Phase IV Completion Statement and Remedy Operation Status Submittal Walpole Park South Walpole, Massachusetts Release Tracking Number 4-3021915

Submitted to: Massachusetts Department of Environmental Protection July 28, 2009

TETRATECH RIZZO

Corporate Headquarters

One Grant Street Framingham, MA 01701-9005

www.tetratechrizzo.com

July 28, 2009

Massachusetts Department of Environmental Protection Southeast Regional Office Bureau of Waste Site Cleanup 20 Riverside Drive Lakeville, MA 02347

Re: Phase IV Completion Statement and Remedy Operation Status Submittal Walpole Park South Walpole, Massachusetts Release Tracking Numbers 4-3021915

Dear Sir/Madam:

On behalf of Walpole Park South, Rizzo Associates, Inc. has prepared this Phase IV Completion Statement and Remedy Operation Status Submittal for Release Tracking Number 4-3021915 pursuant to 310 CMR 40.0878 through 40.0892. The information presented herein is based on the Phase IV Remedy Implementation Plan dated August 1, 2007. This report is subject to the Statement of Limitations and Conditions in Appendix A. The original Massachusetts Department of Environmental Protection BWSC-108 transmittal form is attached to this report, and a copy of the form is in Appendix E.

Please contact us if you have any questions regarding this submittal.

Very truly yours,

Kaymond Shuron

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

P:\Pre-FY2008\1270000\12700058\Rpts\Phase II report documents\Phase IV Completion_July 2008.doc

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

Table of Contents

1.0	Introdu	action1
	1.1	Site Description
	1.2	Responsibility for Conducting the Response Actions
2.0	Summ	ary of Phase II, Phase III and Phase IV Reports
	2.1	Phase II Report
	2.2	Phase III Report
	2.3	Phase IV – Remedy Implementation Plan
3.0	Existir	ng Site Conditions7
	3.1	Physical Characteristics7
	3.2	Environmental Fate and Transport7
4.0	Phase	IV Completion Statement
	4.1	Soil Borings and Monitoring Well Installation
	4.2	Groundwater Sample Collection – December 2007
	4.3	Groundwater Analysis Results – December 2007 10
	4.4	Groundwater Sample Collection – April/May 2008 10
	4.5	Groundwater Analysis Results - April/May 2008 10
	4.6	Groundwater Sample Collection – November 2008 11
	4.7	Groundwater Analysis Results – November 2008
	4.8	Groundwater Sample Collection – June 200911
	4.9	Groundwater Analysis Results – June 2009
	4.10	Phase IV Completion
5.0	Remed	ly Operation Status Opinion
6.0	Phase	V Implementation
	6.1	Implementation Schedule
	6.2	Permits and Approvals
7.0	Public	Notifications

List of Tables

Table 1Laboratory Analysis Results for Groundwater

List of Figures

Figure 1	Site Locus Plan
Figure 2	Site Plan with Monitoring Well Locations

List of Appendices

- Appendix A Statement of Limitations and Conditions
- Appendix B Soil Borings/Monitoring Well Completion Diagrams
- Appendix C Laboratory Certificates of Analysis
- Appendix D Copies of Public Notification Letters
- Appendix E Copy of BWSC-108 Transmittal Form

1.0 Introduction

This Phase IV Completion Statement and Remedy Operation Status (ROS) Submittal for Release Tracking Number (RTN) 4-3021915 is being submitted to the Massachusetts Department of Environmental Protection (DEP) pursuant to the Massachusetts Contingency Plan (MCP) 310 CMR 40.0878 through 40.0892. The purpose of the Phase IV Completion Statement is to document that the Comprehensive Response Action has been implemented in accordance with the approach presented in the Phase IV – Remedy Implementation Plan (Phase IV report), and to document monitoring performed since submission of the Phase IV report.

The Phase IV report indicated that Monitored Natural Attenuation (MNA) and continued groundwater monitoring was the remedial approach selected for the referenced Site to characterize groundwater conditions at and near the upgradient property boundary, for purposes of evaluating whether a portion or all of the metals or volatile organic compounds (VOCs) detected in on-site monitoring wells originate from off-site source(s) and/or if they are naturally occurring, and to continue to evaluate the sporadic and intermittent detection of these compounds on the Site. Three new monitoring wells, to be located at or near the upgradient property line to Walpole Park South, were proposed in the Phase IV report. The new wells and selected on-site wells were to be sampled on a regular basis and analyzed for VOCs and metals. The Phase IV reported indicated that based on the analysis results and field observations modifications to the sampling frequency, number of wells, analytical methods, and/or wells sampled may be made. Well installation was completed in December 2007 and groundwater samples were collected from the new wells and selected previously installed wells in December 2007, April/May 2008, November 2008 and June 2009.

The Site was designated as a Public Involvement Plan (PIP) site after receipt of a petition signed by sixteen residents of the Town of Walpole, initially submitted to the Department of Environmental Protection (DEP), and subsequently forwarded by the DEP to Walpole Park South. A Draft PIP was presented during a public meeting held at Walpole Town Hall on February 16, 2005. Based on comments raised during that meeting and the public comment period, a final PIP was issued on April 6, 2005. Opportunities for public input will continue in accordance with the provisions of the PIP.

1.1 Site Description

The Site encompasses approximately 54 acres of land, located at the intersection of US Route 1 and Pine Street in Walpole, Massachusetts, as shown on Figure 1. The Site is divided into eight lots, seven of which contain buildings occupied by office and warehouse space that are leased to commercial and/or light industrial businesses. The current configuration of the Site and the configuration of the individual building lots are depicted on Figure 2. An access road, Walpole Park South Drive, crosses the Site from Route 1 along the southeast boundary of Walpole Park South, to Pine Street on the southwest boundary of the property. The buildings, driveways and parking areas cover the majority of the Site. The remainder of the property consists of

landscaped areas adjacent to the buildings, wooded land and unpaved open areas. Prior to construction of the existing buildings the Site was vacant land, portions of which were reportedly used as a gravel pit. Development of the Site and building construction commenced in 1986.

The property is abutted to the north by vacant wooded land, to the west by single-family residences, to the south by Pine Street, across which are commercial properties including a truck repair and painting facility, and to the east by Route 1, across which are commercial and industrial properties.

1.2 Responsibility for Conducting the Response Actions

The party implementing the response action is Walpole Park South. The contact information for Walpole Park South is as follows:

Mr. Donnell Murphy, Trustee Walpole Park South Post Office Box 123 Walpole, MA 02081-2552 508-668-1200

Walpole Park South has retained a Licensed Site Professional (LSP) to manage and oversee development and implementation of the PIP, and response actions performed to address the requirements of the MCP:

Mr. Raymond C. Johnson, P.G., L.S.P. Rizzo Associates, Inc. 1 Grant Street Framingham, MA 01701-9005 508-903-2356

2.0 Summary of Phase II, Phase III and Phase IV Reports

Phase II and Phase III reports were submitted for the Site in July 2006, and a Phase IV report submitted in August 2007, as summarized in the following sections.

2.1 Phase II Report

The purpose of the Phase II investigation was to obtain data to characterize the nature and extent of releases of oil and/or hazardous materials (OHM) at the Site, quantify the risks posed by such releases, and assess the need to conduct further remedial actions at the Site. The information presented in the Phase II Comprehensive Site Assessment report is summarized below.

- Monitoring wells were initially installed at the Site in December 1986 to comply with requirements issued by the Walpole Board of Health (BOH) as a part of the approval to develop the property.
- Annual groundwater sampling was performed during the period from 1987 to 2003 as required by the BOH, and samples of surface water and/or sediment in eight storm water catch basins located in the southwest portion of the Site, upgradient from monitoring well MW-6, were also collected.
- In September 2000 two additional monitoring wells, designated MW-8 and MW-9, were installed in the southwest portion of the Site. Sampling of the catch basins and the installation and sampling of MW-8 and MW-9 were implemented as part of investigations relating to the detection of chloroform and bromodichloromethane in groundwater samples collected from MW-6 in 1999 and 2000.
- In April 2002 it was noted that the lead concentrations reported by the laboratory for groundwater samples collected from monitoring wells MW-3 and MW-6 were 0.059 milligrams per liter (mg/l) and 0.023 mg/l, respectively; concentrations which exceeded the then applicable MCP reportable concentration of 0.020 mg/l for groundwater classified as RCGW-1. To further evaluate this condition confirmatory groundwater sampling was performed in May 2002. The results of this sampling indicated lead concentrations in samples collected from MW-3 and MW-6 of 0.046 mg/l and 0.018 mg/l, respectively. Based on these sampling results it was concluded that the detected lead concentrations represented a 120-day notification condition under the MCP. Therefore, a RNF was prepared and received by the DEP on July 2, 2002. In response to the notification, DEP issued a Notice of Responsibility (NOR) on August 15, 2002 and assigned RTN 3-21915 to the reported release.
- Based on further review of the historic groundwater monitoring results, it was determined that additional compounds detected at concentrations exceeding then applicable RCGW-1 reportable concentrations had not been previously reported to DEP. These compounds included methylene chloride, total chromium, arsenic, tetrachloroethene (PCE), cadmium, and antimony. Of these compounds, only lead and antimony were detected in samples collected after October 1993, the effective date of the MCP revisions which established specific reportable concentrations for oil and hazardous materials. Methylene chloride is a commonly used laboratory solvent and was only detected once at a concentration exceeding its reportable concentration, in a sample collected from MW-4 in March 1987. PCE was only detected once at a level exceeding its reportable concentration, in the sample collected from MW-1 in March 1988. Cadmium was detected above its reportable concentration once, in the sample collected in March 1991 from MW-5D. Total chromium was detected at levels exceeding its reportable concentration three times, all samples collected from MW-3, most recently in March 1991. Arsenic has been identified in samples from MW-1, MW-3 and MW-5D, but has not been reported at levels exceeding the current RCGW-1 standard since March 1988.

- In January 2004, seven additional monitoring wells were installed by GHC (GHC-1 to GHC-7) to further characterize soil and groundwater conditions and to evaluate whether a source of the compounds detected in groundwater could be identified. Groundwater samples were collected from both new and existing wells in February and April 2004.
- In general, the annual groundwater sampling has shown that the presence of elevated levels of these compounds is sporadic and intermittent, as the detected compounds have not been present in all sampled monitoring wells, and compounds detected in specific wells have not been present in all of the samples collected from those wells. The results of the testing do not indicate a plume of impacted groundwater that can be clearly delineated, nor do they identify the source or sources of the detected compounds. The data do not suggest a correlation between the groundwater conditions at the Site and the activities of the tenants in the Site buildings.
- In an internal memorandum dated July 9, 2004, the DEP Drinking Water Program (DWP) found that "the groundwater contamination levels at the site are all low, compared to most waste sites," and "heavy metals have fairly low mobility in groundwater." DEP concluded "the site does not appear to pose a threat to the Walpole municipal wells, because of the low groundwater contamination levels and the distance from the site to the wells."
- To further characterize soil and groundwater conditions at the Site, and to better evaluate the source, nature and extent of impacts to soil and groundwater, a Phase II – Comprehensive Site Assessment was implemented by Rizzo Associates. The Phase II Investigation included the installation of 7 soil borings and completion of 3 of the soil borings as groundwater monitoring wells; sampling and analysis of soil and groundwater from select soil borings and monitoring wells; surveying to determine the locations and relative elevations of each newly installed monitoring well casing; gauging of groundwater elevations to evaluate the groundwater flow direction and prepare a potentiometric surface map; and hydraulic conductivity testing of three groundwater monitoring wells.
- For the 7 soil samples submitted for laboratory analysis as a part of the Phase II investigation, no VOCs or metals were reported at concentrations above the applicable MCP method 1 standards except for a reported beryllium concentration of 0.87 mg/kg in the RIZ-2 soil boring which exceeds the Method 1 S-1/GW-1, GW-2 and GW-3 standards of 0.7 mg/kg and the Method 1 S-2/GW-1, GW-2 and GW-3 standards of 0.8 mg/kg. Naturally occurring beryllium is often found in Massachusetts at concentrations similar to that found at RIZ-2. Based on the fact that this soil sample was collected from undisturbed native soil at a depth of 15 to 17 feet below the ground surface, and soil conditions elsewhere on the Site, it is believed that the beryllium is naturally occurring and not related to a release on the Site.

- For the 36 groundwater samples that were submitted for laboratory analysis over three sampling rounds performed as a part of this Phase II investigation, VOCs and/or dissolved metals concentrations greater than one or more of the applicable MCP Method 1 standards were reported in 9 wells. Compounds exceeding the MCP Method 1 standards included bromodichloromethane, chloroform, and lead; however, the detections of these compounds are distributed around the Site, and do not indicate a specific on-site source or sources, or a plume that can be readily delineated. The reported concentrations of dissolved metals have been inconsistent over the three sampling events, a pattern that is consisted with that observed previously at the Site. Lead was identified at a concentration greater than the method detection limit in well MW-9 in only one of the four Phase II groundwater sampling events.
- Chloroform and/or bromodichloromethane were detected in three monitoring wells located on the southeast portion of the Site, near and downgradient from US Route 1. Although these compounds were previously detected on the Site they were identified in a monitoring well on the northwest property boundary, and were attributed to releases of disinfection by-products from a swimming pool on the abutting property. They have not been detected previously in wells near the southeast property boundary, and based on the well locations and direction of groundwater flow they do not appear to be related to onsite releases. Rather, they may be related to releases of chlorinated water in this area or to the use of roadway deicing compounds. Water Quality Reports for 2004 and 2005 issued by the Walpole Sewer & Water Department indicated that bromodichloromethane and chloroform are detected in samples collected from the municipal water system and state that these compounds are a "by-product of drinking water disinfection." This is a typical occurrence in this area of Massachusetts.
- Since concentrations of several compounds in groundwater exceed the MCP Method 1 GW-1 and GW-3 standards, and the Site is located within a Zone II for a public water supply, the risk characterization concluded that a condition of No Significant Risk to human health and the environment has not been achieved at this Site for groundwater.
- The only reported exceedence of a reportable concentration for soil is the beryllium detected in one sample collected in February 2006. Although exceeding the applicable Method 1 standard, this is likely a naturally occurring background condition.
- Based on the results of the risk characterization, further Comprehensive Response Actions are necessary to attempt to achieve a Temporary Solution or a condition of No Significant Risk and a Permanent Solution at the Site.

2.2 Phase III Report

The Phase III evaluation included a review of alternative methods for treatment of groundwater to evaluate whether there are one or more financially and technically feasible remedial alternatives that could be implemented to reduce risk at the Site to a level where a Permanent

Solution can be achieved, and the selection of an alternative for implementation. For the evaluation of remedial alternatives feasible technologies were considered based on their ability to address the conditions identified to date on the Site.

An initial screening evaluated nine remedial alternatives based on their ability to target these contaminant characteristics and the subsurface conditions at the Site. Alternatives evaluated during the initial screening included groundwater pump-and-treat, in-situ chemical oxidation, permeable reactive barriers, bioremediation/bio-barrier, electrical resistance heating, surfactant flushing, air sparging and vapor extraction, soil excavation and disposal/treatment, and MNA. Of these alternatives, groundwater pump-and-treat and MNA were selected for detailed evaluation.

The detailed evaluation compared the two remedial alternatives noted above in greater detail, based on the following criteria: effectiveness, reliability, difficulty, costs, risks, benefits and time for implementation. Based on the detailed evaluation MNA was selected as the remedy for the Site. At the time the Phase III was submitted it was anticipated that while the Phase IV was not due until July 26, 2007, MNA monitoring would commence in September or October 2006.

However, because of unwillingness on the part of the Town of Walpole to cooperate with the responsible party relative to the installation of additional monitoring wells needed to implement the MNA, installation of the additional monitoring wells and commencement of the MNA sampling program was delayed until December 2007.

2.3 Phase IV – Remedy Implementation Plan

Based on the results of the Phase III, the Phase IV report indicated that MNA would be implemented at the Site to further characterize groundwater conditions over time. The Phase IV report also noted that although MNA has been identified as the appropriate remedial action for the Site, it may be determined that implementation of one or more other technologies should be considered as additional data on groundwater conditions is developed. In that case, feasible remedial alternatives would be evaluated and a determination made of whether the approach should be modified or changed. If changes to the remedial program were determined to be applicable, supplemental Phase III and Phase IV reports would be prepared to discuss the selection (Phase III) and design (Phase IV) of the remedy or remedies. The selection of MNA as the remedial approach facilitates the evaluation of groundwater conditions at a reasonable cost, and allows for ongoing characterization of changes over time. This approach is appropriate given the sporadic and intermittent detection of metals or VOCs at concentrations exceeding applicable MCP standards, and the absence of an identifiable source(s) of the detected compounds. The proposed design for MNA included the installation of additional monitoring wells upgradient from the Site, and the collection of groundwater samples from the new wells and selected existing on-site monitoring wells.

3.0 Existing Site Conditions

In general, the investigations performed to date have evaluated the physical characteristics of the Site and identified the presence of metals in soil and groundwater, and several VOCs in groundwater. The metals are compounds that can be naturally occurring and are widely found in common products used on properties near the Site. The VOCs are primarily trihalomethanes, compounds that are disinfection by-products formed by a reaction between organic material in soil or groundwater and chlorinating or brominating compounds used for disinfection, including disinfection of drinking water. Available information also documents formation of these compounds in areas where roadway deicing chemicals are used. Below is a summary of the physical characteristics and environmental fate and transport characteristics that were considered while evaluating potential alternatives for remediation of the identified VOC contamination.

3.1 Physical Characteristics

Soil borings advanced at the Site prior to Phase IV activities identified primarily medium to coarse sand and gravel with occasional layers of fine sand overlying bedrock at the Site. The depth to bedrock ranges from approximately 13 feet below the ground surface (bgs) in the southwest portion of the Site, to greater than 40 feet bgs on the northern and eastern portions of the Site.

The depth to groundwater at the Site has been measured at depths ranging from 5 to 18 feet below the ground surface. The direction of groundwater flow in overburden at the Site is generally to the east and northeast, toward School Meadow Brook.

3.2 Environmental Fate and Transport

The metals that have been detected in groundwater at the Site, although they exceed the applicable MCP Method 1GW-1 standards, are present at relatively low concentrations and generally have limited mobility in groundwater. This fact is substantiated by the comments made by DEP in July 2004 as previously discussed in this document. The VOCs identified at the Site are more mobile than metals in the subsurface due to their solubility and volatility, but are expected to rapidly attenuate over a relatively short distance. Movement of dissolved phase VOCs is influenced by advective flow, although factors such as adsorption and dispersion can result in retardation such that VOCs migrate at a slower rate than the ambient groundwater velocity. Dense non-aqueous phase liquids (DNAPL) have not been observed at the Site, and the relatively low concentrations and specific compounds detected make the likelihood that DNAPL is present extremely low. Further, since these compounds are usually generated as disinfection by-products, or by reactions associated with roadway deicing compounds, they are by nature only present in the dissolved phase.

Based on the extensive subsurface testing completed to date, it does not appear that there is a specific on-site source of the identified compounds, nor is there a clearly definable plume.

4.0 Phase IV Completion Statement

Installation of the three additional monitoring wells, near the upgradient (southwest) property line for Walpole Park South, was completed in December 2007. Wells were installed at two locations on Walpole Park South property, adjacent to Pine Street, and at one location on MHD property within the "jug handle" intersection of Route 1 southbound and Pine Street. The drilling locations were accessed using an all-terrain vehicle mounted hollow stem auger drilling rig, equipped with the capability to drill into bedrock, since the locations on Walpole Park South property were not accessible to conventional truck-mounted drilling equipment. Details of the well installation and groundwater sampling are summarized in the following sections.

4.1 Soil Borings and Monitoring Well Installation

GeoSearch, Inc. (GeoSearch) advanced four soil borings, designated RIZ-8, RIZ-8S, RIZ-9, and RIZ-10, at the Site on December 5 and 6, 2007 under the supervision of a Tetra Tech Rizzo field engineer. Borings RIZ-8 and RIZ-8S were installed south of Building 25, offset north from Pine Street on the Site property. RIZ-9 was installed just south of Building 24 on the Site property. Boring RIZ-10 was installed in the grassy area on the northwest side of the intersection of Pine Street and Route 1, on Massachusetts Highway Department property. The boring locations are shown on Figure 2.

The borings were advanced through overburden using track-mounted hollow stem auger drilling equipment, and two borings were continued into bedrock using a compressed air-driven rotary hammer. Soil samples were collected at five foot intervals during overburden drilling at each location using a 24-inch long stainless steel split spoon. Soil samples were field screened for the presence of headspace VOCs using a photoionization detector (PID) equipped with a 10.2-eV lamp. Positive PID headspace screening results were observed during advancement of boring RIZ-8, and the highest reading observed was 12.4 parts per million by volume (ppmv) at a depth of approximately 9-11 feet below the ground surface (bgs). No positive headspace screening results were observed for soil samples collected during the advancement of borings RIZ-9 or RIZ-10.

Groundwater and bedrock were encountered in RIZ-8 at depths of approximately 24 feet and 27 feet below grade surface (bgs), respectively. Soils collected in the split spoon during advancement of RIZ-8 consisted of fine to coarse sand and gravel. Based on the limited saturated thickness at this location and a desire to evaluate groundwater conditions in bedrock, boring advancement was continued after reaching refusal by drilling with the air hammer for an additional 50 feet, and a monitoring well was installed at that depth to monitoring groundwater conditions in bedrock. A second boring, RIZ-8S, was advanced adjacent to RIZ-8 to a depth of 24 feet bgs without encountering groundwater or bedrock. However, a monitoring well was installed within the boring so that groundwater samples could be collected in the event that seasonal fluctuations in the elevation of the water table provided a sufficient saturated thickness for sampling. Groundwater and bedrock were encountered in RIZ-9 at depths of approximately 14 feet and 16 feet bgs, respectively. The overburden material encountered during the

advancement of this boring consisted of coarse sand and gravel with some silt. After reaching refusal, the boring was continued 16 feet into bedrock using the air hammer, to a depth of approximately 35 feet bgs, and a monitoring well was installed at that depth. Bedrock was not encountered during the advancement of RIZ-10, and groundwater was observed at a depth of 39 feet bgs. The overburden in boring RIZ-10 consisted of fine to coarse sand and gravel. Drilling methods for this boring alternated between augers and the rotary air hammer due to rocky overburden and a boulder. The boring was continued to a depth of 46 feet bgs, and a monitoring well was installed at that depth.

