedy Operation Status 🔲 iv. Class C RAO
d.	Number of Remedial Systems and/or Monitoring Programs:
	separate BWSC108A, CRA Remedial Monitoring Report, must be filled out for each Remedial System and/or Monitoring rogram addressed by this transmittal form.
17	. Submit a Remedy Operation Status , pursuant to 310 CMR 40.0893.
18	. Submit a Status Report to maintain a Remedy Operation Status , pursuant to 310 CMR 40.0893(2).
	. Submit a Transfer and/or a Modification of Persons Maintaining a Remedy Operation Status (ROS) , pursuant to 310 MR 40.0893(5) (check one, or both, if applicable).
	a. Submit a Transfer of Persons Maintaining an ROS (the transferee should be the person listed in Section D, "Person Undertaking Response Actions").
	b. Submit a Modification of Persons Maintaining an ROS (the primary representative should be the person listed in Section D, "Person Undertaking Response Actions").
C.	. Number of Persons Maintaining an ROS not including the primary representative:
20	. Submit a Termination of a Remedy Operation Status , pursuant to 310 CMR 40.0893(6).(check one)
	a. Submit a notice indicating ROS performance standards have not been met. A plan and timetable pursuant to 310 CMR 40.0893(6)(b) for resuming the ROS are attached.
	b. Submit a notice of Termination of ROS.
21	. Submit a Phase V Completion Statement, pursuant to 310 CMR 40.0894.
Sp	ecify the outcome of Phase V activities: (check one)
	a. The requirements of a Class A Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement (BWSC104) will be submitted to DEP.
	b. The requirements of a Class C Response Action Outcome have been met. No additional Operation, Maintenance or Monitoring is necessary to ensure the integrity of the Response Action Outcome. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
	c. The requirements of a Class C Response Action Outcome have been met. Further Operation, Maintenance or Monitoring of the remedial action is necessary to ensure that conditions are maintained and/or that further progress is made toward a Permanent Solution. A completed Response Action Outcome Statement and Report (BWSC104) will be submitted to DEP.
22	. Submit a Revised Phase V Completion Statement, pursuant to 310 CMR 40.0894.
23	. Submit a Post-Class C Response Action Outcome Status Report, pursuant to 310 CMR 40.0898.

Revised: 4/1/2009 Page 2 of 5

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

-	Rele	ase i	racking	Numbe
		_		

BWSC108

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

C	I SP	SIGN	ΙΔΤΙ	IRF		STAMP	١.
v.	LUE	JIGI	יו חי		AIND	SIAIVIE	

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

- > if Section B indicates that a **Phase I, Phase II, Phase III, Phase IV or Phase V Completion Statement** and/or a **Termination of a Remedy Operation Status** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that a **Phase II Scope of Work** or a **Phase IV Remedy Implementation Plan** is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;
- > if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Post-Class C RAO Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1. LSP #:		
2. First Name:	3. Last Name:	
4. Telephone:	5. Ext.: 6. FAX:	
7. Signature:		
8. Date:(mm/dd/yyyy)	9. LSP Stamp:	
	'	

Revised: 4/1/2009 Page 3 of 5

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

Release	Tracking	Numbe

BWSC108

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)				
D. PERSON UNDERTAKING RESPONSE ACTIONS:				
1. Check all that apply: a. change in contact name b. change of address c. change in the person undertaking response actions				
2. Name of Organization:				
3. Contact First Name: 4. Last Name:				
5. Street: 6. Title:				
7. City/Town: 9. ZIP Code:				
10. Telephone: 11. Ext.: 12. FAX:				
E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS: Check here to change relationship				
1. RP or PRP a. Owner b. Operator c. Generator d. Transporter				
e. Other RP or PRP Specify:				
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)				
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))				
4. Any Other Person Undertaking Response Actions Specify Relationship:				
F. REQUIRED ATTACHMENT AND SUBMITTALS:				
Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.				
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP.				
3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan.				
4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan.				
5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action.				
6. If submitting a Transfer of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for the person making this submittal (transferee) is attached.				
7. If submitting a Modification of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for each new person making this submittal is attached.				
8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Name. Send corrections to: BWSC.eDEP@state.ma.us.				
9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.				

Page 4 of 5 Revised: 4/1/2009

Release Tracking Number

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT

-

BWSC108

, 1	OMPLETION STA			
	.0484 (Subpart D) and 40.08	· ,		
G. CERTIFICATION OF PERSON UNDERT				
accompanying this transmittal form, (ii) that, information, the material information contains complete, and (iii) that I am fully authorized t	based on my inquiry of those ed in this submittal is, to the o make this attestation on be tal is made am/is aware that	nder the pains and penalties of perjury (i) that I have nis submittal, including any and all documents se individuals immediately responsible for obtaining the elbest of my knowledge and belief, true, accurate and behalf of the entity legally responsible for this submittal. I/the t there are significant penalties, including, but not limited to, e, or incomplete information.		
perjury that I am fully authorized to act on be	half of all persons performing espondence from MassDEP	ion Status (ROS), I attest under the pains and penalties of ng response actions under the ROS as stated in 310 CMR with respect to performance of response actions under the		
	, and I am aware that there a	rom MassDEP shall be deemed received by all the persons are significant penalties, including, but not limited to, possible aplete information.		
2. By:		3. Title:		
•	nature			
4. For:		5. Date:		
(Name of person or entity recorded in Section D)		(mm/dd/yyyy)		
7. Street:		10 710 0		
8. City/Town:	9.	0. State: 10. ZIP Code:		
11. Telephone:	12. Ext.:	13. FAX:		
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASSURANCE FEE OF UP TO \$10,000 PER BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.				
Date Stamp (DEP USE ONLY:)				

Revised: 4/1/2009 Page 5 of 5