Monitoring wells RIZ-8, RIZ-8S, RIZ-9 and RIZ-10, were constructed using 2-inch-diameter 0.010-inch machine slotted Schedule 40 polyvinyl chloride (PVC) screen and solid PVC riser. The annular space around the well screen was filled with filter sand extending above the top of the well screen, followed by a 2-3 foot bentonite plug to form a seal to minimize the potential for vertical migration of groundwater within the borehole. Each well was completed with a flush mounted road box. Soil boring logs/monitoring well diagrams are included as Appendix C.

As noted above, soil samples collected during the boring advancement were logged in the field and screened with a PID. Based on field observations and the PID screening results, three soil samples, RIZ-8 from 9 to 11 feet, RIZ-9 from 9 to 11 feet and RIZ-10 from 44 to 46 feet, were submitted to Alpha Woods Hole Labs (Alpha) of Westborough, Massachusetts for analysis for MCP-14 metals and low level volatile organic compounds (VOCs).

4.2 Groundwater Sample Collection – December 2007

Tetra Tech Rizzo personnel gauged and purged the four newly installed monitoring wells (RIZ-8, RIZ-8S, RIZ-9 and RIZ-10) on December 13, 2007. The depth to water was measured relative to the PVC riser in each well using an electronic interface probe. No evidence of separate phase petroleum or odors was noted during the gauging of the monitoring wells. The depth to groundwater measured in the monitoring wells ranged from 12 feet bgs in RIZ-9 to 24 feet bgs in RIZ-8. Groundwater was not encountered in monitoring well RIZ-8S.

Prior to the collection of the samples each of the new wells was developed by purging with a peristaltic pump to remove a minimum of three well volumes or until the well was evacuated to dryness. Monitoring well RIZ-10 was noted to have approximately 8 feet of water upon initial gauging. During purging, this well was evacuated to dryness and was noted to have a very slow recharge rate. Because of the slow rate of recharge in RIZ-10 groundwater samples were collected approximately one week after purging, on December 19 - 20, 2007. Groundwater samples were collected from all of the new monitoring wells with the exception of RIZ-8S, which was found to be dry at the time of sampling. In accordance with the approach discussed in the Phase IV report, groundwater samples were collected at the same time from existing wells GHC-6, MW-9, RIZ-3 and MW-3. The groundwater samples were submitted for laboratory analysis for dissolved MCP 14 Metals and VOCs by Method 8260.

4.3 Groundwater Analysis Results – December 2007

The laboratory analysis results for the groundwater samples collected in December 2007 indicated the presence of methyl tert-butyl ether (MTBE) in the samples from RIZ-10 (1.2 micrograms per liter (μ g/l)), MW-3 (1.7 μ g/l) and MW-9 (5.1 μ g/l). These concentrations are well below the applicable RCGW-1 reportable concentration and GW-1 standard (70 μ g/l) applicable to the area of the Site. No other VOCs were reported at concentrations exceeding the laboratory detection limits.

Barium was detected in all the samples at concentrations ranging from 0.007 milligrams per liter (mg/l) to 0.508 mg/l, well below the RCGW-1 reportable concentration and MCP Method 1 GW-1 standard of 2 mg/l. In addition, nickel was detected in the samples from RIZ-8 (0.0048 mg/l) and RIZ-10 (0.0079mg/l), and zinc was detected in the samples from RIZ-10 (0.0216 mg/l) and MW-9 (0.0259 mg/l). These concentrations are below the applicable reportable concentrations and MCP Method 1 standards for these compounds. No other metals were reported at concentrations exceeding the laboratory detection limits. The laboratory certificates of analysis are in Appendix C.

4.4 Groundwater Sample Collection – April/May 2008

Groundwater samples were collected in April 2008 from monitoring wells RIZ-8, RIZ-8S, RIZ-9, RIZ-10, GHC-6, MW-2 and MW-3, and submitted for laboratory analysis for MCP 14 Metals and VOCs by EPA Method 524.2. Samples were collected from monitoring wells RIZ-3 and MW-9 in May 2008 and submitted for the same analyses. Method 524.2 was used for VOC analysis since the samples were collected concurrent with annual sampling required by the Walpole Board of Health (BOH), and the agreement between Walpole Park South and the Walpole BOH requires that VOC analysis be performed using the applicable drinking water method.

4.5 Groundwater Analysis Results – April/May 2008

The laboratory analysis results for the groundwater samples collected in April and May 2008 indicated toluene was detected in the sample from RIZ-10 at a concentration of $0.073 \mu g/l$; chloroform was detected in the samples from MW-2 and MW-9 at concentrations of 2.2 $\mu g/l$ and 0.71 $\mu g/l$, respectively; and methyl tert-butyl ether (MBTE) was detected in the sample from MW-9 at a concentration of 7.9 $\mu g/l$. These concentrations are below the applicable RCGW-1 reportable concentrations and GW-1 standards applicable to the area of the Site. No other VOCs were reported at concentrations exceeding the laboratory detection limits.

No metals were detected in the groundwater samples with the exception of barium, which was detected in all the samples at concentrations ranging from 0.010 mg/l to 0.62 mg/l, well below the RCGW-1 reportable concentration and MCP Method 1 GW-1 standard of 2 mg/l. No other

metals were reported at concentrations exceeding the laboratory detection limits. The laboratory certificates of analysis are in Appendix C.

4.6 Groundwater Sample Collection – November 2008

Groundwater samples were collected in November 2008 from monitoring wells RIZ-3, RIZ-8, RIZ-9, RIZ-10, GHC-6, MW-2, MW-3 and MW-9, and submitted for laboratory analysis for MCP 14 Metals and VOCs by Method 8260. Because of an elevated thallium concentration reported for the sample from RIZ-10, and since thallium had not been previously detected at elevated concentrations at the Site, RIZ-10 was re-sampled in early December 2008 to evaluate whether the original thallium result was representative of conditions in the area of RIZ-10.

4.7 Groundwater Analysis Results – November 2008

The laboratory analysis results for the groundwater samples collected in November 2008 did not report detectable levels of VOCs with the exception of chloroform and MTBE, detected in the sample from MW-9 at concentrations of $2.2 \mu g/l$ and $2.7 \mu g/l$, respectively. These concentrations are below the applicable RCGW-1 reportable concentrations and GW-1 standards applicable to the area of the Site. No other VOCs were reported at concentrations exceeding the laboratory detection limits.

Barium was detected in all the groundwater samples at concentrations ranging from 0.0114 mg/l (MW-3) to 0.129 mg/l (MW-2). Zinc was also detected in all samples at concentrations ranging from 0.020 mg/l (RIZ-9) to 0.0363 mg/l (RIZ-10). The detected concentrations of barium and zinc are well below the applicable RCGW-1 reportable concentrations of 2 mg/l and 0.90 mg/l, respectively.

As noted above, thallium was reported for the sample collected in November 2008 from RIZ-10, at a concentration of 0.0116 mg/l, exceeding the RCGW-1 reportable concentration of 0.002 mg/l. Since thallium had not been recently detected at the Site, it was believed that the positive result for thallium could be related to sampling or analytical error, and the well was re-sampled on December 11, 2008. Analysis of the second sample did not detect thallium, confirming that the original result was not representative of groundwater conditions in the area of RIZ-10. No other metals were reported at concentrations exceeding the laboratory detection limits. The laboratory certificates of analysis are in Appendix C.

4.8 Groundwater Sample Collection – June 2009

Groundwater samples were collected in June 2009 from monitoring wells RIZ-3, RIZ-8, RIZ-8S, RIZ-9, RIZ-10, GHC-6, MW-2, MW-3 and MW-9, and submitted for laboratory analysis for MCP 14 Metals and VOCs by EPA Method 524.2. Method 524.2 was used for VOC analysis since the samples were collected concurrent with annual sampling required by the Walpole

Board of Health (BOH), and the agreement between Walpole Park South and the Walpole BOH requires that VOC analysis be performed using the applicable drinking water method.

4.9 Groundwater Analysis Results – June 2009

The laboratory analysis results for the groundwater samples collected in June 2009 did not report detectable levels of VOCs with the exception of toluene detected in the sample from RIZ-8S at a concentration of 0.71 μ g/l, and chloroform detected in MW-2 and MW-9 at concentrations of 1.0 μ g/l and 0.75 μ g/l, respectively. These concentrations are below the applicable RCGW-1 reportable concentrations and GW-1 standards applicable to the area of the Site. No other VOCs were reported at concentrations exceeding the laboratory detection limits.

No metals were detected in the groundwater samples with the exception of barium, which was detected in all the samples at concentrations ranging from 0.013 mg/l to 0.148 mg/l, well below the RCGW-1 reportable concentration and MCP Method 1 GW-1 standard of 2 mg/l. No other metals were reported at concentrations exceeding the laboratory detection limits. The laboratory certificates of analysis are in Appendix C.

4.10 Phase IV Completion

As noted in the preceding sections, the additional monitoring wells discussed in the Phase IV report were installed in December 2007, and four rounds of groundwater sampling have been performed since that time. Based on previous sampling results for the Site, the requirements for a Class A or Class C RAO have note been met and ongoing monitoring will be performed to further characterize groundwater conditions over time. Groundwater samples will be collected at approximately six month intervals, and the samples analyzed for VOCs and metals. Based on the analysis results and field observations, modifications to the sampling frequency, number of wells, analytical methods, and/or wells sampled may be made. Sampling results and changes to the sampling plan, if applicable, will be documented in Phase V status reports.

Further progress toward an RAO will be evaluated based on the results of future sampling events, including whether the total set of groundwater monitoring data for the Site indicates that concentrations of lead and VOCs decrease over time and/or the average concentration at each exposure point (e.g., each monitoring well) is below the applicable GW-1 standard(s). Phase V status reports will be submitted to DEP at six-month intervals to document and discuss the results of future sampling.

5.0 Remedy Operation Status Opinion

Remedy Operation Status applies to sites in Phase V where a Comprehensive Remedial Action that relies upon Active Operation and Maintenance, either an Active Remedial Monitoring Program or Active Remedial System, is being conducted for the purpose of achieving a

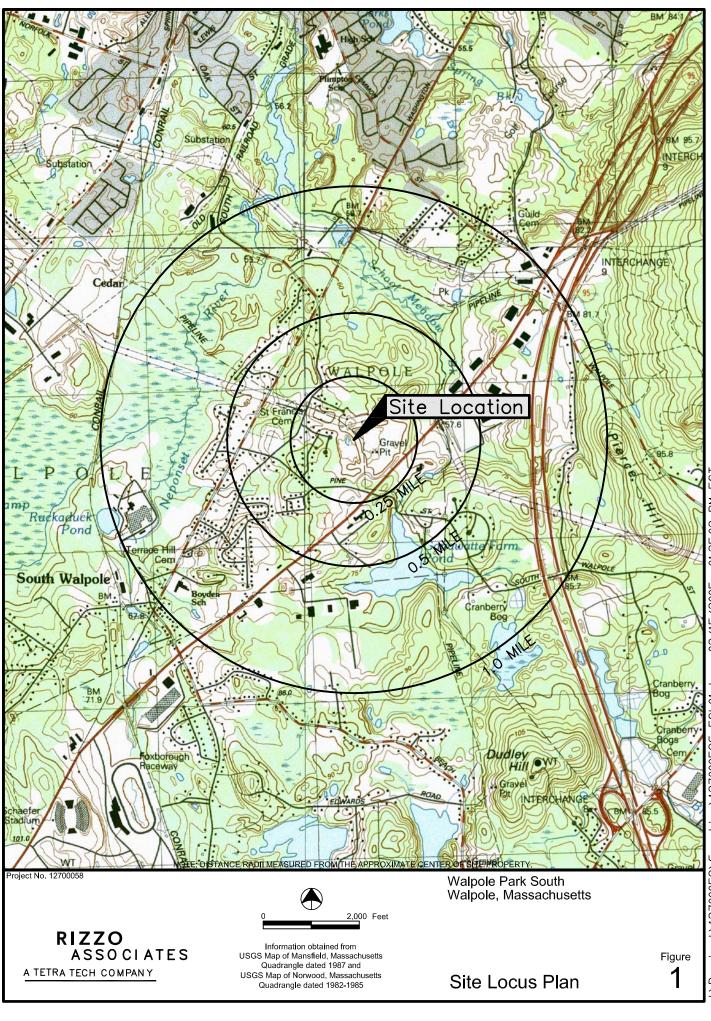
Permanent Solution. The Performance Standard for Remedy Operation status is defined in 310 CMR 40.0893 (2) and is summarized below:

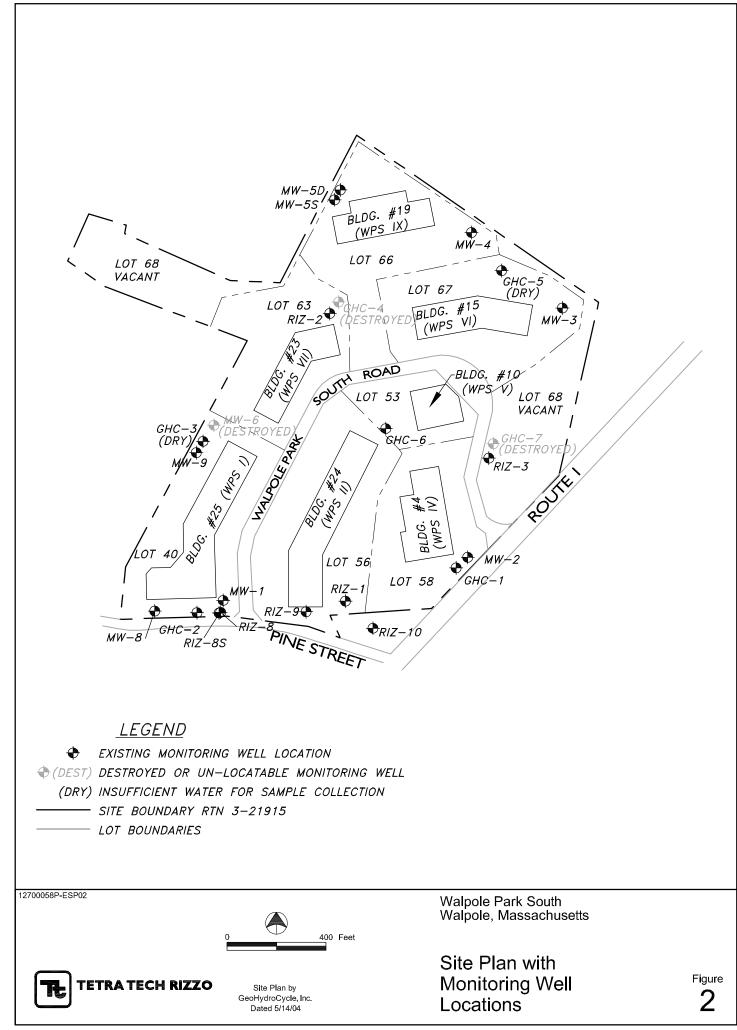
- Phase III and Phase IV Comprehensive Response Action shall be completed;
- The remedial system or program shall be adequately designed to achieve a Permanent Solution;
- The remedial system or program shall be operated and maintained in accordance with the MCP;
- Each source of oil and/or hazardous material shall be eliminated or controlled;
- Any Substantial Hazards shall be eliminated; and,
- At a minimum, information and data on operation and maintenance or monitoring shall be documented and submitted to the Department in Status and Remedial Monitoring Reports every 6 months.

It is our opinion that the above Performance Standard for Remedy Operation Status has been achieved and Remedy Operation Status is applicable for the Site provided that the requirements of the Performance Standard are maintained.

6.0 Phase V Implementation

6.1 Implementation Schedule


It is anticipated that the next round of groundwater sampling will take place in November or December 2009, with samples collected at approximately 6 month intervals thereafter. Phase V status reports will be submitted at least every six months.


6.2 Permits and Approvals

A permit was issued by the Massachusetts Highway Department for installation of a monitoring well near the intersection of Route 1 south and Pine Street. No other permits or approvals are required to implement the work described herein.

7.0 Public Notifications

Pursuant to the requirements of the MCP, notices of the submission of this Phase IV Completion Statement have been sent to the Walpole Board of Health and Chief Municipal Officer. Copies of the public notification letters are included in Appendix D. A copy of the Phase IV Completion Statement has also been submitted to the Public Information Repository at the Walpole Public Library. A copy of the Phase IV Transmittal Form (BWSC-108) is included as Appendix E.

Table 1	Groundwater Analytical	Data (µg/L)										
Location:	RIZ-8	RIZ-8	RIZ-8	RIZ-8	RIZ-8S	RIZ-8S	RIZ-9	RIZ-9	RIZ-9	RIZ-9	RIZ-10	RIZ-10
Sample Name:	RIZ-8	RIZ-8-042808	RIZ-8-GW	RIZ-8	RIZ-8S-042808	RIZ-8S	RIZ-9	RIZ-9-042808	Riz-9-GW	RIZ-9	RIZ-10	RIZ-10-042808
Laboratory:	ALPHA	ALPHA	Spectrum	ALPHA	ALPHA	ALPHA	ALPHA	ALPHA	Spectrum	ALPHA	ALPHA	ALPHA
Laboratory I.D.:	L0718979-01	L0806023-04	SA87371-02	L0907670-02	L0806023-05	L0907670-03	L0718979-03	L0806023-02	SA87371-06	L0907670-08	L0718979-02	L0806023-01
Sample Date:	19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	28-Apr-08	10-Jun-09	19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	19-Dec-07	28-Apr-08
Consultant:	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR
Chloroform	<0.75	<0.50	<1.0	<0.50	<0.50	<0.50	<0.75	<0.50	<1.0	<0.50	<0.75	<0.50
Methyl tert butyl ether	<1.0	<0.50	<1.0	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<0.50	1.2	<0.50
Toluene	<0.75	<0.50	<1.0	<0.50	<0.50	0.71	<0.75	<0.50	<1.0	<0.50	<0.75	0.73
Barium, Dissolved	50.8	25.0	27.6	26	54.0	51	15.3	21.0	14.8	15	95.8	62.0
Lead, Dissolved	<2.0	<10.0	<7.5	<10	<10.0	<10	<2.0	<10.0	<7.5	<10	<2.0	<10.0
Nickel, Dissolved	4.8	<25.0	<5.0	<25	<25.0	<25	<2.0	<25.0	<5.0	<25	7.9	<25.0
Thallium, Dissolved	<2.0	<2.0	<5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	<2.0	<2.0	<2.0
Zinc, Dissolved	<20.0	<50.0	26.4	<50	<50.0	<50	<20.0	<50.0	20.0	<50	21.6	<50.0

Table 1	Groundwater Analy	ytical Data (µg/L)							
Location:	RIZ-10	RIZ-10	RIZ-10	GHC-6	GHC-6	GHC-6	GHC-6	MW-9	MW-9
Sample Name:	RIZ-10-GW	RIZ-10	RIZ-10	GHC-6	GHC-6-042808	GHC-6-GW	GHC-6	MW-9	MW-9-051408
Laboratory:	Spectrum	Alpha	ALPHA	ALPHA	ALPHA	Spectrum	ALPHA	ALPHA	ALPHA
Laboratory I.D.:	SA87371-01	L0818397-01	L0907670-01	L0718979-04	L0806023-06	SA87371-08	L0907670-05	L0718979-05	L0806993-02
Sample Date:	11-Nov-08	11-Dec-08	10-Jun-09	19-Dec-07	28-Apr-08	11-Nov-08	10-Jun-09	19-Dec-07	14-May-08
Consultant:	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR
Chloroform	<1.0		<0.50	<0.75	<0.50	<1.0	<0.50	<0.75	0.71
Methyl tert butyl ether	<1.0		<0.50	<1.0	<0.50	<1.0	<0.50	5.1	7.9
Toluene	<1.0		<0.50	<0.75	<0.50	<1.0	<0.50	<0.75	<0.50
Barium, Dissolved	88.4		148	45.9	59.0	36.8	66	7.0	13.0
Lead, Dissolved	<7.5		<10	<2.0	<10.0	<7.5	<10	<2.0	<10.0
Nickel, Dissolved	<5.0		<25	<2.0	<25.0	<5.0	<25	<2.0	
Thallium, Dissolved	11.6	<2.0	<2.0	<2.0	<2.0	<5.0	<2.0	<2.0	
Zinc, Dissolved	36.3		<50	<20.0	<50.0	21.6	<50	25.9	

MW-9	MW-9	RIZ-3
MW-9-GW	MW-9	RIZ-3
Spectrum	ALPHA	ALPHA
SA87371-04	L0907670-04	L0718979-06
11-Nov-08	10-Jun-09	19-Dec-07
TTR	TTR	TTR
2.2	0.75	<0.75
2.7	<0.50	<1.0
<1.0	<0.50	<0.75
18.6	29	25.6
<7.5	<10	<2.0
<5.0	<25	<2.0
<5.0	<2.0	<2.0
34.7	<50	<20.0

Table 1	Groundwater Analy	tical Data (µg/L)						
Location:	RIZ-3	RIZ-3	RIZ-3	MW-3	MW-3	MW-3	MW-3	MW-2
Sample Name:	RIZ-3-051408	RIZ-3-GW	RIZ-3	MW-3	MW-3-042808	MW-3-GW	MW-3	MW-2-042808
Laboratory:	ALPHA	Spectrum	ALPHA	ALPHA	ALPHA	Spectrum	ALPHA	ALPHA
Laboratory I.D.:	L0806993-01	SA87371-03	L0907670-06	L0718979-07	L0806023-03	SA87371-07	L0908197-01	L0806023-07
Sample Date:	14-May-08	11-Nov-08	10-Jun-09	19-Dec-07	28-Apr-08	11-Nov-08	8-Jun-09	28-Apr-08
Consultant:	TTR	TTR	TTR	TTR	TTR	TTR	TTR	TTR
Chloroform	<0.50	<1.0	<0.50	<0.75	<0.50	<1.0	<0.50	2.20
Methyl tert butyl ether	<0.50	<1.0	<0.50	1.7	< 0.50	<1.0	< 0.50	<0.50
Toluene	<0.50	<1.0	<0.50	<0.75	<0.50	<1.0	<0.50	<0.50
Barium, Dissolved	44.0	86.2	13	15.2	10.0	11.4	21	31.00
Lead, Dissolved	<10.0	<7.5	<10	<2.0	<10.0	8.8	<10	<10.0
Nickel, Dissolved		<5.0	<25	<2.0	<25.0	<5.0	<25	<25.0
Thallium, Dissolved		<5.0	<2.0	<2.0	<2.0	<5.0	<2.0	<2.0
Zinc, Dissolved		21.0	<50	<20.0	<50.0	34.5	<50	<50.0

Table 1	Groundwater Analy	/tical Data (µg/L)	Groundwater S	Summary Stati	stics (µg/L)							
Location: Sample Name: Laboratory: Laboratory I.D.: Sample Date: Consultant:	MW-2 MW-2-GW Spectrum SA87371-05 11-Nov-08 TTR	MW-2 MW-2 ALPHA L0907670-07 10-Jun-09 TTR	Number of Times Detected	Number of Times Sought	Minimum Concentration Detected	Maximum Concentration Detected	Average Concentration Detected	90th Percentile Concentration Detected	2007 Method 1 Standard GW-1	2007 Method 1 Standard GW-2	2007 Method 1 Standard GW-3	2007 RCGW-1 Standard μg/L
Chloroform	<1.0	1.0	5	33	0.71	2.20	0.50	0.74	70	50	20,000	50
Methyl tert butyl ether	<1.0	<0.50	5	33	1.20	7.90	0.86	1.60	70	50,000	50,000	70
Toluene	<1.0	<0.50	2	33	0.71	0.73	0.37	0.50	1,000	50,000	40,000	1,000
Barium, Dissolved	129	70	33	33	7.00	148	43	88	2,000	NA	50,000	2,000
Lead, Dissolved	<7.5	<10	1	33	8.80	8.8	4.0	5.0	15	NA	10	10
Nickel, Dissolved	<5.0	<25	2	31	4.80	7.9	7.7	13	100	NA	200	100
Thallium, Dissolved	<5.0	<2.0	1	32	11.6	11.6	1.7	2.5	2	NA	3000	2
Zinc, Dissolved	28.0	<50	10	31	20.00	36.3	23	28	5,000	NA	900	900

Appendix A

Statement of Limitations and Conditions

Attachment A: Limitations

- 1. The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the CLIENT. The work described in this report was carried out in accordance with the Terms and Conditions in our contract.
- 2. In preparing this report, ENGINEER has relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to ENGINEER at the time of the site assessment. Although there may have been some degree of overlap in the information provided by these various sources, ENGINEER did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this site assessment.
- 3. Observations were made of the Site and of structures on the Site as indicated within the report. Where access to portions of the Site or to structures on the Site was unavailable or limited, ENGINEER renders no opinion as to the presence of hazardous materials or oil, or to the presence of indirect evidence relating to hazardous material or oil, in that portion of the Site or structure. In addition, ENGINEER renders no opinion as to the presence of hazardous material or oil, or the presence of indirect evidence relating to hazardous material or oil, where direct observation of the interior walls, floor, or ceiling of a structure on a Site was obstructed by objects or coverings on or over these surfaces.
- 4. ENGINEER did not perform testing or analyses to determine the presence or concentration of asbestos at the Site or in the environment at the Site.
- 5. It is ENGINEER's understanding that the purpose of this report is to assess the physical characteristics of the subject Site with respect to the presence on the Site of hazardous material or oil. This stated purpose has been a significant factor in determining the scope and level of services provided for in the Agreement. Should the purpose for which the Report is to be used or the proposed use of the site(s) change, this Report is no longer valid and use of this Report by CLIENT or others without ENGINEER's review and written authorization shall be at the user's sole risk. Should ENGINEER be required to review the Report after its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as agreed between ENGINEER and the CLIENT.
- 6. The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 7. Any water level readings made in test pits, borings, and/or observation wells were made at the times and under the conditions stated on the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

- 8. Except as noted within the text of the report, no quantitative laboratory testing was performed as part of the site assessment. Where such analyses have been conducted by an outside laboratory, ENGINEER has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 9. The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. These data have been reviewed and interpretations made in the report. As indicated within the report, some of these data may be preliminary screening level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, these data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.
- 10. Chemical analyses have been performed for specific constituents during the course of this site assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the Site.
- 11. This Report was prepared for the exclusive use of the CLIENT. No other party is entitled to rely on the conclusions, observations, specifications, or data contained therein without the express written consent of ENGINEER.
- 12. The observations and conclusions described in this Report are based solely on the Scope of Services provided pursuant to the Agreement. ENGINEER has not performed any additional observations, investigations, studies, or testing not specifically stated therein. ENGINEER shall not be liable for the existence of any condition, the discovery of which required the performance of services not authorized under the Agreement.
- 13. The passage of time may result in significant changes in technology, economic conditions, or site variations that would render the Report inaccurate. Accordingly, neither the CLIENT, nor any other party, shall rely on the information or conclusions contained in this Report after six months from its date of submission without the express written consent of ENGINEER. Reliance on the Report after such period of time shall be at the user's sole risk. Should ENGINEER be required to review the Report after six months from its date of submission, ENGINEER shall be entitled to additional compensation at then existing rates or such other terms as may be agreed upon between ENGINEER and the CLIENT.
- 14. ENGINEER has endeavored to perform its services based upon engineering practices accepted at the time they were performed. ENGINEER makes no other representations, express or implied, regarding the information, data, analysis, calculations, and conclusions contained herein.
- 15. The services provided by ENGINEER do not include legal advice. Legal counsel should be consulted regarding interpretation of applicable and relevant federal, state, and local statutes and regulations and other legal matters.

Appendix B

Soil Boring/Monitoring Well Completion Diagrams

	A S S C	D C I	ATES					WELL	PAGE 1 OF 1
CLIEN	T Walpo	ole Pa	rk South Tru	ıst			PROJECT NAME Walpole Park So	uth	
							GROUND ELEVATION		
							GROUND WATER LEVELS:		
			Hollow Ste						
LOGG	ED BY	Dimitri	Gounis		CHEC	KED BY			
NOTE	s						AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		M	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
 		50	11-15-52- 93 (67) 42-30			Tan course to very course Tan medium to fine sand,	e sand with some gravel, moist, no odor uniform, wet, no odor	0	Backfill: Cuttings PVC Riser Bentonite
 - 15 		100	44.40.40		12.5	boulder Tan fine sand with some no odor	plasticity with gravel and very course sand	, wet, 0.5	Filter Pack PVC Screen
20		0			21.0	Refusal at 21' suspected	pedrock	0	
						В	ottom of hole at 32.0 feet.		

	A S S A TECH C	οсι	ATES			W	ELL	NUMBER RIZ-2 PAGE 1 OF 1
			rk South Tru			PROJECT NAME Walpole Park South		
							HOLE	SIZE <u>2"</u>
			Hollow Ste		CHECKED BY			
NOTE		1			I	AFTER DRILLING	1	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	M	ATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
		33	50		Tan madium to fine sand	and gravel, dry, no odor	0	Backfill: Cuttings Bentonite PVC Riser
 <u>5</u> 		0		\$ • •	Gravel and cobbles off au	iger, some angular gravel, some tan medium to	_	
 - 10 		33	6-12-22-12 (34)		Tan coarse sand and gra	vel with fine sand, wet, no odor	0	Filter Pack PVC Screen
 <u>15</u> 		25	70		Tan coarse sand and gra odor, auger refusal at 15.	vel with fines, slightly plastic/cohesive, wet, no 5'	0	
					В	ottom of hole at 27.0 feet.		

	RIZZ(ASS) RATECH C	οсι	ATES				WELL	PAGE 1 OF 2
CLIE	NT Walpo	ole Pa	rk South Tru	ust		PROJECT NAME _ Walpole Park Sou	th	
PROJ	ECT NUM	BER						
DATE	STARTE	D 10				GROUND ELEVATION	HOLES	SIZE _2"
DRILI	LING CON	TRAC	TOR Soil	Explora	ation	GROUND WATER LEVELS:		
DRILI	LING MET	HOD	Hollow Ste	m Aug	er	AT TIME OF DRILLING		
LOGO	GED BY	Dimitri	Gounis		CHECKED BY	AT END OF DRILLING		
NOTE	S					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MAT	FERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	-				3.0	nd fill, moist, no odor, off auger	0	
		75	5-7-8-6 (15)	-	5.0 Brown uniform medium to f	ine sand, moist, no odor	0	
 		50	6-7-9-12 (16)		Brown/tan coarse sand and	fine sand with gravel, wet, no odor	0	Backfill: Cuttings PVC Riser
 _ <u>15</u> 		33	1-6-11-12 (17)	6 00° f ° 3		fine sand with some gravel, wet, no odor	0	Bentonite
		75	3-6-8-21 (14)		Brown/tan coarse sand with	n some fines, wet, no odor	0	
		83	15-20-23- 27 (43)		Brown/tan coarse sand to v wet, no odor 27.0	ery corase sand and gravel with some fine	es, 0	PVC Screen Filter Pack
GENERAL BH/TP/WELL BORING LOGS.GPJ GINT US.GDT 3/1506		83	7-11-9-11 (20)		Brown/tan coarse sand to v odor 32.0	ery corase sand and gravel with fines, we	t, no 0	
GENERAL E								

RIZZO

ASSOCIATES

A TETRA TECH COMPANY

WELL NUMBER RIZ-3 PAGE 2 OF 2

		T <u>Walpo</u> ECT NUM		k South Tru	ust	PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachu	setts	
	DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06			0			Mounding prevents acurate sample from this depth, no soil desc. End or boring at 40', no refusal. 42.0 Bottom of hole at 25.0 feet.	0	

	A S S A TECH C	0 C I	ATES			BORING NUMBER RIZ PAGE 1 (
CLIEN	IT Walp	ole Pa	rk South Tru	ust		PROJECT NAME Walpole Park South	
						GROUND ELEVATION HOLE SIZE _2"	
DRILL	ING CON	ITRAC	TOR Soil	Explora	ation	GROUND WATER LEVELS:	
DRILL	ING MET	HOD	Hollow Ste	em Aug	er	AT TIME OF DRILLING	
LOGG	ED BY _	Dimitr	i Gounis		CHECKED BY	AT END OF DRILLING	
NOTE	s					AFTER DRILLING	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
					Brown medium to fine sai	nd and gravel, dry, no odor, off auger	0
5		75	25-30-27- 23 (57)		Brown medium to fine sai	nd and gravel, dry, no odor	0
 10							
		33	17-27-27- 29 (54)			nd and gravel with some coarse sand few orange mottles, moist, no odor.	0
						Bottom of hole at 27.0 feet.	

A TET	RIZZ ASS RATECH C	οсι	ATES			BORING NUMBER RIZ-5 PAGE 1 OF 1		
CLIE	NT Walp	<u>ole P</u> a	rk South Tru	ust		PROJECT NAME Walpole Park South		
	JECT NUN					PROJECT LOCATION Walpole, Massachusetts		
DAT	E STARTE	D _2/*				GROUND ELEVATION HOLE SIZE _6"		
DRIL	LING CON	ITRAC	TOR Geo	search	I	GROUND WATER LEVELS:		
DRIL	LING MET	HOD	Hollow Ste	em Aug	er	AT TIME OF DRILLING		
LOG	GED BY _	Chris I	Nitchie		CHECKED BY	AT END OF DRILLING		
NOT	ES					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)	
-		50	8-9-12-9 (21)	0.00 P	Brown medium to f	dium to fine uniform sand, moist, no odor		
- 5	-							
-		25	16-18-20- 25 (38)		Brown medium to fine uniform sand with angular gravel, dry, no odor			
- - 10	-							
-		0	6-21-45-30 (66)		No recovery, browr			
- - 15	-							
_								
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06	-				Bottom of hole at 20.0 feet.			

		A S S C	D C I	ATES			BORING NUMBER RIZ-6 PAGE 1 OF 1			
				<u>rk South Tru</u>			PROJECT NAME _ Walpole Park South PROJECT LOCATION _ Walpole, Massachusetts			
-	PROJECT NUMBER DATE STARTED 2/16/06 COMPLETED 2/16/06 DRILLING CONTRACTOR Geosearch						GROUND ELEVATION HOLE SIZE _6" GROUND WATER LEVELS:			
	DRILLING METHOD _ Hollow Stem Auger LOGGED BY _Chris Nitchie CHECKED BY NOTES									
	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	(mqq) DIA		
	100 6-10-9-10 (19) (19) 3.0 5						2" loamy top soil, 12" brown medium to coarse sand and gravel with some fines, moist to wet, no odor.			
-						Brown medium to fine sand	d and gravel with some organic material (plant), wet at bottom of spoon	2.9		
-	- – - – - – 10									
			83	3-9-10-13 (19)		Tan uniform medium to fine refusal	e sand, moist, no odor, boring ended due to proximity to overhead utilities, no Bottom of hole at 12.0 feet.	0		
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06										

		0 C I	ATES			BORING NUMBER RI PAGE 1			
A TETR	А ТЕСН С	ΟΜΡΑΝ	14						
			rk South Tru	ust		PROJECT NAME Walpole Park South	PROJECT NAME Walpole Park South		
	ECT NUN								
						16/06 GROUND ELEVATION HOLE SIZE 6"			
					er				
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)		
					Tan to light	brown medium sand and gravel with some fines, wet (snow melt), no odor			
		25	5-5-6-7 (11)			ium to coarse sand with fines and some gravel, wet (snow melt), no odor	0		
 10			14-43-63-		7.0 Tan/Brown	medium to caorse sand with fines and gravel, wet, no odor. Likely near top of water table			
 _ 15		42	30 (106)			uniform coarse sand with some fines transitioning to angular gravel with fines. Auguer	0		
		50	51		refusal at 1 17.0	8'	0		
						Bottom of hole at 18.0 feet.			

GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 3/15/06

F	TET	RAT	ECH RIZ	220				VVE		PAGE 1 OF
	T Walno	ole Pa	rk South Tru	st			PROJECT NAME _ Walpole	Park South		
	CLIENT Walpole Park South Trust PROJECT NUMBER 12700058						PROJECT LOCATION _Wal		setts	
				COMPLETED	12/5/0	07	GROUND ELEVATION			SIZE 2"
							GROUND WATER LEVELS:			
			Hollow Ster	•			AT TIME OF DRILLIN			
LOGG	ED BY _	_uke T	ulley	CHECKED BY			AT END OF DRILLING			
NOTES	S						AFTER DRILLING	-		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG		MATERIAL DESCRIPTIC	NC	PID (ppm)	WELL DIAGRAM
	S-1	50	6-6-8-5 (14)		¢.,.,	2.0 Dry, ta	an, well sorted medium angula	r sand, trace	12.3	Hush Mounted Road
		00	5-3-4-7			4.0	ark brown, poorly sorted coars			Box
	S-2	90	(7)			grave			0.1	
10		80	6-13-21-18	Sample taken and		9.0Dry, li	ght tan, well sorted fine sand ght tan, well sorted fine sand	/	40.4	
	S-3	00	(34)	submitted for VOC and MCP-14 analysis		11.0 Dry, g	ray, large gravel, little sand		12.4	
		00	12-23-23-	from 9'-11'		14.0	Brown, poorly sorted coarse sa	nd some silt		- ⊲ 2" PVC
	S-4	80	30 (46)	(RIZ-8-9'-11')		16.0 rocky			0	_ Capped Riser
20	S-5	80	11-18-15-			19.0	an, poorly sorted coarse and fi		0.1	
	5-5	80	17 (33)		<u> </u>	grave	, rocky		0.1	
	S-6	50	14-23-27-			24 <u>.0</u> Wet, I	prown, large gravel and rocks	with coarse	0.1	
			21 (50)		· · · · · · · · · · · · · · · · · · ·	sand.	Auger refusal at 27', bedrock			
30										Bentonite Sea
GENERAL BH / TP / WELL BORING LOGS.GPJ GINT US.GDT 12/11/07										Sand Filter Pack
GENERAL BH ,										 ✓ 2" Machine Slotted Well Screen ✓ 2" PVC Plug

Γ

WELL NUMBER RIZ-8

T	b TE1	'RA T	ECH RIZZO				WELL	NUMBER RIZ-8S PAGE 1 OF 1
						PROJECT NAME Walpol		
			12700058					
						GROUND ELEVATION		SIZE _2"
						GROUND WATER LEVEL		
				jer				
				CHECKED BY				
NOTE	S					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIA	L DESCRIPTION		
 								 Flush Mounted Road Box 2" PVC Capped Riser Bentonite Seal
								Sand Filter Pack 2" Machine Slotted Well Screen

	L TET	RA 1	ECH RIZ	zo			WELL	PAGE 1 OF 1
			rk South Tru					
			12700058					SIZE 0"
			Hollow Ster	CHECKED BY				
NOTE		1						
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	(mqq) Olq	WELL DIAGRAM
	S-1	50	3-2-3-4 (5)		<u></u>	Dry, brown, pete, some poorly sorted coarse s gravel 2.0	and 0	Mounted Road Box
 	S-2	15	9-10-12-18 (22)			Dry, brown to tan, poorly sorted coarse angula sand with gravel, some large rocks	0	
 - 10 	S-3	80	3-5-9-10 (14)	Sample taken and submitted for VOC and MCP-14 analysis from 9'-11' (RIZ-9-9'-11')		0.0 Dry, tan uniform coarse sand with some fines transitioning to angular gravel with fines 11.0	0	- 2" PVC Capped Riser
 _ <u>15</u>	S-4	50	34-19-13-7 (32)			14.0 Wet, tan, well sorted coarse sand with angular gravel. Soft bedrock at 16'. 16.0	0	
20 20 20 20 25 25	-							Bentonite Seal
GENERAL BH/TP/WELL BORING LOGS.GPJ GINT US.GDT 12/11/07								 Sand Filter Pack 2" Machine Slotted Well Screen
GENERAL	-					Bottom of hole at 35.0 feet.		∠ = 2" PVC Plug

WELL NUMBER RIZ-10

PAGE	1	OF
------	---	----

TETRA TECH RIZZO

CLIENT Walpole Park South Trust

PROJECT NUMBER 12700058

ŦŁ

PROJECT NAME Walpole Park South PROJECT LOCATION Walpole, Massachusetts

AT TIME OF DRILLING 39'

AT END OF DRILLING _---

DATE STARTED 12/6/07 COMPLETED 12/6/07 GROUND ELEVATION HOLE SIZE 2"

GROUND WATER LEVELS:

DRILLING CONTRACTOR Geosearch

DRILLING METHOD Hollow Stem Auger

LOGGED BY Luke Tulley CHECKED BY

NOTE	s					AFTER DRILLING		
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	REMARKS	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)	WELL DIAGRAM
	S-1	50	5-7-7-8 (14)			Dry, tan/brown, poorly sorted coarse sand and 2.0 gravel	0	Mounted Road Box
	S-2	75	5-7-7-4 (14)			4.0 Dry, tan, well sorted medium to fine sand, trace 6.0 gravel	0	
 _ <u>10</u>	S-3	80	2-3-3-4 (6)			9.0 Dry, tan, well sorted medium to fine sand, trace 11.0 gravel	0	
	S-4	85	3-4-3-4 (7)			14.0	0	
20	S-5	25	5-8-15-13 (23)			19.0 Dry, tan, poorly sorted medium to fine sand and 21.0 medium angular gravel	0	
	S-6	12				23.0 24.0 Dry, tan, poorly sorted medium to fine sand and 25.0 large angular gravel	0	
30	S-7	30	9-23			29.0 Dry, tan, poorly sorted coarse sand and angular 31.0 gravel	0	
								Bentonite Seal
40_	S-8	50	11-16-11- 20 (27)		<u>,</u>	Wet, brown, poorly sorted coarse to fine sand and 41.0 gravel, rocky	0	Sand Filter Pack 2" Machine Slotted Well
40	S-9	15		Sample taken and submitted for VOC and MCP-14 analysis from 44-46' (RIZ-10-44'-46')		44.0 Wet, brown, poorly sorted coarse to fine sand and and gravel 46.0 gravel Bottom of hole at 46.0 feet.	0	Screen 2" PVC Plug

Appendix C

Laboratory Certificates of Analysis

ANALYTICAL REPORT

Lab Number:	L0718979
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ray Johnson
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058
Report Date:	01/03/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (200305), NJ (MA935), RI (LAO00065), ME (2006012), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08

Client ID	Sample Location
RIZ-8	WALPOLE, MA
RIZ-10	WALPOLE, MA
RIZ-9	WALPOLE, MA
GHC-6	WALPOLE, MA
MW-9	WALPOLE, MA
RIZ-3	WALPOLE, MA
MW-3	WALPOLE, MA
	RIZ-8 RIZ-10 RIZ-9 GHC-6 MW-9 RIZ-3

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status					
А	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES				
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES				
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES				
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A				
A response to questions E and F is required for "Presumptive Certainty" status						
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO				
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700058
 Lab Number:
 L0718979

 Report Date:
 01/03/08

Case Narrative

The samples were received in accordance with the chain of custody and no significant deviations were encountered during preparation or analysis unless otherwise noted below.

MCP Related Narratives

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question E:

The WG307181-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane and the LCS % recovery for 1,4-Dioxane are below the individual acceptance criteria for the compounds, but within the overall method

allowances. These are both difficult analytes.

The WG307181-1/2 LCS/LCSD % RPD for 1,4-Dioxane is above the method acceptance criteria.

The WG307363-1/2 LCS/LCSD % recoveries for Dichlorodifluoromethane are below and the LCSD % recoveries for Acetone (a difficult analyte) and 1,4-Dioxane are above the individual acceptance criteria for the compounds, but within the overall method allowances.

Metals

L0718979-01 through -07 were diluted 4x for the analysis of all 6020A analytes due to non-target analyte interference.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

Date: 01/03/08

ORGANICS

VOLATILES

WALPOLE PARK SOUTH

01030816:13

L0718979

01/03/08

Lab Number: Report Date:

Project Number: 12700058

Project Name:

Lab ID:	L0718979-01	Date Collected:	12/19/07 11:10
Client ID:	RIZ-8	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	60,8260B		
Analytical Date:	12/27/07 17:23		
Analyst:	GK		

Parameter	Result	Qualifier Un	its RDL	Dilution Facto
Volatile Organics by MCP 8260B				
Methylene chloride	ND	ug	/I 5.0	1
1,1-Dichloroethane	ND	ug	/I 0.75	1
Chloroform	ND	ug	/I 0.75	1
Carbon tetrachloride	ND	ug	/I 0.50	1
1,2-Dichloropropane	ND	ug	/I 1.8	1
Dibromochloromethane	ND	ug	/I 0.50	1
1,1,2-Trichloroethane	ND	ug	/I 0.75	1
Tetrachloroethene	ND	ug	/I 0.50	1
Chlorobenzene	ND	ug	/I 0.50	1
Trichlorofluoromethane	ND	ug	/I 2.5	1
1,2-Dichloroethane	ND	ug	/I 0.50	1
1,1,1-Trichloroethane	ND	ug	/I 0.50	1
Bromodichloromethane	ND	ug	/I 0.50	1
trans-1,3-Dichloropropene	ND	ug	/I 0.50	1
cis-1,3-Dichloropropene	ND	ug	/I 0.50	1
1,1-Dichloropropene	ND	ug	/I 2.5	1
Bromoform	ND	ug	/I 2.0	1
1,1,2,2-Tetrachloroethane	ND	ug	/I 0.50	1
Benzene	ND	ug	/I 0.50	1
Toluene	ND	ug	/I 0.75	1
Ethylbenzene	ND	ug	/I 0.50	1
Chloromethane	ND	ug	/I 2.5	1
Bromomethane	ND	ug	/I 1.0	1
Vinyl chloride	ND	ug	/I 1.0	1
Chloroethane	ND	ug	/I 1.0	1
1,1-Dichloroethene	ND	ug	/I 0.50	1
trans-1,2-Dichloroethene	ND	ug	/I 0.75	1
Trichloroethene	ND	ug	/I 0.50	1
1,2-Dichlorobenzene	ND	ug	/I 2.5	1
1,3-Dichlorobenzene	ND	ug	/I 2.5	1

01030816:13

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-01 RIZ-8 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-01 RIZ-8 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	105		70-130	

01030816:13 Lab Number:

Report Date:

L0718979

01/03/08

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-02 Date Collected: 12/19/07 12:40 Client ID: Date Received: **RIZ-10** 12/21/07 Field Prep: WALPOLE, MA Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 18:01 Analyst: GK

ND ug/l 5.0 1 1,1-Dichloroethane ND ug/l 0.75 1 2hloroform ND ug/l 0.75 1 2hloroform ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 1/1-Trichloroethane ND ug/l 0.50 1 1/1-Dichloropropene ND ug/l 0.50 1	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
ND ug1 0.75 1 Chlorotorm ND ug1 0.75 1 Chlorotorm ND ug1 0.50 1 Chlorotorm ND ug1 0.50 1 Chlorotherachlorote ND ug1 0.50 1 Chlorothoromethane ND ug1 0.50 1 Chlorothoromethane ND ug1 0.50 1 Chlorothene ND ug1 0.50 1 Chlorothene ND ug1 0.50 1 Chlorothene ND ug1 0.50 1 Chlorothane ND ug1 0.50 1 Chlorothane ND ug1 0.50 1 Chlorothane ND ug1 0.50 1 Chlorothoropropene ND ug1 0.50 1 Chloropropene ND ug1 0.50 1 Chloropropene ND ug1 0.	Volatile Organics by MCP 8260B					
ND ug1 0.75 1 Darbon tetrachloride ND ug1 0.50 1 1,2-Dichloropropane ND ug1 0.50 1 1,12-Trichloroethane ND ug1 0.50 1 1,12-Trichloroethane ND ug1 0.50 1 Carbon tetrachloroethane ND ug1 0.50 1 Tetrachloroethane ND ug1 0.50 1 Carbon tetrachloroethane ND ug1 0.50 1 Carbon tetrachloroethane ND ug1 0.50 1 Carbon tetrachloroethane ND ug1 0.50 1 1,1-Trichloroethane ND ug1 0.50 1 1,1-Trichloroethane ND ug1 0.50 1 1,1-Trichloropropene ND ug1 0.50 1 1,1-Trichloropropene ND ug1 0.50 1 1,1-Dichloropropene ND ug1 0.50 1 <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1</td>	Methylene chloride	ND		ug/l	5.0	1
Arabon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 1,12-Trichloroethane ND ug/l 0.50 1 2hlorobenzene ND ug/l 0.50 1 2hlorobenzene ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 2:Dichloroethane ND ug/l 0.50 1 3:comodichloromethane ND ug/l 0.50 1 3:comodichloromethane ND ug/l 0.50 1 3:comodichloropropene ND ug/l 0.50 1 3:comoform ND ug/l 0.50 1 1:plichloropropene ND ug/l 0.50 1 3:regrame ND ug/l 0.50 1<	1,1-Dichloroethane	ND		ug/l	0.75	1
J2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 J.1.2-Trichloroethane ND ug/l 0.75 1 Terachloroethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.2-Dichloropropene ND ug/l 0.50 1 1.2-Dichloropropene ND ug/l 0.50 1 1.3-Dichloropropene ND ug/l 0.50 1 1.3-Dichloropropene ND ug/l 0.50 1 1.1.1-Trichloroethane ND ug/l 0.50 1 1.2-Dichloropropene ND ug/l 0.50 1 1.1.2-Tetrachloroethane ND ug/l 0.50	Chloroform	ND		ug/l	0.75	1
ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 <t< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Carbon tetrachloride	ND		ug/l	0.50	1
ND ug/l 0.75 1 Tetrachloroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 atomodichloromethane ND ug/l 0.50 1 atomodichloropropene ND ug/l 0.50 1 atomodichloropropene ND ug/l 0.50 1 atomodichloropropene ND ug/l 0.50 1 atomodichloroethane ND ug/l 0.50 1 atomodichloropropene ND ug/l 0.50 1 atomodichloroethane ND ug/l 0.50 1 atomodichloroethane ND ug/l 1.0 1 <	1,2-Dichloropropane	ND		ug/l	1.8	1
ND ug/l 0.50 1 2hlorobenzene ND ug/l 0.50 1 1richlorofluoromethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1-Trichloroethane ND ug/l 0.50 1 1.1-Trichloroptropene ND ug/l 0.50 1 1.1-Stoloroptropene ND ug/l 0.50 1 1.1-1.2-Z-Tetrachloroethane ND ug/l 0.50 1 1.1.2-Z-Tetrachloroethane ND ug/l 0.50 1 1.1.2-Z-Tetrachloroethane ND ug/l 0.50 1 1.1.1.2-Z-Tetrachloroethane ND ug/l 1.0	Dibromochloromethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 Trichlorodituoromethane ND ug/l 2.5 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 3romodichloromethane ND ug/l 0.50 1 arns-1,3-Dichloropropene ND ug/l 0.50 1 (1,1-Dichloroptropene ND ug/l 0.50 1 (1,1-Dichloroptropene ND ug/l 0.50 1 (1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 (1,1,2,2-Tetrachloroethane ND ug	1,1,2-Trichloroethane	ND		ug/l	0.75	1
ND ug/l 2.5 1 ,2.Dichloroethane ND ug/l 0.50 1 ,1,1-Trichoroethane ND ug/l 0.50 1 aromodichloromethane ND ug/l 0.50 1 aromodichloromethane ND ug/l 0.50 1 aromodichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,2-Dichloroethane ND ug/l 0.50 1 isis-1,2-Dichloroethane ND ug/l 0.50 1 isitybenzene ND ug/l 0.50 1 ichloroethane ND ug/l 1.0	Tetrachloroethene	ND		ug/l	0.50	1
J.2. Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 aromodichloromethane ND ug/l 0.50 1 aromodichloropropene ND ug/l 0.50 1 iis1-3-Dichloropropene ND ug/l 0.50 1 iis1-3-Dichloroethane ND ug/l 0.50 1 iis1-2-Tetrachloreethane ND ug/l 0.50 1 iis1-2-Tetrachloreethane ND ug/l 0.50 1 chloroethane ND ug/l 1.0 1 chloroethane ND u	Chlorobenzene	ND		ug/l	0.50	1
1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 isar.1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 gromodiorm ND ug/l 0.50 1 Gromodiorethane ND ug/l 0.50 1 Gromodichane ND ug/l 0.50 1 Chloroethane ND ug/l 1.0 1 Gromodichane ND ug/l 0.50 1	Trichlorofluoromethane	ND		ug/l	2.5	1
ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 rans-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 2.5 1 Bromodiorm ND ug/l 2.0 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 Bromodiorm ND ug/l 0.50 1 Stromodiorm ND ug/l 0.50 1 Stromodiorm ND ug/l 0.50 1 Stromodiormethane ND ug/l 0.50 1 Stromodiormethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 Chloroethane <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,2-Dichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 2.5 1 3romoform ND ug/l 2.0 1 isis-1,2-Z-Tetrachloroethane ND ug/l 0.50 1 Genzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 I,2-Dichloroethene	1,1,1-Trichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.5 1 3romoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Gouene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 Chloroethene ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l	Bromodichloromethane	ND		ug/l	0.50	1
ND ug/l 2.5 1 Bromoform ND ug/l 2.0 1 Aromoform ND ug/l 2.0 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Strylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
ND ug/l 2.0 1 Aromoform ND ug/l 0.50 1 Arenee ND ug/l 0.50 1 Brenzene ND ug/l 0.50 1 Foluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 Indicate ND ug/l 0.50 1 Indicate ND ug/l 0.50 1 Indicate ND ug/l 0.50 1 Inchloroethene ND ug/l 0.50 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 0.75 1 Toluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 Chloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 richloroethene ND ug/l 0.50 1 Chloroethene ND ug/l 0.50 1 Chloroethene ND ug/l 0.50 1 <td>1,1-Dichloropropene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>1</td>	1,1-Dichloropropene	ND		ug/l	2.5	1
Benzene ND ug/l 0.50 1 Foluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 I,1-Dichloroethene ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 0.50 1 I,2-Dichloroethene ND ug/l 0.50 1 I,2-Dichloroethene ND ug/l 0.50 1	Bromoform	ND		ug/l	2.0	1
Toluene ND ug/l 0.75 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Sromomethane ND ug/l 1.0 1 Aromomethane ND ug/l 0.50 1 Aromomethane ND ug/l 0.50 1 Aromomethane ND ug/l 0.75 1 Aromomethane ND ug/l 0.50 1 Aromomethane ND ug/	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 /inyl chloride ND ug/l 1.0 1 /inyl chloroethane ND ug/l 1.0 1 (hloroethane ND ug/l 1.0 1 (hloroethane ND ug/l 0.50 1 (hloroethene ND ug/l 0.50 1 (richloroethene ND ug/l 0.50 1 (richloroethene ND ug/l 0.50 1 (richloroethene ND ug/l 0.50 1 (richlorobenzene ND ug/l 2.5 1	Benzene	ND		ug/l	0.50	1
ND ug/l 2.5 1 Bromomethane ND ug/l 1.0 1 Arrow on the second sec	Toluene	ND		ug/l	0.75	1
ND ug/l 1.0 1 /inyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene ND ug/l 0.50 1 J-Dichloroethene ND ug/l 0.75 1 Trichloroethene ND ug/l 2.5 1	Ethylbenzene	ND		ug/l	0.50	1
ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 Frichloroethene ND ug/l 0.50 1 J.2-Dichloroethene ND ug/l 0.50 1 I.2-Dichloroethene ND ug/l 2.5 1	Chloromethane	ND		ug/l	2.5	1
ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene ND ug/l 0.75 1 Q-Dichloroethene ND ug/l 0.50 1 Trichloroethene ND ug/l 2.5 1	Bromomethane	ND		ug/l	1.0	1
ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.75 1 Frichloroethene ND ug/l 0.50 1 ,2-Dichlorobenzene ND ug/l 2.5 1	Vinyl chloride	ND		ug/l	1.0	1
rans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene ND ug/l 0.50 1 ,2-Dichlorobenzene ND ug/l 2.5 1	Chloroethane	ND		ug/l	1.0	1
ND ug/l 0.50 1 ,2-Dichlorobenzene ND ug/l 2.5 1	1,1-Dichloroethene	ND		ug/l	0.50	1
,2-Dichlorobenzene ND ug/l 2.5 1	trans-1,2-Dichloroethene	ND		ug/l	0.75	1
	Trichloroethene	ND		ug/l	0.50	1
,3-Dichlorobenzene ND ug/l 2.5 1	1,2-Dichlorobenzene	ND		ug/l	2.5	1
	1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-02 RIZ-10 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		1.2		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-02 RIZ-10 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by M	ICP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	99		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-03 Date Collected: 12/19/07 13:40 Client ID: RIZ-9 Date Received: 12/21/07 Sample Location: WALPOLE, MA Field Prep: Field Filtered Matrix: Water Anaytical Method: 60,8260B 12/27/07 18:40 Analytical Date: Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Volatile Organics by MCP 8260B 14-Dicklorobentane ND ugl 2.5 1 Methyl tent buryl ether ND ugl 1.0 1 prim-Xylene ND ugl 1.0 1 oxylene ND ugl 1.0 1 oxylene ND ugl 0.50 1 oxylene ND ugl 0.50 1 oxylene ND ugl 5.0 1 bitroromethane ND ugl 5.0 1 caton disulfide ND ugl 2.5 1	Lab ID: Client ID: Sample Location:	L0718979-03 RIZ-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
ND ugl 2.5 1 Methyl tort buyl either ND ugl 1.0 1 pin-Xylene ND ugl 1.0 1 pin-Xylene ND ugl 1.0 1 b-Xylene ND ugl 0.50 1 b-Xylene ND ugl 0.50 1 b-Xylene ND ugl 5.0 1 b-Chordfloromethane ND ugl 5.0 1 b-Retone ND ugl 5.0 1 b-Retone ND ugl 5.0 1 b-Retone ND ugl 2.0 1 b-Retone ND ugl 2.5 1 b	Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Methyl terb bulyl etherNDug/l1.01pm-XyleneNDug/l1.01c-XyleneNDug/l1.01c-XyleneNDug/l0.501blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.50 <t< td=""><td>Volatile Organics by</td><td>MCP 8260B</td><td></td><td></td><td></td><td></td><td></td></t<>	Volatile Organics by	MCP 8260B					
Methyl terb bulyl etherNDug/l1.01pm-XyleneNDug/l1.01c-XyleneNDug/l1.01c-XyleneNDug/l0.501blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01blaromorethaneNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l5.01cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l2.51cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.501cettoreNDug/l0.50 <t< td=""><td>1 4-Dichlorobenzene</td><td></td><td>ND</td><td></td><td>ua/l</td><td>25</td><td>1</td></t<>	1 4-Dichlorobenzene		ND		ua/l	25	1
ND ug1 1.0 1 0-Xylene ND ug1 1.0 1 0-Xylene ND ug1 0.50 1 0-Xylene ND ug1 0.50 1 Dibromomethane ND ug1 5.0 1 1.2,3-Trichloropripane ND ug1 5.0 1 Styrene ND ug1 5.0 1 Carbon disulfide ND ug1 5.0 1 Actorine ND ug1 2.5 1 Actorine ND ug1 2.5 1 1.2.					-		
ND ug/l 1.0 1 cis-1.2-Dichloroethene ND ug/l 0.50 1 cis-1.2-Dichloroethene ND ug/l 5.0 1 1.2.3-Trichloroethene ND ug/l 5.0 1 1.2.3-Trichloroethene ND ug/l 5.0 1 Dichlorodfluoromethane ND ug/l 5.0 1 Acatone ND ug/l 5.0 1 Athethyl-2-pertanone ND ug/l 2.0 1 Athethyl-2-pertanone ND ug/l 2.0 1 Athethyl-2-pertanone ND ug/l 2.5 1 Athethyl-2-pertanone ND							
ND ug1 0.50 1 Dibromomethane ND ug1 5.0 1 1.2.3-Trichloropropane ND ug1 5.0 1 Styrene ND ug1 5.0 1 Styrene ND ug1 5.0 1 Olchorodfluoromethane ND ug1 5.0 1 Acetore ND ug1 5.0 1 Carbon disulfide ND ug1 5.0 1 2-Butanone ND ug1 5.0 1 2-Butanone ND ug1 5.0 1 2-Butanone ND ug1 5.0 1 4-Methyl-2-pentanone ND ug1 2.5 1 5-Pethoromomethane ND ug1 2.5 1 1.2-Dibromomethane ND ug1 2.5 1 1.2-Dibromomethane ND ug1 2.5 1 1.2-Dibromomethane ND ug1							
1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 44Methyl-Spentanone ND ug/l 5.0 1 2Hexanone ND ug/l 2.5 1 Bromochoromethane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 0.50 1 1,2-Dichloropropane ND <td>cis-1,2-Dichloroethene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	cis-1,2-Dichloroethene						
ND ug/l 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon ofisulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 6.0 1 4-Methyl-2-pentanone ND ug/l 2.5 1 Bromochloromethane ND ug/l 2.5 1 Bromochloropropane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 0.50 1 1,1,1,1,2-Tetrachlorosthane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-D-Chlorotoluene ND ug/l 2.5 1 n-D-Chlorotoluen	Dibromomethane		ND		ug/l	5.0	1
ND ug/l 5.0 1 Acatone ND ug/l 5.0 1 Acatone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 2-Haranone ND ug/l 5.0 1 2-Horanone ND ug/l 5.0 1 Semochloromethane ND ug/l 2.5 1 12-Dichloropropane ND ug/l 2.5 1 12-Dichloropropane ND ug/l 2.5 1 12-Dichloropropane ND ug/l 0.50 1 12-Dichloropropane ND ug/l 0.50 1 12-Dichloropropane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-D-Chlorotoluene ND ug/l </td <td>1,2,3-Trichloropropane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1</td>	1,2,3-Trichloropropane		ND		ug/l	5.0	1
ND ug/l 5.0 1 Carbon disulide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 2.5 1 Bromochoromethane ND ug/l 2.5 1 1,2-Dibromochhane ND ug/l 2.5 1 1,2-Dibromochhane ND ug/l 2.5 1 1,2-Dibromochhane ND ug/l 0.50 1 1,2-Dibromochane ND ug/l 2.5 1 n-Butybenzene ND	Styrene		ND			1.0	1
Action disulfide ND ugr 5.0 1 2-Butanone ND ugrl 5.0 1 4-Methyl-2-pentanone ND ugrl 5.0 1 2-Buxanone ND ugrl 5.0 1 2-Hexanone ND ugrl 5.0 1 Bromochloromethane ND ugrl 2.5 1 12-Dibromorpane ND ugrl 2.5 1 1,2-Dibromoethane ND ugrl 2.5 1 1,2-Dibromoethane ND ugrl 0.50 1 1,1,1,2-Tetrachloroethane ND ugrl 0.50 1 1,2-Dibromo-3chloropropane ND ugrl 0.50 1 0-chlorotoluene ND ugrl 0.50	Dichlorodifluoromethane		ND		ug/l	5.0	1
Addityl-2-pentanone ND ug'l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Terrahydrofuran ND ug/l 2.5 1 2.2.Dichloropropane ND ug/l 2.5 1 1.2.Dichloropropane ND ug/l 2.5 1 1.2.Dichloropropane ND ug/l 2.5 1 1.3.Dichloropropane ND ug/l 2.5 1 n-Butylberzene ND ug/l 0.50 1 n-Butylberzene ND ug/l 0.50 1 n-Chlorotoluene ND ug/l 2.5 1 n-Chlorotoluene ND ug/l 2.5 1 n-Chlorotoluene ND ug/l 2.5 1 n-Chlorotoluene ND ug/l 0.50 1	Acetone		ND		ug/l	5.0	1
Hethethyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 2.5 1 2.2-Dichloropropane ND ug/l 2.5 1 1.2-Dichloropropane ND ug/l 2.5 1 1.2-Dichloropropane ND ug/l 2.5 1 1.3-Dichloropropane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Sec-Butylbenzene ND ug/l 0.50 1 De-Chlorotoluene ND ug/l 2.5 1 De-Chlorotoluene ND ug/l 2.5 1 De-Chlorotoluene ND ug/l 0.50 1 L3-Dibromo-3-chloropropane ND ug/l 0.50 1	Carbon disulfide		ND		ug/l	5.0	1
Personant ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 10 1 2.2-Dichloropropane ND ug/l 2.5 1 1.2-Dibromoethane ND ug/l 2.5 1 1.2-Dibromoethane ND ug/l 2.5 1 1.1,1_2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-Chorotoluene ND ug/l 0.50 1 n-Chorotoluene ND ug/l 0.50 1 n-Dochlorobutadiene ND ug/l 0.50 1 n-Propyleonzene ND ug/l 0.50 1 n-Propyleonzene ND ug/l 0.50 1	2-Butanone		ND		ug/l	5.0	1
ND Ug/l 2.5 1 Remochloromethane ND Ug/l 10 1 2.2-Dichloropropane ND Ug/l 2.5 1 1.2-Dibromoethane ND Ug/l 2.0 1 1.2-Dibromoethane ND Ug/l 2.5 1 1.3-Dichloropropane ND Ug/l 0.50 1 1.1.1.2-Tetrachloroethane ND Ug/l 0.50 1 n-Bulylbenzene ND Ug/l 0.50 1 neBulylbenzene ND Ug/l 0.50 1 ochlorobluene ND Ug/l 0.50 1 nebulybenzene ND Ug/l 2.5 1 no-Chlorobluene ND Ug/l 2.5 1 no-Chlorobluene ND Ug/l 0.50 1 no-Propylbenzene ND Ug/l 0.50 1 no-Propylbenzene ND Ug/l 0.50 1 no-Propylbenzene <td>4-Methyl-2-pentanone</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1</td>	4-Methyl-2-pentanone		ND		ug/l	5.0	1
Tetrahydrofuran ND ug/l 10 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 0.60 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,2-Dibrorobluene ND ug/l	2-Hexanone		ND		ug/l	5.0	1
2,2-Dichloropropane ND ug/l 2.5 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dichloropropane ND ug/l 2.5 1 1,3-Dichloropropane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 0.60 1 p-Chlorotoluene ND ug/l 0.50 1 p-Sopropylbenzene ND ug/l 0.60 1 p-Sopropylbenzene ND ug/l 0.50 1 p-Sopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 1	Bromochloromethane		ND		ug/l	2.5	1
1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 Sec-Butylbenzene ND ug/l 0.50 1 oc-Chlorotoluene ND ug/l 2.5 1 oc-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 I_2-Dibromo-3-chloropropane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 I_2-Dibromo-3-chloropropane ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 1_2-J-Trichlorobenzene ND ug/l 2.5 1 1_2.4-Trichlorobenzene ND ug/l 2.5 1	Tetrahydrofuran		ND		ug/l	10	1
1,3-Dichloropropane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 taspropylbenzene ND ug/l 2.5 1 taspropylbenzene ND ug/l 0.60 1 taspropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2-Strichlorobenzene ND ug/l 2.5 1 1,2-Strinethylbenzene ND ug/l 2.5 1	2,2-Dichloropropane		ND		ug/l	2.5	1
ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 p-lsopropylbonzene ND ug/l 0.50 1 p-lsopropylbonzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 2.5 1 1,2,3-Trichlorobe	1,2-Dibromoethane		ND		ug/l	2.0	1
ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 0.60 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 <	1,3-Dichloropropane		ND		ug/l	2.5	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 1.2-Dibromo-3-chloropropane ND ug/l 2.5 1 1.2-Dibromo-3-chloropropane ND ug/l 0.60 1 1.2-Dibromo-3-chloropropane ND ug/l 0.50 1 Isopropylbonzene ND ug/l 0.50 1 1.2,3-Trichlorobenzene ND ug/l 2	1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 0.60 1 1,2-Dibromo-3-chloropropane ND ug/l 0.60 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5	Bromobenzene		ND		ug/l	2.5	1
ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 0.60 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	n-Butylbenzene		ND		ug/l	0.50	1
ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Hexachlorobutadiene ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	sec-Butylbenzene		ND		ug/l	0.50	1
p-ChlorotolueneNDug/l2.511,2-Dibromo-3-chloropropaneNDug/l2.51HexachlorobutadieneNDug/l0.601IsopropylbenzeneNDug/l0.501p-IsopropyltolueneNDug/l0.501NaphthaleneNDug/l0.501n-PropylbenzeneNDug/l0.5011,2,3-TrichlorobenzeneNDug/l0.5011,2,4-TrimethylbenzeneNDug/l2.511,2,4-TrimethylbenzeneNDug/l2.511,2,4-TrimethylbenzeneNDug/l2.51	tert-Butylbenzene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	o-Chlorotoluene		ND		ug/l	2.5	1
Hexachlorobutadiene ND ug/l 0.60 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	p-Chlorotoluene		ND		ug/l	2.5	1
ND ug/l 0.50 1 p-IsopropyItoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-PropyIbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,2-Dibromo-3-chloropropar	ne	ND		ug/l	2.5	1
ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Hexachlorobutadiene		ND		ug/l	0.60	1
Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Isopropylbenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	p-Isopropyltoluene		ND		ug/l	0.50	1
ND ug/l 2.5 1 1,2,3-Trichlorobenzene ND ug/l 2.5 1 1,2,4-Trichlorobenzene ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	Naphthalene		ND		ug/l	2.5	1
ND ug/l 2.5 1 1,3,5-Trimethylbenzene ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	n-Propylbenzene		ND		ug/l	0.50	1
ND ug/l 2.5 1 1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene ND ug/l 2.5 1	1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
	1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether ND ug/l 2.5 1	1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
	Ethyl ether		ND		ug/l	2.5	1

12700058

Project Number:

(SOUTH

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-03 RIZ-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by N	/ICP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-04 Date Collected: 12/19/07 16:00 Client ID: Date Received: GHC-6 12/21/07 Field Prep: WALPOLE, MA Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 19:18 Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-04 GHC-6 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-04 GHC-6 WALPOLE, MA				Date Collected: Date Received: Field Prep:	,
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	96		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	102		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-05 Date Collected: 12/20/07 09:00 Client ID: MW-9 Date Received: 12/21/07 WALPOLE, MA Field Prep: Sample Location: Field Filtered Matrix: Water Anaytical Method: 60,8260B Analytical Date: 12/27/07 19:57 Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-05 MW-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		5.1		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

Project Number: 12700058

01030816:13 Lab Number: L0718979

Report Date: 01/03/08

Lab ID: Client ID: Sample Location:	L0718979-05 MW-9 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by N	/ICP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	98		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	101		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab ID:	L0718979-06	Date Collected:	12/20/07 10:30
Client ID:	RIZ-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	60,8260B		
Analytical Date:	12/27/07 20:36		
Analyst:	GK		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-06 RIZ-3 WALPOLE, MA				Date Collected Date Received Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by I	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		ND		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropan	e	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

12700058

Project Number:

01030816:13

L0718979

Report Date: 01/03/08

Lab Number:

Lab ID: Client ID: Sample Location:	L0718979-06 RIZ-3 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by N	/ICP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

L0718979

01/03/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

SAMPLE RESULTS

Lab ID: L0718979-07 Date Collected: 12/20/07 11:25 Client ID: MW-3 Date Received: 12/21/07 Field Prep: Sample Location: WALPOLE, MA Field Filtered Matrix: Water Anaytical Method: 60,8260B 12/28/07 21:58 Analytical Date: Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	2.5	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1-Dichloropropene	ND		ug/l	2.5	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.75	1
Ethylbenzene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Bromomethane	ND		ug/l	1.0	1
Vinyl chloride	ND		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1

01030816:13

01/03/08

Lab Number: L0718979

Report Date:

Project Number: 12700058

Lab ID: Client ID: Sample Location:	L0718979-07 MW-3 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	MCP 8260B					
1,4-Dichlorobenzene		ND		ug/l	2.5	1
Methyl tert butyl ether		1.7		ug/l	1.0	1
p/m-Xylene		ND		ug/l	1.0	1
o-Xylene		ND		ug/l	1.0	1
cis-1,2-Dichloroethene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	5.0	1
1,2,3-Trichloropropane		ND		ug/l	5.0	1
Styrene		ND		ug/l	1.0	1
Dichlorodifluoromethane		ND		ug/l	5.0	1
Acetone		ND		ug/l	5.0	1
Carbon disulfide		ND		ug/l	5.0	1
2-Butanone		ND		ug/l	5.0	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1
2-Hexanone		ND		ug/l	5.0	1
Bromochloromethane		ND		ug/l	2.5	1
Tetrahydrofuran		ND		ug/l	10	1
2,2-Dichloropropane		ND		ug/l	2.5	1
1,2-Dibromoethane		ND		ug/l	2.0	1
1,3-Dichloropropane		ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	2.5	1
n-Butylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	2.5	1
o-Chlorotoluene		ND		ug/l	2.5	1
p-Chlorotoluene		ND		ug/l	2.5	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	1
Hexachlorobutadiene		ND		ug/l	0.60	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	2.5	1
n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	1
Ethyl ether		ND		ug/l	2.5	1

12700058

Project Number:

01030816:13 ber: L0718979

01/03/08

Report Date:

Lab Number:

Lab ID: Client ID: Sample Location:	L0718979-07 MW-3 WALPOLE, MA				Date Collected: Date Received: Field Prep:	
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by I	MCP 8260B					
Isopropyl Ether		ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether		ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether		ND		ug/l	2.0	1
1,4-Dioxane		ND		ug/l	250	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	107		70-130	

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

arameter	Result	Qualifie	er Ur	nits	RDL	
platile Organics by MCP 826	60B for sample(s):	01-06	Batch:	WG30	7181-3	
Methylene chloride	ND		U	ıg/l	5.0	
1,1-Dichloroethane	ND		U	ıg/l	0.75	
Chloroform	ND		U	ıg/l	0.75	
Carbon tetrachloride	ND		U	ıg/l	0.50	
1,2-Dichloropropane	ND		U	ıg/l	1.8	
Dibromochloromethane	ND		U	ıg/l	0.50	
1,1,2-Trichloroethane	ND		U	ıg/l	0.75	
Tetrachloroethene	ND		U	ıg/l	0.50	
Chlorobenzene	ND		U	ıg/l	0.50	
Trichlorofluoromethane	ND		U	ıg/l	2.5	
1,2-Dichloroethane	ND		U	ıg/l	0.50	
1,1,1-Trichloroethane	ND		U	ıg/l	0.50	
Bromodichloromethane	ND		U	ıg/l	0.50	
trans-1,3-Dichloropropene	ND		U	ıg/l	0.50	
cis-1,3-Dichloropropene	ND		U	ıg/l	0.50	
1,1-Dichloropropene	ND		U	ıg/l	2.5	
Bromoform	ND		U	ıg/l	2.0	
1,1,2,2-Tetrachloroethane	ND		U	ıg/l	0.50	
Benzene	ND		U	ıg/l	0.50	
Toluene	ND		U	ıg/l	0.75	
Ethylbenzene	ND		U	ıg/l	0.50	
Chloromethane	ND		U	ıg/l	2.5	
Bromomethane	ND		U	ıg/l	1.0	
Vinyl chloride	ND		U	ıg/l	1.0	
Chloroethane	ND		U	ıg/l	1.0	
1,1-Dichloroethene	ND		U	ıg/l	0.50	
trans-1,2-Dichloroethene	ND		U	ıg/l	0.75	
Trichloroethene	ND		U	ıg/l	0.50	
1,2-Dichlorobenzene	ND		U	ıg/l	2.5	
1,3-Dichlorobenzene	ND		U	ıg/l	2.5	
1,4-Dichlorobenzene	ND		U	ıg/l	2.5	

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

arameter	Result	Qualifie		
platile Organics by MCP	8260B for sample(s):	01-06	Batch: Wo	G307181-3
Methyl tert butyl ether	ND		ug/l	1.0
p/m-Xylene	ND		ug/l	1.0
o-Xylene	ND		ug/l	1.0
cis-1,2-Dichloroethene	ND		ug/l	0.50
Dibromomethane	ND		ug/l	5.0
1,2,3-Trichloropropane	ND		ug/l	5.0
Styrene	ND		ug/l	1.0
Dichlorodifluoromethane	ND		ug/l	5.0
Acetone	ND		ug/l	5.0
Carbon disulfide	ND		ug/l	5.0
2-Butanone	ND		ug/l	5.0
4-Methyl-2-pentanone	ND		ug/l	5.0
2-Hexanone	ND		ug/l	5.0
Bromochloromethane	ND		ug/l	2.5
Tetrahydrofuran	ND		ug/l	10
2,2-Dichloropropane	ND		ug/l	2.5
1,2-Dibromoethane	ND		ug/l	2.0
1,3-Dichloropropane	ND		ug/l	2.5
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50
Bromobenzene	ND		ug/l	2.5
n-Butylbenzene	ND		ug/l	0.50
sec-Butylbenzene	ND		ug/l	0.50
tert-Butylbenzene	ND		ug/l	2.5
o-Chlorotoluene	ND		ug/l	2.5
p-Chlorotoluene	ND		ug/l	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5
Hexachlorobutadiene	ND		ug/l	0.60
Isopropylbenzene	ND		ug/l	0.50
p-Isopropyltoluene	ND		ug/l	0.50
Naphthalene	ND		ug/l	2.5
n-Propylbenzene	ND		ug/l	0.50

Project Number: 127

12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/27/07 12:14
Analyst:	GK

Parameter	Result Q	ualifier Units	RDL	
Volatile Organics by MCP 8260B	for sample(s):	01-06 Batch: WG3	07181-3	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Isopropyl Ether	ND	ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,4-Dioxane	ND	ug/l	250	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	107		70-130	

Project Number: 12700058

00050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

arameter	Result	Qua	lifier	Units	RDL
latile Organics by MCP 8260B for sample(s): 07 Batch: WG307363-3				63-3	
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND			ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

200050

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

arameter	Result	Qua	lifier	Units	RDL
olatile Organics by MCP 8260	B for sample(s):	07	Batch:	WG3073	63-3
Methyl tert butyl ether	ND			ug/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropane	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-lsopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND			ug/l	0.50

Project Name: WALPOLE PARK SOUTH

Project Number: 12

12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Method Blank Analysis Batch Quality Control

Analytical Method:	60,8260B
Analytical Date:	12/28/07 13:00
Analyst:	GK

Parameter	Result	Qual	ifier	Units	RDL
olatile Organics by MCP 8260B for	sample(s):	07	Batch:	WG307363	-3
1,2,3-Trichlorobenzene	ND			ug/l	2.5
1,2,4-Trichlorobenzene	ND			ug/l	2.5
1,3,5-Trimethylbenzene	ND			ug/l	2.5
1,2,4-Trimethylbenzene	ND			ug/l	2.5
Ethyl ether	ND			ug/l	2.5
Isopropyl Ether	ND			ug/l	2.0
Ethyl-Tert-Butyl-Ether	ND			ug/l	2.0
Tertiary-Amyl Methyl Ether	ND			ug/l	2.0
1,4-Dioxane	ND			ug/l	250

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	107		70-130	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 01-	-06 Batch:	WG307181-1	WG307181-2		
Methylene chloride	99		101	70-130	2	25
1,1-Dichloroethane	100		100	70-130	0	25
Chloroform	102		104	70-130	2	25
Carbon tetrachloride	89		98	70-130	10	25
1,2-Dichloropropane	95		97	70-130	2	25
Dibromochloromethane	86		92	70-130	7	25
1,1,2-Trichloroethane	91		87	70-130	4	25
Tetrachloroethene	99		103	70-130	4	25
Chlorobenzene	96		98	70-130	2	25
Trichlorofluoromethane	105		108	70-130	3	25
1,2-Dichloroethane	97		100	70-130	3	25
1,1,1-Trichloroethane	99		102	70-130	3	25
Bromodichloromethane	93		98	70-130	5	25
trans-1,3-Dichloropropene	84		86	70-130	2	25
cis-1,3-Dichloropropene	94		95	70-130	1	25
1,1-Dichloropropene	99		102	70-130	3	25
Bromoform	82		89	70-130	8	50
1,1,2,2-Tetrachloroethane	84		85	70-130	1	25
Benzene	97		99	70-130	2	25
Toluene	95		97	70-130	2	25
Ethylbenzene	97		98	70-130	1	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associate	d sample(s): 01-06	Batch: WG307181-	1 WG307181-2		
Chloromethane	78	83	70-130	6	50
Bromomethane	91	89	70-130	2	50
Vinyl chloride	83	88	70-130	6	25
Chloroethane	111	106	70-130	5	25
1,1-Dichloroethene	102	104	70-130	2	25
trans-1,2-Dichloroethene	96	99	70-130	3	25
Trichloroethene	96	100	70-130	4	25
1,2-Dichlorobenzene	99	97	70-130	2	25
1,3-Dichlorobenzene	98	101	70-130	3	25
1,4-Dichlorobenzene	98	98	70-130	0	25
Methyl tert butyl ether	100	98	70-130	2	25
p/m-Xylene	101	104	70-130	3	25
o-Xylene	101	102	70-130	1	25
cis-1,2-Dichloroethene	97	100	70-130	3	25
Dibromomethane	93	94	70-130	1	25
1,2,3-Trichloropropane	86	88	70-130	2	25
Styrene	100	102	70-130	2	25
Dichlorodifluoromethane	60	65	70-130	8	50
Acetone	95	92	70-130	3	50
Carbon disulfide	90	91	70-130	1	25
2-Butanone	87	90	70-130	3	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 01-06	Batch	WG307181-1	WG307181-2		
4-Methyl-2-pentanone	93		99	70-130	6	50
2-Hexanone	84		86	70-130	2	50
Bromochloromethane	100		106	70-130	6	25
Tetrahydrofuran	91		94	70-130	3	25
2,2-Dichloropropane	100		105	70-130	5	50
1,2-Dibromoethane	90		91	70-130	1	25
1,3-Dichloropropane	88		90	70-130	2	25
1,1,1,2-Tetrachloroethane	88		93	70-130	6	25
Bromobenzene	98		97	70-130	1	25
n-Butylbenzene	95		96	70-130	1	25
sec-Butylbenzene	96		98	70-130	2	25
tert-Butylbenzene	98		98	70-130	0	25
o-Chlorotoluene	94		94	70-130	0	25
p-Chlorotoluene	95		96	70-130	1	25
1,2-Dibromo-3-chloropropane	74		87	70-130	16	50
Hexachlorobutadiene	96		101	70-130	5	25
Isopropylbenzene	103		106	70-130	3	25
p-Isopropyltoluene	102		102	70-130	0	25
Naphthalene	90		97	70-130	7	25
n-Propylbenzene	96		96	70-130	0	25
1,2,3-Trichlorobenzene	100		105	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 01-06	Batch: WG307181-1	I WG307181-2		
1,2,4-Trichlorobenzene	103	106	70-130	3	25
1,3,5-Trimethylbenzene	97	96	70-130	1	25
1,2,4-Trimethylbenzene	97	97	70-130	0	25
Ethyl ether	103	103	70-130	0	25
Isopropyl Ether	100	100	70-130	0	25
Ethyl-Tert-Butyl-Ether	101	94	70-130	7	25
Tertiary-Amyl Methyl Ether	96	100	70-130	4	25
1,4-Dioxane	53	113	70-130	72	50

Surrogata	LCS % Recovery Qualifier	LCSD % Recovery Qualifier	Acceptance Criteria
Surrogate	%Recovery Qualifier	%Recovery Qualifier	Unterna
1,2-Dichloroethane-d4	99	100	70-130
Toluene-d8	98	95	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	102	102	70-130

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 07 Ba	tch: WG307363-1	WG307363-2		
Methylene chloride	99	100	70-130	1	25
1,1-Dichloroethane	103	99	70-130	4	25
Chloroform	108	105	70-130	3	25
Carbon tetrachloride	111	101	70-130	9	25
1,2-Dichloropropane	94	91	70-130	3	25
Dibromochloromethane	94	92	70-130	2	25
1,1,2-Trichloroethane	88	92	70-130	4	25
Tetrachloroethene	104	98	70-130	6	25
Chlorobenzene	96	91	70-130	5	25
Trichlorofluoromethane	118	110	70-130	7	25
1,2-Dichloroethane	104	109	70-130	5	25
1,1,1-Trichloroethane	111	107	70-130	4	25
Bromodichloromethane	102	100	70-130	2	25
trans-1,3-Dichloropropene	88	86	70-130	2	25
cis-1,3-Dichloropropene	100	98	70-130	2	25
1,1-Dichloropropene	108	101	70-130	7	25
Bromoform	95	93	70-130	2	50
1,1,2,2-Tetrachloroethane	82	84	70-130	2	25
Benzene	100	95	70-130	5	25
Toluene	94	88	70-130	7	25
Ethylbenzene	97	92	70-130	5	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 07 B	Batch:	WG307363-1	WG307363-2		
Chloromethane	80		76	70-130	5	50
Bromomethane	82		75	70-130	9	50
Vinyl chloride	88		83	70-130	6	25
Chloroethane	105		100	70-130	5	25
1,1-Dichloroethene	111		104	70-130	7	25
trans-1,2-Dichloroethene	102		97	70-130	5	25
Trichloroethene	103		97	70-130	6	25
1,2-Dichlorobenzene	94		93	70-130	1	25
1,3-Dichlorobenzene	96		91	70-130	5	25
1,4-Dichlorobenzene	97		93	70-130	4	25
Methyl tert butyl ether	106		117	70-130	10	25
p/m-Xylene	102		96	70-130	6	25
o-Xylene	101		94	70-130	7	25
cis-1,2-Dichloroethene	102		106	70-130	4	25
Dibromomethane	100		105	70-130	5	25
1,2,3-Trichloropropane	82		92	70-130	11	25
Styrene	99		95	70-130	4	25
Dichlorodifluoromethane	66		63	70-130	5	50
Acetone	118		147	70-130	22	50
Carbon disulfide	89		87	70-130	2	25
2-Butanone	100		112	70-130	11	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

arameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B Associate	ed sample(s): 07	Batch:	WG307363-1	WG307363-2		
4-Methyl-2-pentanone	101		116	70-130	14	50
2-Hexanone	85		98	70-130	14	50
Bromochloromethane	103		108	70-130	5	25
Tetrahydrofuran	99		114	70-130	14	25
2,2-Dichloropropane	111		108	70-130	3	50
1,2-Dibromoethane	92		93	70-130	1	25
1,3-Dichloropropane	88		93	70-130	6	25
1,1,1,2-Tetrachloroethane	95		91	70-130	4	25
Bromobenzene	97		92	70-130	5	25
n-Butylbenzene	98		91	70-130	7	25
sec-Butylbenzene	98		91	70-130	7	25
tert-Butylbenzene	100		93	70-130	7	25
o-Chlorotoluene	93		87	70-130	7	25
p-Chlorotoluene	94		89	70-130	5	25
1,2-Dibromo-3-chloropropane	83		85	70-130	2	50
Hexachlorobutadiene	106		101	70-130	5	25
Isopropylbenzene	106		99	70-130	7	25
p-Isopropyltoluene	104		97	70-130	7	25
Naphthalene	93		96	70-130	3	25
n-Propylbenzene	96		89	70-130	8	25
1,2,3-Trichlorobenzene	100		104	70-130	4	25

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B	Associated sample(s): 07 Batch	n: WG307363-1	WG307363-2		
1,2,4-Trichlorobenzene	102	100	70-130	2	25
1,3,5-Trimethylbenzene	98	90	70-130	9	25
1,2,4-Trimethylbenzene	95	90	70-130	5	25
Ethyl ether	103	116	70-130	12	25
Isopropyl Ether	101	104	70-130	3	25
Ethyl-Tert-Butyl-Ether	104	107	70-130	3	25
Tertiary-Amyl Methyl Ether	105	114	70-130	8	25
1,4-Dioxane	130	144	70-130	10	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	106	109	70-130
Toluene-d8	93	95	70-130
4-Bromofluorobenzene	97	96	70-130
Dibromofluoromethane	109	109	70-130

METALS

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-01	Date Collected:	12/19/07 11:10
Client ID:	RIZ-8	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Dissolved Metals by	Dissolved Metals by MCP 6000/7000 series									
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0508		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:31	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0048		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 22:50	EPA 3005A	64,6020A	BM

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-02	Date Collected:	12/19/07 12:40
Client ID:	RIZ-10	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals b	Dissolved Metals by MCP 6000/7000 series									
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0958		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:36	EPA 7470A	64,7470A	DM
Nickel, Dissolved	0.0079		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM
Zinc, Dissolved	0.0216		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:01	EPA 3005A	64,6020A	BM

Matrix:

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-03	Date Collected:	12/19/07 13:40
Client ID:	RIZ-9	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
						-			
MCP 600	00/7000 serie	es							
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
0.0153		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:38	EPA 7470A	64,7470A	DM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:07	EPA 3005A	64,6020A	BM
	MCP 600 ND ND 0.0153 ND ND ND ND ND ND ND ND ND ND ND ND ND	MCP 6000/7000 serie ND ND 0.0153 ND ND ND ND ND ND ND ND ND ND ND ND ND	MCP 6000/7000 series ND mg/l ND mg/l 0.0153 mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l ND mg/l	MCP 6000/7000 series ND mg/l 0.0020 ND mg/l 0.0020 0.0153 mg/l 0.0020 ND mg/l 0.0020	Result Qualifier Units RDL Factor MCP 6000/7000 series mg/l 0.0020 4 ND mg/l 0.0020 4	Result Qualifier Units RDL Factor Prepared MCP 6000/7000 series mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 12/30/07 09:30 0.0153 mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 </td <td>Result Qualifier Units RDL Factor Prepared Analyzed MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 ND mg/l 0.0020 4 12/30/0</td> <td>Result Qualifier Units RDL Factor Prepared Analyzed Method MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A</td> <td>Result Qualifier Units RDL Factor Prepared Analyzed Method Method MCP 6000/7000 series Mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A</td>	Result Qualifier Units RDL Factor Prepared Analyzed MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 ND mg/l 0.0020 4 12/30/0	Result Qualifier Units RDL Factor Prepared Analyzed Method MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A	Result Qualifier Units RDL Factor Prepared Analyzed Method Method MCP 6000/7000 series Mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A 0.0153 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:07 EPA 3005A 64,6020A

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-04	Date Collected:	12/19/07 16:00
Client ID:	GHC-6	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by MCP 6000/7000 series										
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0459		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:40	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:12	EPA 3005A	64,6020A	BM

Matrix:

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-05	Date Collected:	12/20/07 09:00
Client ID:	MW-9	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered

Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP 600	00/7000 ser	es							
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
0.0070		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:42	EPA 7470A	64,7470A	DM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
0.0259		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:18	EPA 3005A	64,6020A	BM
	MCP 600 ND ND 0.0070 ND ND ND ND ND ND ND ND ND ND ND ND ND	MCP 6000/7000 seri ND ND 0.0070 ND ND ND ND ND ND ND ND ND ND ND ND ND	MCP 6000/7000 series ND mg/l ND mg/l 0.0070 mg/l ND mg/l	MCP 6000/7000 series ND mg/l 0.0020 ND mg/l 0.0020 0.0070 mg/l 0.0020 ND mg/l 0.0020	Result Qualifier Units RDL Factor MCP 6000/7000 series Mg/l 0.0020 4 ND mg/l 0.0020 4 ND mg/l 0.0020 4 0.0070 mg/l 0.0020 4 ND mg/l 0.0020 4	Result Qualifier Units RDL Factor Prepared MCP 6000/7000 series mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 12/30/07 09:30 0.0070 mg/l 0.0020 4 12/30/07 09:30 ND mg/l 0.0020 4 </td <td>Result Qualifier Units RDL Factor Prepared Analyzed MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 0.0070 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 ND mg/l 0.0020 4 12/30/0</td> <td>Result Qualifier Units RDL Factor Prepared Analyzed Method MCP 60000/7000 series MG/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 0.0070 mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 0.0070 mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I<td>Result Qualifier Units RDL Factor Prepared Analyzed Method Method MCP 6000/7000 series MCP 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A 0.0070 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A</td></td>	Result Qualifier Units RDL Factor Prepared Analyzed MCP 6000/7000 series ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 0.0070 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 ND mg/l 0.0020 4 12/30/0	Result Qualifier Units RDL Factor Prepared Analyzed Method MCP 60000/7000 series MG/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 0.0070 mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 0.0070 mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A ND mg/I <td>Result Qualifier Units RDL Factor Prepared Analyzed Method Method MCP 6000/7000 series MCP 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A 0.0070 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A</td>	Result Qualifier Units RDL Factor Prepared Analyzed Method Method MCP 6000/7000 series MCP 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A 0.0070 mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A ND mg/l 0.0020 4 12/30/07 09:30 01/02/08 23:18 EPA 3005A 64,6020A

Matrix:

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-06	Date Collected:	12/20/07 10:30
Client ID:	RIZ-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600	00/7000 seri	es							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0256		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:44	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:23	EPA 3005A	64,6020A	BM

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0718979
Project Number:	12700058	Report Date:	01/03/08
	SAMPLE RESULTS		
Lab ID:	L0718979-07	Date Collected:	12/20/07 11:25
Client ID:	MW-3	Date Received:	12/21/07
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals by	MCP 600	00/7000 ser	ies							
Antimony, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Barium, Dissolved	0.0152		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Beryllium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Cadmium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Chromium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Lead, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Mercury, Dissolved	ND		mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:45	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Selenium, Dissolved	ND		mg/l	0.004	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Silver, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Thallium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.0020	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM
Zinc, Dissolved	ND		mg/l	0.0200	4	12/30/07 09:30	01/02/08 23:29	EPA 3005A	64,6020A	BM

 Lab Number:
 L0718979

 Report Date:
 01/03/08

Method Blank Analysis Batch Quality Control

Parameter F	Result Qualifier	Units		ution actor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MCP 6	0000/7000 series fo	or sample((s): 01-07	Batch:	WG307204-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	12/28/07 16:35	12/31/07 10:25	64,7470A	DM

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01-	07 Bate	ch: WG307274-	1		
Antimony, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Barium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Beryllium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Cadmium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Chromium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Lead, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Nickel, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Selenium, Dissolved	ND	mg/l	0.001	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Silver, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.0005	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM
Zinc, Dissolved	ND	mg/l	0.0050	1	12/30/07 09:30	01/02/08 22:12	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

 Lab Number:
 L0718979

 Report Date:
 01/03/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
issolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch: W	G307204-2 WG307204-3		
Mercury, Dissolved	98	98	80-120	0	20
issolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch: W	G307274-2 WG307274-3		
Antimony, Dissolved	95	98	80-120	3	20
Arsenic, Dissolved	101	100	80-120	1	20
Barium, Dissolved	97	100	80-120	3	20
Beryllium, Dissolved	89	86	80-120	3	20
Cadmium, Dissolved	104	105	80-120	1	20
Chromium, Dissolved	101	104	80-120	3	20
Lead, Dissolved	102	105	80-120	3	20
Nickel, Dissolved	102	106	80-120	4	20
Selenium, Dissolved	100	98	80-120	2	20
Silver, Dissolved	95	97	80-120	2	20
Thallium, Dissolved	95	99	80-120	4	20
Vanadium, Dissolved	98	101	80-120	3	20
Zinc, Dissolved	102	102	80-120	0	20

Project Name: WALPOLE PARK SOUTH Project Number: 12700058

Lab Number: L0718979 Report Date: 01/03/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Container Information

Cooler	Custody Seal
А	Absent

Container ID Container Type Cooler pН Temp Pres Seal Analysis MCP-8260-04 L0718979-01A Vial HCI preserved A N/A 2.2 C Y Absent L0718979-01B Vial HCI preserved A N/A 2.2 C Y Absent MCP-8260-04 L0718979-01C Plastic 500ml HNO3 preserved MCP-7470S, MCP-AG-A <2 2.2 C Υ Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S,MCP-SE-6020S,MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S MCP-8260-04 L0718979-02A Vial HCI preserved А N/A 2.2 C Y Absent L0718979-02B Vial HCI preserved N/A 2.2 C MCP-8260-04 A Y Absent L0718979-02C Plastic 500ml HNO3 preserved Υ MCP-7470S, MCP-AG-A <2 2.2 C Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S.MCP-CR-6020S.MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S, MCP-SE-6020S, MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S Vial HCl preserved N/A 2.2 C MCP-8260-04 L0718979-03A А Y Absent L0718979-03B Vial HCl preserved A N/A 2.2 C Y Absent MCP-8260-04 L0718979-03C Plastic 500ml HNO3 preserved 2.2 C Y MCP-7470S, MCP-AG-A <2 Absent 6020S,MCP-AS-6020S,MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S, MCP-SE-6020S, MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S Vial HCI preserved 2.2 C MCP-8260-04 L0718979-04A А N/A Y Absent L0718979-04B Vial HCI preserved A N/A 2.2 C Y Absent MCP-8260-04 L0718979-04C Plastic 500ml HNO3 preserved MCP-7470S, MCP-AG-A <2 2.2 C Y Absent 6020S.MCP-AS-6020S.MCP-BA-6020S,MCP-BE-6020S,MCP-CD-6020S,MCP-CR-6020S,MCP-NI-6020S,MCP-PB-6020S,MCP-SB-6020S, MCP-SE-6020S, MCP-TL-6020S,MCP-V-6020S,MCP-ZN-6020S L0718979-05A Vial HCI preserved А N/A 2.2 C Y Absent MCP-8260-04 L0718979-05B Vial HCI preserved A N/A 2.2 C Absent MCP-8260-04 Υ

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0718979 Report Date: 01/03/08

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0718979-05C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Υ	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-06A	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-06B	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-06C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Υ	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-07A	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-07B	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04
L0718979-07C	Plastic 500ml HNO3 preserved	A	<2	2.2 C	Υ	Absent	MCP-7470S,MCP-AG- 6020S,MCP-AS-6020S,MCP-BA- 6020S,MCP-BE-6020S,MCP-CD- 6020S,MCP-CR-6020S,MCP-NI- 6020S,MCP-PB-6020S,MCP-SB- 6020S,MCP-SE-6020S,MCP-TL- 6020S,MCP-V-6020S,MCP-ZN- 6020S
L0718979-07N	Vial HCI preserved	А	N/A	2.2 C	Y	Absent	MCP-8260-04

Container Comments

L0718979-07B

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058

Lab Number: L0718979 Report Date: 01/03/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
 LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0718979

 Report Date:
 01/03/08

REFERENCES

- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

PLEASE ANSWER QUESTIONS ABOVE! IS YOUR PROJECT MA MCP or CT RCP?	2 R:2-10 2 R:2-10 4 GHC-6 6 R:2-3 6 R:2-3 4 MW2-3	Phone: $(5 \le 3) \ 9 \ 0 \ 3 \ - 2 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$	Client: Tetra Tech Kizes Address: 16 rant Mansfred Kizes
Relinquished By: Relinquished By: Date Time Date Time I'll I'l I'll I'll	12/19/07 1112 GW 12T 12/19/07 112 GW 12T 12/19/07 12 ¹⁰ GW 12T 12/19/07 10 ²⁰ GW 12T 12/19/07 10 ²⁰ GW 12T 12/10/07 10 ²⁰ GW 12T 12/10/07 10 ²⁰ GW 12T	Turn-Around Time a Standard \square RUSH (only continued if pre-approved) a Date Due: $1/2/22$ Time: a Collection Limi:s: $C_{M} - 1 + 2 + \alpha n^{3} \alpha C \dot{A}^{-5}$ Date Date Time Matrix Initials	CHAIN OF CUSTODY PAGE 1 OF Project Information Project Name: Walkerie Rat South Project Location: Walpale, MIA K:220 Project #: Jat 600588 Project Manager: Ray Johnson MA 01701 ALPHA Quote #:
PX CBZ Loller / Received By: Loller / Sucruch 12 12/21	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Yes No Are MCP Analytical Methods Required? Yes Xo Are CT RCP (Reasonable Confidence Protocols) Required? Yes Xo Filtration Yes Yo Cone Yes Yo Cone Yes Yo Cone Yes Yo Cone Yo Cone Cone Yo Cone Cone Yo Cone Lab to Preserva Lab to Preserva Yo Sample Specific	Date Rec'd in Lab: $\mathcal{V}/2/$ Report Information - Data Deliverables \Box FAX \Box ADEX \Box Add'l DeliverablesRegulatory Requirements/Report LimitsState / Fed Program $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}A$ $\mathcal{M}CP$ $\mathcal{G}\omega$ $\mathcal{M}A$ $\mathcal{M}F$ $\mathcal{M}CP$
Please print clearly, legibly ard completely. Samples can not be logged in and turnaround time clock will not start until any ambigu ties are resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side.		equired? dence Protocols) Required? SAMPLE HANDLING Filtration Preservation Preservation (Please specify below) Sample Specific Comments	$12/2$ ALPHA Job #: $\angle 0 \neq f \notin g \neq g$ n - Data Deliverables Billing Information g EMAIL Billing Information J Add'I Deliverables Billing Same as Client info PO #: Same as Client info PO #: A I Add'I Deliverables A I Add'I Deliverables A I Add'I Deliverables A I ments/Report Limits A O - I $\angle \omega = I$ A A I Moderna as Client info PO #: I

ANALYTICAL REPORT

Lab Number:	L0806023
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ian Cannan
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058-003
Report Date:	05/05/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08

Alpha Sample ID	Client ID	Sample Location
L0806023-01	RIZ-10-042808	WALPOLE, MA
L0806023-02	RIZ-9-042808	WALPOLE, MA
L0806023-03	MW-3-042808	WALPOLE, MA
L0806023-04	RIZ-8-042808	WALPOLE, MA
L0806023-05	RIZ-8S-042808	WALPOLE, MA
L0806023-06	GHC-6-042808	WALPOLE, MA
L0806023-07	MW-2-042808	WALPOLE, MA
L0806023-08	TRIP BLANK-042808	WALPOLE, MA

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status					
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES			
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES			
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES			
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A			
A re	sponse to questions E and F is required for "Presumptive Certainty" status				
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES			
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES			

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Sample Receipt

The samples were Field Filtered for Dissolved Metals only.

MCP Related Narratives:

Metals

L0806023-01 through -07 were diluted for the analysis of all analytes by method 6020A due to high concentrations of target and non-target analytes.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

King I. Without

Title: Technical Director/Representative

Date: 05/05/08

ORGANICS

VOLATILES

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID:	L0806023-01	Date Collected:	04/28/08 09:10
Client ID:	RIZ-10-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 10:04		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	0.73		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene ND ug/l 0.50 1 1,4-Dichlorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 1,2,3-Trichloropthane ND ug/l 0.50 1 1,2,3-Trichloropthane ND ug/l 0.50 1 Isopropyltonzene ND ug/l 0.50 1 Isopropyltonzene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Isopropyltonzene <td< th=""><th>Lab ID: Client ID: Sample Location:</th><th>L0806023-01 RIZ-10-042808 WALPOLE, MA</th><th></th><th></th><th></th><th>Date Collected: Date Received: Field Prep:</th><th>04/28/08 09:1 04/29/08 Not Specified</th></td<>	Lab ID: Client ID: Sample Location:	L0806023-01 RIZ-10-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 09:1 04/29/08 Not Specified
1.3-Dichlorobenzene ND ug/l 0.50 1 1.4-Dichlorobenzene ND ug/l 0.50 1 0-Xylene ND ug/l 0.50 1 0-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,2Tetrachloroethane ND ug/l 0.50 1 1,2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Isopropylenzene ND ug/l 0.50 1 Isopropyleotzene ND ug/l 0.50 1 Isopropyleotzene ND ug/l 0.50 1 Isopropyleotzene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1 Isopropyltoluene ND ug/l 0.50 1	Parameter		Result	Qualifier	Units	RDL	Dilution Factor
ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2-Tetrachloropene ND ug/l 0.50 1 1,1,2-Tetrachloropene ND ug/l 0.50 1 1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1	Volatile Organics by 0	GC/MS 524.2					
ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2-Tetrachloropene ND ug/l 0.50 1 1,1,2-Tetrachloropene ND ug/l 0.50 1 1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1	1,3-Dichlorobenzene		ND		ug/l	0.50	1
Styrene ND ug/t 0.50 1 o-Xylene ND ug/t 0.50 1 1,1-Dichloropropene ND ug/t 0.50 1 2,2-Dichloropropene ND ug/t 0.50 1 1,1,1,2-Tetrachloropthane ND ug/t 0.50 1 1,2,3-Trichloropropane ND ug/t 0.50 1 Dichloroffluoromethane ND ug/t 0.50 1 Dichloroffluoromethane ND ug/t 0.50 1 Dichloroffluoromethane ND ug/t 0.50 1 Hexachlorobutadiene ND ug/t 0.50 1 Isopropylbenzene ND ug/t 0.50 1 Pisopropylbenzene ND ug/t 0.50 1 Isopropylbenzene ND ug/t 0.50 1 1,2.3-Trichlorobenzene ND ug/t 0.50 1 1,2.4-Trimethylbenzene ND ug/t 0.50<	1,4-Dichlorobenzene		ND			0.50	1
xylene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Dichlorodfloromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Pisopropylboluene ND ug/l 0.50 1 Napthtalene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0	Styrene		ND			0.50	1
ND ug/l 0.50 1 2,2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloropethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Pisopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trintethylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 <	o-Xylene		ND			0.50	1
ND ug/l 0.50 1 1,1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-lsopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Napthblenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1	1,1-Dichloropropene		ND			0.50	1
1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1	2,2-Dichloropropane		ND			0.50	1
Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50	1,1,1,2-Tetrachloroethane		ND			0.50	1
D ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1	1,2,3-Trichloropropane		ND		ug/l	0.50	1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbulene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50	Bromochloromethane		ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 Dibromoethane ND ug/l 0.50	n-Butylbenzene		ND		ug/l	0.50	1
Isopropylbenzene ND ug/l 0.50 1 p-Isopropylboluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinchlorobenzene ND ug/l 0.50 1 1,2,4-Trinchlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Dibromorethane ND ug/l 0.50	Dichlorodifluoromethane		ND		ug/l	0.50	1
ND ug/l 0.50 1 Naphtalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1	Hexachlorobutadiene		ND		ug/l	0.50	1
Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 <td>Isopropylbenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Isopropylbenzene		ND		ug/l	0.50	1
n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l	p-Isopropyltoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Naphthalene		ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1	sec-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene		ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene		ND		ug/l	0.50	1
1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane		ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane		ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropa	ane	ND		ug/l	0.50	1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane		ND		ug/l	0.50	1
	Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

Unknown Alkene	2.6	J	ug/l	1
Unknown Hydrocarbon	0.90	J	ug/l	1
Acetone	0.78	J	ug/l	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-01				Date Collected:	04/28/08 09:10
Client ID:	RIZ-10-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	88		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

SAMPLE RESULTS

Lab ID:	L0806023-02	Date Collected:	04/28/08 10:12
Client ID:	RIZ-9-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 10:38		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Name: WALPOLE PARK SOUTH

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-02 RIZ-9-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 10:1 04/29/08 Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	/ GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethan	ie	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l 1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-02				Date Collected:	04/28/08 10:12
Client ID:	RIZ-9-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	116		80-120	
4-Bromofluorobenzene	87		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-03	Date Collected:	04/28/08 11:20
Client ID:	MW-3-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 11:10		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
o/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
rans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-03 MW-3-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 11:2 04/29/08 Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	y GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethar	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane	9	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropro	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l 1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-03				Date Collected:	04/28/08 11:20
Client ID:	MW-3-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	90		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

Lab ID:	L0806023-04	Date Collected:	04/28/08 12:15
Client ID:	RIZ-8-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 11:43		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-04 RIZ-8-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 12:1 04/29/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by G	C/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropan	ie	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-04				Date Collected:	04/28/08 12:15
Client ID:	RIZ-8-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	91		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-05	Date Collected:	04/28/08 12:30
Client ID:	RIZ-8S-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 12:17		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806023-05 RIZ-8S-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 12:3 04/29/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Tentatively Identified Compounds

Unknown Alkane	0.62	J	ug/l	1
Unknown Alkane	2.7	J	ug/l	1
Unknown Hydrocarbon	4.3	J	ug/l	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE R	ESULTS			
Lab ID:	L0806023-05				Date Collected:	04/28/08 12:30
Client ID:	RIZ-8S-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
Tentatively Identified C	Compounds					
Unknown Hydrocarbor	1	0.64	J	ug/l		1
Pentane		1.2	J	ug/l		1
				Accept		

Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	116		80-120	
4-Bromofluorobenzene	87		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-06	Date Collected:	04/28/08 14:36
Client ID:	GHC-6-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 12:50		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

Lab ID: Client ID: Sample Location:	L0806023-06 GHC-6-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/28/08 14:3 04/29/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	oy GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroetha	ne	ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethan	е	ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene)	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene)	ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropr	opane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

No Tentatively Identified Compounds	ND	ug/l	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-06				Date Collected:	04/28/08 14:36
Client ID:	GHC-6-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	117		80-120	
4-Bromofluorobenzene	88		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-07	Date Collected:	04/28/08 14:52
Client ID:	MW-2-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 13:23		
Analyst:	MM		

Methylene chloride ND ug/l 0.50 1 J.hloroform 2.2 ug/l 0.50 1 Darbon tetrachloride ND ug/l 0.50 1 Darbon tetrachloride ND ug/l 0.50 1 Darbon tetrachloride ND ug/l 0.50 1 J2-Dichloropropane ND ug/l 0.50 1 Jbromochloromethane ND ug/l 0.50 1 Jbromochloromethane ND ug/l 0.50 1 Frichloroethane ND ug/l 0.50 1 Frichloroftuoromethane ND ug/l 0.50 1 J2-Dichloroethane ND ug/l 0.50 1 J2-Dichloropthane ND ug/l 0.50 1 J2-Dichloropthane ND ug/l 0.50 1 J3-Tintichloroethane ND ug/l 0.50 1 J2-Dichloroptopene ND ug/l 0.50	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
ND ug/l 0.50 1 Chloroform 2.2 ug/l 0.50 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 1,1.2-Trichloroethane ND ug/l 0.50 1 1,1.2-Trichloroethane ND ug/l 0.50 1 Fetrachloroethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,2-Dichloromethane ND ug/l 0.50 1 1,2-Dichloropene ND ug/l 0.50 1 1,2-Dichloropropene ND ug/l 0.50 1 1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2-Dichloropropene ND ug/l 0.50 1	Volatile Organics by GC/MS 524.2					
Dhioroform 2.2 ug/l 0.50 1 Darbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 1,12-Dichloropropane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Dichoroethane ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l	Methylene chloride	ND		ug/l	0.50	1
Date ND ug/ 0.50 1 1,2-Dichloropropane ND ug/1 0.50 1 Dibromochloromethane ND ug/1 0.50 1 L1,2-Trichloroethane ND ug/1 0.50 1 Tetrachloroethane ND ug/1 0.50 1 Tetrachloroethane ND ug/1 0.50 1 Trichloroethane ND ug/1 0.50 1 Trichloroethane ND ug/1 0.50 1 1,2-Dichloroethane ND ug/1 0.50 1 1,2-Dichloroethane ND ug/1 0.50 1 3romodichloromethane ND ug/1 0.50 1 3romodichloropropene ND ug/1 0.50 1 3romoform ND ug/1 0.50 1 3ramonform ND ug/1 0.50 1 3ramodichloropropene ND ug/1 0.50 1	1,1-Dichloroethane	ND		ug/l	0.50	1
J.2-Dichloropropane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 Dibromochloromethane ND ug/l 0.50 1 I,1,2-Trichloroethane ND ug/l 0.50 1 Petrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 I,1,1-Trichloroethane ND ug/l 0.50 1 I,2-Dichloroethane ND ug/l 0.50 1 I,1,1-Trichloroethane ND ug/l 0.50 1 I,1,2-Dichloropropene ND ug/l 0.50 1 isis-1,3-Dichloropropene ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND	Chloroform	2.2		ug/l	0.50	1
ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Fetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroethane ND ug/l 0.50 1 I,1,2-Dichloroethane ND ug/l 0.50 1 I,1,1-Trichloroethane ND ug/l 0.50 1 I,1,2-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1	Carbon tetrachloride	ND		ug/l	0.50	1
ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 Trichloroftuoromethane ND ug/l 0.50 1 1,12-Dichloroethane ND ug/l 0.50 1 1,11-Trichloroethane ND ug/l 0.50 1 3romodichloromethane ND ug/l 0.50 1 arans-1,3-Dichloropropene ND ug/l 0.50 1 arans-1,3-Dichloropropene ND ug/l 0.50 1 arans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 J,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Gloene ND ug/l 0.50 1 Tolupe ND ug/l 0.50 1	1,2-Dichloropropane	ND		ug/l	0.50	1
ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 Inchlorothuromethane ND ug/l 0.50 1 Inchlorotethane ND ug/l 0.50 1 Inchlorotethane ND ug/l 0.50 1 Intrichlorotethane ND ug/l 0.50 1 Intrichlorotethane ND ug/l 0.50 1 Intrichloropropene ND ug/l 0.50 1 Stranoform ND ug/l 0.50 1 Intrichloropropene ND ug/l 0.50 1 Intrichloro	Dibromochloromethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 Irichloroethane ND ug/l 0.50 1 I.2-Dichloroethane ND ug/l 0.50 1 I.1.1-Trichloroethane ND ug/l 0.50 1 I.1.1-Trichloroethane ND ug/l 0.50 1 Gromodichloromethane ND ug/l 0.50 1 Trans-1,3-Dichloropropene ND ug/l 0.50 1 Gromodichloromethane ND ug/l 0.50 1 I.1.2,2-Tetrachloropropene ND ug/l 0.50 1 I.1.2,2-Tetrachloroethane ND ug/l <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1-Trichloroethane ND ug/l 0.50 1 3romodichloromethane ND ug/l 0.50 1 3romodichloromethane ND ug/l 0.50 1 aromodichloroptopene ND ug/l 0.50 1 aromodichloroptopene ND ug/l 0.50 1 Bromodichloroptopene ND ug/l 0.50 1 I,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Foluene ND ug/l 0.50 1	Tetrachloroethene	ND		ug/l	0.50	1
I.2-Dichloroethane ND ug/l 0.50 1 I.1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Stromodichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Bromodicm ND ug/l 0.50 1 Bromodichloroethane ND ug/l 0.50 1 Stromodichloroethane ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Stromodichloroethane ND ug/l 0.50 1	Chlorobenzene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 rans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Stromoform ND ug/l 0.50 1 Gromodichloroethane ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND <t< td=""><td>Trichlorofluoromethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	Trichlorofluoromethane	ND		ug/l	0.50	1
Bromodichloromethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Stromodichloropropene ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 Stromodichloropropene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Chloropthane ND ug/l 0.50 1 Chloropthane ND ug/l 0.50	1,2-Dichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 And the second seco	1,1,1-Trichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 Senzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Bromodichloromethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Genzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 D/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 (inyl chloride ND ug/l 0.50 1 Chloroethene ND ug/l 0.50 1 I, 1-Dichloroethene ND ug/l 0.50 1 chloroethene ND ug/l <td< td=""><td>trans-1,3-Dichloropropene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></td<>	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Benzene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 D/m-Xylene ND ug/l 0.50 1 D/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Introduction ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Introduction ND ug/l 0.50 1 Introductione ND ug/l 0.50 1 <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 o/m-Xylene ND ug/l 0.50 1 o/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Sromomethane ND ug/l 0.50 1 /inyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 (J.1-Dichloroethene ND ug/l 0.50 1 (J.1-Dichloroethene ND ug/l 0.50 1 (sis-1,2-Dichloroethene ND ug/l 0.50 1 (sis-1,2-Dichloroethene ND ug/l 0.50 1 (sis-1,2-Dichloroethene ND ug/l 0.50 1	Bromoform	ND		ug/l	0.50	1
Foluene ND ug/l 0.50 1 Ethylbenzene ND ug/l 0.50 1 o/m-Xylene ND ug/l 0.50 1 chloromethane ND ug/l 0.50 1 Stromomethane ND ug/l 0.50 1 Arrow on thane ND ug/l 0.50 1 Arrow on thane ND ug/l 0.50 1 Arrow on thane ND ug/l 0.50 1 /inyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 ris-1,2-Dichloroethene ND ug/l 0.50 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Ethylbenzene ND ug/l 0.50 1 p/m-Xylene ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Sromomethane ND ug/l 0.50 1 Arrow on the state ND ug/l 0.50 1	Benzene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Inyl chloride ND ug/l 0.50 1 /inyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 frichloroethene ND ug/l 0.50 1	Toluene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Bromomethane ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Vinyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 rinchloroethene ND ug/l 0.50 1	Ethylbenzene	ND		ug/l	0.50	1
Bromomethane ND ug/l 0.50 1 /inyl chloride ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 frichloroethene ND ug/l 0.50 1	p/m-Xylene	ND		ug/l	0.50	1
ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 frishloroethene ND ug/l 0.50 1 frishloroethene ND ug/l 0.50 1	Chloromethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 frichloroethene ND ug/l 0.50 1	Bromomethane	ND		ug/l	0.50	1
I,1-Dichloroethene ND ug/l 0.50 1 rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 frichloroethene ND ug/l 0.50 1	Vinyl chloride	ND		ug/l	0.50	1
rans-1,2-Dichloroethene ND ug/l 0.50 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 richloroethene ND ug/l 0.50 1	Chloroethane	ND		ug/l	0.50	1
NDug/l0.501TrichloroetheneNDug/l0.501	1,1-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	trans-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene ND ug/l 0.50 1	cis-1,2-Dichloroethene	ND		ug/l	0.50	1
,2-Dichlorobenzene ND ug/l 0.50 1	Trichloroethene	ND			0.50	1
	1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700058-003

Project Number:

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

SAMPLE RESULTS

Volatile Organics by GC/MS 524.2 1,3-Dichlorobenzene 1,4-Dichlorobenzene Styrene o-Xylene 1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene				eld Prep:	Field Filtered
1,3-Dichlorobenzene 1,4-Dichlorobenzene Styrene o-Xylene 1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	Result	Qualifier	Units	RDL	Dilution Factor
1,4-Dichlorobenzene Styrene o-Xylene 1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-lsopropyltoluene Naphthalene					
Styrene o-Xylene 1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
o-Xylene 1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
1,1-Dichloropropene 2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
2,2-Dichloropropane 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
1,2,3-Trichloropropane Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
Bromochloromethane n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
n-Butylbenzene Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
Dichlorodifluoromethane Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
Hexachlorobutadiene Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
Isopropylbenzene p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
p-Isopropyltoluene Naphthalene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	0.50	1
	ND		ug/l	0.50	1
– "	ND		ug/l	0.50	1
n-Propylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trichlorobenzene	ND		ug/l	0.50	1
1,2,4-Trimethylbenzene	ND		ug/l	0.50	1
1,3,5-Trimethylbenzene	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	0.50	1
o-Chlorotoluene	ND		ug/l	0.50	1
p-Chlorotoluene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	0.50	1
1,2-Dibromoethane	ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	1
1,3-Dichloropropane	ND		ug/l	0.50	1
Methyl tert butyl ether	ND		ug/l	0.50	1

Tentatively Identified Compounds

No Tentatively Identified Compounds	ND	ug/l	1
-------------------------------------	----	------	---

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-07				Date Collected:	04/28/08 14:52
Client ID:	MW-2-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	118		80-120	
4-Bromofluorobenzene	87		80-120	

L0806023

05/05/08

Lab Number:

Report Date:

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab ID:	L0806023-08	Date Collected:	04/23/08 18:00
Client ID:	TRIP BLANK-042808	Date Received:	04/29/08
Sample Location:	WALPOLE, MA	Field Prep:	Not Specified
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/01/08 09:31		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

Project Number: 12700058-003

05050820:02

05/05/08

Lab Number: L0806023

Report Date:

Lab ID: Client ID: Sample Location:	L0806023-08 TRIP BLANK-042808 WALPOLE, MA				Date Collected: Date Received: Field Prep:	04/23/08 18:0 04/29/08 Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by (GC/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

						05050820:02
Project Name:	WALPOLE PARK SOUTH				Lab Number:	L0806023
Project Number:	12700058-003				Report Date:	05/05/08
		SAMPLE F	RESULTS			
Lab ID:	L0806023-08				Date Collected:	04/23/08 18:00
Client ID:	TRIP BLANK-042808				Date Received:	04/29/08
Sample Location:	WALPOLE, MA				Field Prep:	Not Specified
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics b	y GC/MS 524.2					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	113		80-120	
4-Bromofluorobenzene	95		80-120	

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

arameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524.2 f	or sample(s)	: 01,04-08	Batch:	WG319665-8
Methylene chloride	ND		ug/l	0.50
1,1-Dichloroethane	ND		ug/l	0.50
Chloroform	ND		ug/l	0.50
Carbon tetrachloride	ND		ug/l	0.50
1,2-Dichloropropane	ND		ug/l	0.50
Dibromochloromethane	ND		ug/l	0.50
1,1,2-Trichloroethane	ND		ug/l	0.50
Tetrachloroethene	ND		ug/l	0.50
Chlorobenzene	ND		ug/l	0.50
Trichlorofluoromethane	ND		ug/l	0.50
1,2-Dichloroethane	ND		ug/l	0.50
1,1,1-Trichloroethane	ND		ug/l	0.50
Bromodichloromethane	ND		ug/l	0.50
trans-1,3-Dichloropropene	ND		ug/l	0.50
cis-1,3-Dichloropropene	ND		ug/l	0.50
Bromoform	ND		ug/l	0.50
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50
Benzene	ND		ug/l	0.50
Toluene	ND		ug/l	0.50
Ethylbenzene	ND		ug/l	0.50
p/m-Xylene	ND		ug/l	0.50
Chloromethane	ND		ug/l	0.50
Bromomethane	ND		ug/l	0.50
Vinyl chloride	ND		ug/l	0.50
Chloroethane	ND		ug/l	0.50
1,1-Dichloroethene	ND		ug/l	0.50
trans-1,2-Dichloroethene	ND		ug/l	0.50
cis-1,2-Dichloroethene	ND		ug/l	0.50
Trichloroethene	ND		ug/l	0.50
1,2-Dichlorobenzene	ND		ug/l	0.50
1,3-Dichlorobenzene	ND		ug/l	0.50

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

arameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524.2	for sample(s): 01,04-08	Batch:	WG319665-8
1,4-Dichlorobenzene	ND		ug/l	0.50
Styrene	ND		ug/l	0.50
o-Xylene	ND		ug/l	0.50
1,1-Dichloropropene	ND		ug/l	0.50
2,2-Dichloropropane	ND		ug/l	0.50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50
1,2,3-Trichloropropane	ND		ug/l	0.50
Bromochloromethane	ND		ug/l	0.50
n-Butylbenzene	ND		ug/l	0.50
Dichlorodifluoromethane	ND		ug/l	0.50
Hexachlorobutadiene	ND		ug/l	0.50
Isopropylbenzene	ND		ug/l	0.50
p-Isopropyltoluene	ND		ug/l	0.50
Naphthalene	ND		ug/l	0.50
n-Propylbenzene	ND		ug/l	0.50
sec-Butylbenzene	ND		ug/l	0.50
tert-Butylbenzene	ND		ug/l	0.50
1,2,3-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trimethylbenzene	ND		ug/l	0.50
1,3,5-Trimethylbenzene	ND		ug/l	0.50
Bromobenzene	ND		ug/l	0.50
o-Chlorotoluene	ND		ug/l	0.50
p-Chlorotoluene	ND		ug/l	0.50
Dibromomethane	ND		ug/l	0.50
1,2-Dibromoethane	ND		ug/l	0.50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50
1,3-Dichloropropane	ND		ug/l	0.50
Methyl tert butyl ether	ND		ug/l	0.50

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08
	Method Blank Analysis		

Batch Quality Control

Analytical Method:16,524.2Analytical Date:05/01/08 08:25Analyst:MM

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS 524.2	for sample(s	s): 01,04-08	Batch:	WG319665-8	

Tentatively Identified Compounds
No Tentatively Identified Compounds ug/I

Surrogate	%Recovery	Acceptance Qualifier Criteria
1,2-Dichlorobenzene-d4	114	80-120
4-Bromofluorobenzene	87	80-120

Project Number: 12700058-003 Lab Number: L0806023 Report Date: 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

arameter	Result C	Qualifier	Uni	ts RDL
platile Organics by GC/MS 524.2	for sample(s):	02-03	Batch:	WG320296-4
Methylene chloride	ND		ug/	1 0.50
1,1-Dichloroethane	ND		ug/	1 0.50
Chloroform	ND		ug/	1 0.50
Carbon tetrachloride	ND		ug/	1 0.50
1,2-Dichloropropane	ND		ug/	1 0.50
Dibromochloromethane	ND		ug/	1 0.50
1,1,2-Trichloroethane	ND		ug/	1 0.50
Tetrachloroethene	ND		ug/	1 0.50
Chlorobenzene	ND		ug/	1 0.50
Trichlorofluoromethane	ND		ug/	1 0.50
1,2-Dichloroethane	ND		ug/	1 0.50
1,1,1-Trichloroethane	ND		ug/	1 0.50
Bromodichloromethane	ND		ug/	1 0.50
trans-1,3-Dichloropropene	ND		ug/	1 0.50
cis-1,3-Dichloropropene	ND		ug/	1 0.50
Bromoform	ND		ug/	1 0.50
1,1,2,2-Tetrachloroethane	ND		ug/	1 0.50
Benzene	ND		ug/	1 0.50
Toluene	ND		ug/	1 0.50
Ethylbenzene	ND		ug/	1 0.50
p/m-Xylene	ND		ug/	íl 0.50
Chloromethane	ND		ug/	1 0.50
Bromomethane	ND		ug/	1 0.50
Vinyl chloride	ND		ug/	1 0.50
Chloroethane	ND		ug/	íl 0.50
1,1-Dichloroethene	ND		ug/	1 0.50
trans-1,2-Dichloroethene	ND		ug/	1 0.50
cis-1,2-Dichloroethene	ND		ug/	1 0.50
Trichloroethene	ND		ug/	1 0.50
1,2-Dichlorobenzene	ND		ug/	1 0.50
1,3-Dichlorobenzene	ND		ug/	1 0.50

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

arameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524	.2 for sample(s):	02-03	Batch: W	/G320296-4
1,4-Dichlorobenzene	ND		ug/l	0.50
Styrene	ND		ug/l	0.50
o-Xylene	ND		ug/l	0.50
1,1-Dichloropropene	ND		ug/l	0.50
2,2-Dichloropropane	ND		ug/l	0.50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50
1,2,3-Trichloropropane	ND		ug/l	0.50
Bromochloromethane	ND		ug/l	0.50
n-Butylbenzene	ND		ug/l	0.50
Dichlorodifluoromethane	ND		ug/l	0.50
Hexachlorobutadiene	ND		ug/l	0.50
Isopropylbenzene	ND		ug/l	0.50
p-Isopropyltoluene	ND		ug/l	0.50
Naphthalene	ND		ug/l	0.50
n-Propylbenzene	ND		ug/l	0.50
sec-Butylbenzene	ND		ug/l	0.50
tert-Butylbenzene	ND		ug/l	0.50
1,2,3-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trichlorobenzene	ND		ug/l	0.50
1,2,4-Trimethylbenzene	ND		ug/l	0.50
1,3,5-Trimethylbenzene	ND		ug/l	0.50
Bromobenzene	ND		ug/l	0.50
o-Chlorotoluene	ND		ug/l	0.50
p-Chlorotoluene	ND		ug/l	0.50
Dibromomethane	ND		ug/l	0.50
1,2-Dibromoethane	ND		ug/l	0.50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50
1,3-Dichloropropane	ND		ug/l	0.50
Methyl tert butyl ether	ND		ug/l	0.50

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0806023
Project Number:	12700058-003	Report Date:	05/05/08
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/01/08 08:25
Analyst:	MM

Parameter	Result	Qualifier	Uni	ts	RDL
Volatile Organics by GC/MS 5	24.2 for sample(s	s): 02-03	Batch:	WG	320296-4

Tentatively Identified Compounds			
No Tentatively Identified Compounds	ND	ug/l	

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	114		80-120	
4-Bromofluorobenzene	87		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	8 Batch: WG319665	5-7		
Methylene chloride	99	-	70-130	-	
1,1-Dichloroethane	107	-	70-130	-	
Chloroform	106	-	70-130	-	
Carbon tetrachloride	103	-	70-130	-	
1,2-Dichloropropane	106	-	70-130	-	
Dibromochloromethane	96	-	70-130	-	
1,1,2-Trichloroethane	98	-	70-130	-	
Tetrachloroethene	112	-	70-130	-	
Chlorobenzene	108	-	70-130	-	
Trichlorofluoromethane	93	-	70-130	-	
1,2-Dichloroethane	109	-	70-130	-	
1,1,1-Trichloroethane	108	-	70-130	-	
Bromodichloromethane	102	-	70-130	-	
trans-1,3-Dichloropropene	86	-	70-130	-	
cis-1,3-Dichloropropene	90	-	70-130	-	
Bromoform	90	-	70-130	-	
1,1,2,2-Tetrachloroethane	90	-	70-130	-	
Benzene	111	-	70-130	-	
Toluene	116	-	70-130	-	
Ethylbenzene	110	-	70-130	-	
p/m-Xylene	113	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS 524.2	Associated sample(s): 01,04-	08 Batch: WG319665	5-7		
Chloromethane	101	-	70-130	-	
Bromomethane	103	-	70-130	-	
Vinyl chloride	107	-	70-130	-	
Chloroethane	106	-	70-130	-	
1,1-Dichloroethene	100	-	70-130	-	
trans-1,2-Dichloroethene	103	-	70-130	-	
cis-1,2-Dichloroethene	111	-	70-130	-	
Trichloroethene	101	-	70-130	-	
1,2-Dichlorobenzene	95	-	70-130	-	
1,3-Dichlorobenzene	99	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	109	-	70-130	-	
1,1-Dichloropropene	107	-	70-130	-	
2,2-Dichloropropane	93	-	70-130	-	
1,1,1,2-Tetrachloroethane	101	-	70-130	-	
1,2,3-Trichloropropane	91	-	70-130	-	
Bromochloromethane	106	-	70-130	-	
n-Butylbenzene	102	-	70-130	-	
Dichlorodifluoromethane	106	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	Batch: WG319665	-7		
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Lab Control Sample Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control
Project Number:	12700058-003	

LCSLCSD%Recovery%RecoveryParameter%RecoveryLimitsRPDRPD LimitsVolatile Organics by GC/MS 524.2Associated sample(s): 01,04-08Batch: WG319665-7

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 Batch: WG320296-3

99	-	70-130	-
107	-	70-130	-
106	-	70-130	-
103	-	70-130	-
106	-	70-130	-
96	-	70-130	-
98	-	70-130	-
112	-	70-130	-
108	-	70-130	-
	107 106 103 106 96 98 112	107 - 106 - 103 - 106 - 96 - 98 - 112 -	107 - 70-130 106 - 70-130 103 - 70-130 106 - 70-130 106 - 70-130 96 - 70-130 98 - 70-130 112 - 70-130

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS 524.2	Associated sample(s): 02-03	Batch: WG320296-3			
Trichlorofluoromethane	93	-	70-130	-	
1,2-Dichloroethane	109	-	70-130	-	
1,1,1-Trichloroethane	108	-	70-130	-	
Bromodichloromethane	102	-	70-130	-	
trans-1,3-Dichloropropene	86	-	70-130	-	
cis-1,3-Dichloropropene	90	-	70-130	-	
Bromoform	90	-	70-130	-	
1,1,2,2-Tetrachloroethane	90	-	70-130	-	
Benzene	111	-	70-130	-	
Toluene	116	-	70-130	-	
Ethylbenzene	110	-	70-130	-	
p/m-Xylene	113	-	70-130	-	
Chloromethane	101	-	70-130	-	
Bromomethane	103	-	70-130	-	
Vinyl chloride	107	-	70-130	-	
Chloroethane	106	-	70-130	-	
1,1-Dichloroethene	100	-	70-130	-	
trans-1,2-Dichloroethene	103	-	70-130	-	
cis-1,2-Dichloroethene	111	-	70-130	-	
Trichloroethene	101	-	70-130	-	
1,2-Dichlorobenzene	95	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s): 02-03	Batch: WG320296-3			
1,3-Dichlorobenzene	99	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	109	-	70-130	-	
1,1-Dichloropropene	107	-	70-130	-	
2,2-Dichloropropane	93	-	70-130	-	
1,1,1,2-Tetrachloroethane	101	-	70-130	-	
1,2,3-Trichloropropane	91	-	70-130	-	
Bromochloromethane	106	-	70-130	-	
n-Butylbenzene	102	-	70-130	-	
Dichlorodifluoromethane	106	-	70-130	-	
Hexachlorobutadiene	98	-	70-130	-	
Isopropylbenzene	103	-	70-130	-	
p-Isopropyltoluene	103	-	70-130	-	
Naphthalene	82	-	70-130	-	
n-Propylbenzene	113	-	70-130	-	
sec-Butylbenzene	109	-	70-130	-	
tert-Butylbenzene	112	-	70-130	-	
1,2,3-Trichlorobenzene	87	-	70-130	-	
1,2,4-Trichlorobenzene	86	-	70-130	-	
1,2,4-Trimethylbenzene	106	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS 524.2 Asso	ociated sample(s): 02-03	Batch: WG320296-3			
1,3,5-Trimethylbenzene	115	-	70-130	-	
Bromobenzene	103	-	70-130	-	
o-Chlorotoluene	110	-	70-130	-	
p-Chlorotoluene	105	-	70-130	-	
Dibromomethane	102	-	70-130	-	
1,2-Dibromoethane	92	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	98	-	70-130	-	
Methyl tert butyl ether	97	-	70-130	-	

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	101		80-120	
4-Bromofluorobenzene	102		80-120	

Matrix Spike Analysis Batch Quality Control

Project Name: WALPC	OLE PARK SOUTH	ł
---------------------	----------------	---

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

MSD MS Recovery MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Native Sample MS Added Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 QC Sample: L0805753-01 Client ID: MS Sample Methylene chloride ND 4 3.9 98 70-130 20 _ -ND 4.2 1.1-Dichloroethane 4 106 70-130 20 --Chloroform ND 4 4.4 109 70-130 20 --Carbon tetrachloride ND 4 4.4 110 70-130 20 --1,2-Dichloropropane ND 4 4.2 105 70-130 20 --Dibromochloromethane 97 ND 4 3.9 70-130 20 ---1,1,2-Trichloroethane ND 4 4.0 101 70-130 20 --Tetrachloroethene ND 4.7 70-130 20 4 117 ---Chlorobenzene ND 4 4.6 70-130 20 114 --Trichlorofluoromethane ND 4 4.1 103 70-130 20 --1,2-Dichloroethane ND 4 4.4 70-130 20 109 --1,1,1-Trichloroethane ND 4 4.6 114 70-130 20 --Bromodichloromethane ND 4 4.2 105 --70-130 20 trans-1,3-Dichloropropene ND 4 3.4 85 70-130 20 --cis-1,3-Dichloropropene ND 4 3.6 90 70-130 20 -_ Bromoform ND 4 3.8 96 70-130 20 ---1.1.2.2-Tetrachloroethane ND 4 3.9 98 70-130 20 _ --Benzene ND 4 4.5 112 -70-130 20 --Toluene ND 4 4.8 121 70-130 20 -_ Ethylbenzene ND 4 4.8 120 70-130 20 --p/m-Xylene ND 8 9.7 121 70-130 20 --

Matrix Spike Analysis Batch Quality Control

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

MSD MS Recovery MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Native Sample MS Added Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 QC Sample: L0805753-01 Client ID: MS Sample Chloromethane ND 4 4.3 107 70-130 20 _ -ND **Bromomethane** 4 4.0 101 70-130 20 --Vinyl chloride ND 4 4.7 118 70-130 20 --ND Chloroethane 4 4.6 115 70-130 20 --1.1-Dichloroethene ND 4 4.3 107 70-130 20 -trans-1.2-Dichloroethene ND 4 4.2 104 70-130 20 --cis-1,2-Dichloroethene ND 4 4.5 112 70-130 20 --Trichloroethene ND 4.2 20 4 106 --70-130 -1.2-Dichlorobenzene ND 4 4.0 70-130 20 101 --1,3-Dichlorobenzene ND 4 4.1 104 70-130 20 --1,4-Dichlorobenzene ND 4 4.0 70-130 20 101 --Styrene ND 4 4.6 115 70-130 20 -o-Xylene ND 4 4.7 118 --70-130 20 -1,1-Dichloropropene ND 4 4.5 112 70-130 20 ---2,2-Dichloropropane ND 4 3.8 95 70-130 20 -_ 1,1,1,2-Tetrachloroethane ND 4 4.3 109 70-130 20 ---1,2,3-Trichloropropane ND 4 3.9 98 70-130 20 _ --Bromochloromethane ND 4 4.2 105 -70-130 20 -n-Butylbenzene ND 4 4.3 108 70-130 20 -_ Dichlorodifluoromethane ND 4 4.8 120 70-130 20 ---Hexachlorobutadiene ND 4 4.1 102 70-130 20 --

Matrix Spike Analysis Batch Quality Control

Project Name: WAL	POLE PARK SOUTH
-------------------	-----------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

MSD MS Recovery Limits Native Sample MS Added MS Found %Recovery MSD Found %Recovery RPD **RPD** Limits Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-1 Client ID: MS Sample QC Sample: L0805753-01 Isopropylbenzene ND 4 4.5 113 70-130 20 _ p-Isopropyltoluene ND 4.5 113 70-130 20 4 ---Naphthalene ND 4 3.6 89 _ 70-130 20 n-Propylbenzene ND 4.9 70-130 20 4 123 --sec-Butylbenzene ND 4 4.8 120 70-130 20 -tert-Butylbenzene ND 4.9 123 70-130 20 4 ---1,2,3-Trichlorobenzene ND 4 3.7 92 70-130 20 --1,2,4-Trichlorobenzene ND 4 3.7 92 70-130 20 ---1,2,4-Trimethylbenzene ND 4 4.6 114 70-130 20 --1,3,5-Trimethylbenzene ND 4 4.9 122 70-130 20 --Bromobenzene ND 4 4.4 70-130 20 110 -_ o-Chlorotoluene ND 4 4.7 118 70-130 20 --p-Chlorotoluene ND 4 4.4 111 --70-130 20 -Dibromomethane ND 4 4.1 102 70-130 20 _ --1.2-Dibromoethane ND 4 3.9 98 70-130 20 _ -1,2-Dibromo-3-chloropropane ND 4 3.7 92 70-130 20 ---1,3-Dichloropropane ND 4 4.0 100 _ 70-130 20 _ -Methyl tert butyl ether ND 4 3.6 90 -70-130 20 --

Project Name:	WALPOLE PARK SOUTH	Matrix Spike Analysis	5	Lab Number:	L0806023
Project Number:	12700058-003	Batch Quality Control		Report Date:	05/05/08
		MS	MSD	Recovery	

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Limits	RPD RP	D Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 01	,04-08 QC	Batch ID: WG3	319665-1 QC	Sample: L080	5753-01 Clie	nt ID: MS Sa	Imple
	Surrogate		۸ % Recovery	/IS / Qualifier	۸ Recovery%	/ISD v Qualifier	Acceptan Criteria		

1,2-Dichlorobenzene-d4	101	80-120
4-Bromofluorobenzene	104	80-120

Matrix Spike Analysis Batch Quality Control

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

MSD MS Recovery MS Found %Recovery %Recovery **RPD** Limits Native Sample MS Added MSD Found Limits RPD Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-1 QC Sample: L0806023-02 Client ID: RIZ-9-042808 Methylene chloride ND 4 4.5 113 70-130 20 --ND 1.1-Dichloroethane 4 4.6 116 70-130 20 ---Chloroform ND 4 4.6 115 70-130 20 --Carbon tetrachloride ND 4.7 4 119 70-130 20 --1,2-Dichloropropane ND 4 4.6 115 70-130 20 --Dibromochloromethane ND 4 4.1 103 70-130 20 ---1,1,2-Trichloroethane ND 4 4.3 107 70-130 20 --Tetrachloroethene ND 5.0 70-130 20 4 124 ---Chlorobenzene ND 4 4.5 70-130 20 113 --Trichlorofluoromethane ND 4 4.2 106 70-130 20 --1,2-Dichloroethane ND 4 4.5 70-130 20 113 --1,1,1-Trichloroethane ND 4 4.8 119 70-130 20 --Bromodichloromethane ND 4 4.5 112 --70-130 20 trans-1,3-Dichloropropene ND 4 3.6 91 70-130 20 --cis-1,3-Dichloropropene ND 4 3.9 98 70-130 20 -_ Bromoform ND 4 3.8 95 70-130 20 ---1.1.2.2-Tetrachloroethane ND 4 3.8 96 70-130 20 _ --Benzene ND 4 5.0 125 -70-130 20 --Toluene ND 4 5.2 130 70-130 20 -_ Ethylbenzene ND 4 4.7 117 70-130 20 --p/m-Xylene ND 8 9.6 120 70-130 20 --

Matrix Spike Analysis Batch Quality Control

Project Name: WA	LPOLE PARK SOUTH
------------------	------------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

MSD MS Recovery MS Found %Recovery %Recovery **RPD** Limits Native Sample MS Added MSD Found Limits RPD Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-1 QC Sample: L0806023-02 Client ID: RIZ-9-042808 Chloromethane ND 4 4.4 110 70-130 20 --ND 4.2 **Bromomethane** 4 106 70-130 20 --Vinyl chloride ND 4 4.9 122 70-130 20 --ND Chloroethane 4 4.9 123 70-130 20 --1.1-Dichloroethene ND 4 4.6 114 70-130 20 -trans-1.2-Dichloroethene ND 4 4.5 113 70-130 20 --cis-1,2-Dichloroethene ND 4 4.5 113 70-130 20 --Trichloroethene ND 4.5 20 4 112 --70-130 -1.2-Dichlorobenzene ND 4 3.9 97 70-130 20 --1,3-Dichlorobenzene ND 4 4.0 99 70-130 20 --1,4-Dichlorobenzene ND 4 3.9 97 70-130 20 -_ Styrene ND 4 4.6 114 70-130 20 -o-Xylene ND 4 4.6 116 --70-130 20 -1,1-Dichloropropene ND 4 4.7 118 70-130 20 ---2,2-Dichloropropane ND 4 4.3 108 70-130 20 -_ 1,1,1,2-Tetrachloroethane ND 4 4.2 106 70-130 20 ---1,2,3-Trichloropropane ND 4 3.9 98 70-130 20 _ --Bromochloromethane ND 4 4.4 111 -70-130 20 -n-Butylbenzene ND 4 4.1 103 70-130 20 -_ Dichlorodifluoromethane ND 4 4.9 122 70-130 20 ---Hexachlorobutadiene ND 4 4.1 102 70-130 20 --

Matrix Spike Analysis Batch Quality Control

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700058-003

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Fou	MSD nd %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 02-0	03 QC Bat	ch ID: WG3202	296-1 QC	Sample: L080602	23-02 Client I	D: RIZ-9	9-042808
Isopropylbenzene	ND	4	4.4	111	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	4.3	109	-	-	70-130	-	20
Naphthalene	ND	4	3.3	83	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.8	120	-	-	70-130	-	20
sec-Butylbenzene	ND	4	4.7	117	-	-	70-130	-	20
tert-Butylbenzene	ND	4	4.8	120	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.6	90	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.5	87	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.4	110	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.8	119	-	-	70-130	-	20
Bromobenzene	ND	4	4.3	108	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.6	115	-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.3	108	-	-	70-130	-	20
Dibromomethane	ND	4	4.4	111	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.8	96	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.2	81	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.3	107	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	4.3	107	-	-	70-130	-	20

Drainet Nomer		Matrix Spike Analysis Batch Quality Control	5		1 0000000
Project Name:	WALPOLE PARK SOUTH			Lab Number:	L0806023
Project Number:	12700058-003			Report Date:	05/05/08
		MS	MSD	Recovery	

Parameter	Native Sample	MS Added I	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by	GC/MS 524.2 Associated	sample(s): 02-0	03 QC Bat	ch ID: WG3202	296-1 QC Sa	ample: L080602	3-02 Clier	nt ID: RIZ-9	9-042808

	MS		MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	98				80-120	
4-Bromofluorobenzene	103				80-120	

Project Name: WALPOLE PARK SOUTH

Batch

Lab Number: Report Date:

er: L0806023 te: 05/05/08

Project Number: 12700058-003

arameter	Native Sa	mple Duplicate Sam	ple Units	RPD	RPD Limits
platile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	QC Batch ID: WG319665-2	QC Sample: L0805	753-02 Client IE	D: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

ameter	Native Sam	ple Duplicate Sam	ple Units	RPD	RPD Limits
tile Organics by GC/MS 524.2 Associated samp	le(s): 01,04-08	QC Batch ID: WG319665-2	QC Sample: L08	05753-02 Client I	D: DUP Sample
thylbenzene	ND	ND	ug/l	NC	20
/m-Xylene	ND	ND	ug/l	NC	20
hloromethane	ND	ND	ug/l	NC	20
romomethane	ND	ND	ug/l	NC	20
inyl chloride	ND	ND	ug/l	NC	20
hloroethane	ND	ND	ug/l	NC	20
,1-Dichloroethene	ND	ND	ug/l	NC	20
ans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
is-1,2-Dichloroethene	ND	ND	ug/l	NC	20
richloroethene	ND	ND	ug/l	NC	20
,2-Dichlorobenzene	ND	ND	ug/l	NC	20
,3-Dichlorobenzene	ND	ND	ug/l	NC	20
,4-Dichlorobenzene	ND	ND	ug/l	NC	20
tyrene	ND	ND	ug/l	NC	20
-Xylene	ND	ND	ug/l	NC	20
,1-Dichloropropene	ND	ND	ug/l	NC	20
,2-Dichloropropane	ND	ND	ug/l	NC	20
,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Project Name: WALPOLE PARK SOUTH

Lab Number: Report Date:

er: L0806023

Project Number: 12700058-003

arameter	Native Sa	mple Duplicate Sam	ple Units	RPD	RPD Limits
platile Organics by GC/MS 524.2	Associated sample(s): 01,04-08	QC Batch ID: WG319665-2	QC Sample: L0805	753-02 Client ID	: DUP Sample
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter Native Sample **Duplicate Sample** Units RPD **RPD** Limits Volatile Organics by GC/MS 524.2 Associated sample(s): 01,04-08 QC Batch ID: WG319665-2 QC Sample: L0805753-02 Client ID: DUP Sample 1,2-Dibromo-3-chloropropane ND ND NC 20 ug/l 1,3-Dichloropropane 20 ND ND ug/l NC Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	115		115		80-120	
4-Bromofluorobenzene	87		88		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

arameter		Native	Sample	Duplicate Sa	ample Ur	its	RPD	RPD Limits
platile Organics by GC/MS 524.2	Associated sample(s):	02-03	QC Batch ID:	WG320296-2	QC Sample:	L0806023-03	Client ID:	MW-3-042808
Methylene chloride		Ν	D	ND	u	g/l	NC	20
1,1-Dichloroethane		Ν	D	ND	u	g/I	NC	20
Chloroform		Ν	D	ND	u	g/I	NC	20
Carbon tetrachloride		Ν	D	ND	u	g/I	NC	20
1,2-Dichloropropane		Ν	D	ND	u	g/l	NC	20
Dibromochloromethane		Ν	D	ND	u	g/l	NC	20
1,1,2-Trichloroethane		N	D	ND	u	g/l	NC	20
Tetrachloroethene		Ν	D	ND	u	g/l	NC	20
Chlorobenzene		Ν	D	ND	u	g/l	NC	20
Trichlorofluoromethane		Ν	D	ND	u	g/l	NC	20
1,2-Dichloroethane		Ν	D	ND	u	g/l	NC	20
1,1,1-Trichloroethane		Ν	D	ND	u	g/l	NC	20
Bromodichloromethane		Ν	D	ND	u	g/l	NC	20
trans-1,3-Dichloropropene		Ν	D	ND	u	g/l	NC	20
cis-1,3-Dichloropropene		N	D	ND	u	g/l	NC	20
Bromoform		Ν	D	ND	u	g/l	NC	20
1,1,2,2-Tetrachloroethane		N	D	ND	u	g/l	NC	20
Benzene		N	D	ND	u	g/l	NC	20
Toluene		Ν	D	ND	u	g/I	NC	20

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

arameter		Native S	Sample	Duplicate S	ample Ur	nits	RPD	RPD Limits	
olatile Organics by GC/MS 524.2	Associated sample(s):	02-03	QC Batch ID:	WG320296-2	QC Sample:	L0806023-03	3 Client ID:	MW-3-042808	
Ethylbenzene		N	D	ND	u	g/l	NC	20	
p/m-Xylene		N	D	ND	u	g/l	NC	20	
Chloromethane		N	D	ND	u	g/l	NC	20	
Bromomethane		N	D	ND	u	g/l	NC	20	
Vinyl chloride		N	D	ND	u	g/l	NC	20	
Chloroethane		N	D	ND	u	g/l	NC	20	
1,1-Dichloroethene		N	D	ND	u	g/l	NC	20	
trans-1,2-Dichloroethene		N	D	ND	u	g/l	NC	20	
cis-1,2-Dichloroethene		N	D	ND	u	g/l	NC	20	
Trichloroethene		N	D	ND	u	g/l	NC	20	
1,2-Dichlorobenzene		N	D	ND	u	g/l	NC	20	
1,3-Dichlorobenzene		N	D	ND	u	g/l	NC	20	
1,4-Dichlorobenzene		N	D	ND	u	g/l	NC	20	
Styrene		N	D	ND	u	g/l	NC	20	
o-Xylene		N	D	ND	u	g/l	NC	20	
1,1-Dichloropropene		N	D	ND	u	g/l	NC	20	
2,2-Dichloropropane		N	D	ND	u	g/l	NC	20	
1,1,1,2-Tetrachloroethane		ND		ND	u	g/l	NC	20	
1,2,3-Trichloropropane		ND		ND	u	g/l	NC	20	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number:

arameter	Native Sampl	e Duplicate Sa	ample Units	RPD	RPD Limits
platile Organics by GC/MS 524.2 Associated sar	nple(s): 02-03 QC B	atch ID: WG320296-2	QC Sample: L0806023	3-03 Client ID:	MW-3-042808
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0806023

 Report Date:
 05/05/08

Parameter Native Sample **Duplicate Sample** Units RPD **RPD** Limits Volatile Organics by GC/MS 524.2 Associated sample(s): 02-03 QC Batch ID: WG320296-2 QC Sample: L0806023-03 Client ID: MW-3-042808 1,2-Dibromo-3-chloropropane ND NC ND ug/l 20 1,3-Dichloropropane 20 ND ND ug/l NC Methyl tert butyl ether ND ND ug/l NC 20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	112		111		80-120	
4-Bromofluorobenzene	90		88		80-120	

METALS

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name:	WALPO	_E PARK S	OUTH			Lab	L0806023				
Project Number:	1270005	8-003				Rep	oort Date:		05/05/08		
			SA		RESULT	S					
Lab ID:	L080602	3-01				Dat	e Collected:	:	04/28/08 09:	10	
Client ID:	RIZ-10-0	-10-042808					Date Received: 0			04/29/08	
Sample Location:	WALPO	E, MA				Fiel	d Prep:		Not Specified	b	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals by	MCP 600)0/7000 seri	es								
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:28	8 EPA 3005	64,6020A	BM	

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 17:28 EPA 3005A

05/01/08 18:00 05/02/08 13:48 EPA 7470A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/01/08 22:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

04/30/08 12:00 05/02/08 17:28 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Дерна	

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.062

Project Name: Project Number:	WALPO	LE PARK S	OUTH				Number: oort Date:	L0806023 05/05/08				
	127 0000	.0.000	SA		RESULT	•			00/00/00			
Lab ID:	L080602	3-02	•			-	e Collected:	:	04/28/08 10:	12		
Client ID:	RIZ-9-04	9-042808				Dat	Date Received:			04/29/08		
Sample Location:	WALPOI	_E, MA				Fiel	d Prep:		Not Specified	b		
Matrix:	Water						·					
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Dissolved Metals by	MCP 600	00/7000 ser	ies									
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:34	4 EPA 3005	A 64,6020A	BM		

Antimony, Dissolved	ND	mg/l	0.0020	4	04/30/08 12:00 05/01/08 22:34 EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Barium, Dissolved	0.021	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.005	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	05/01/08 18:00 05/02/08 13:55 EPA 7470A	64,7470A	RC
Nickel, Dissolved	ND	mg/l	0.025	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	4	04/30/08 12:00 05/01/08 22:34 EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	04/30/08 12:00 05/02/08 17:59 EPA 3005A	60,6010B	AI

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO 1270005	LE PARK S 58-003	OUTH				o Number: port Date:		L0806023 05/05/08			
-			SA		RESULT	S	-					
Lab ID:	L080602	23-03				Da	te Collected	:	04/28/08 11:	20		
Client ID:	MW-3-04	V-3-042808				Da	Date Received:			04/29/08		
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Not Specified			
Matrix:	Water						·					
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Dissolved Metals b	y MCP 600	00/7000 ser	ies									
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00) 05/01/08 22:4	0 EPA 3005	A 64,6020A	BM		

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:03 EPA 3005A

05/01/08 18:00 05/02/08 13:57 EPA 7470A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/01/08 22:40 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

04/30/08 12:00 05/02/08 18:03 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ALPHA
ANALYTICAL

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.010

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:		VALPOLE PARK SOUTH 2700058-003 SAMPLE RESULTS					Number: port Date:		L0806023 05/05/08			
			SA		RESULT	S						
Lab ID:	L080602	3-04				Dat	e Collected:	0	4/28/08 12:	15		
Client ID:	RIZ-8-04	2808				Dat	Date Received:			04/29/08		
Sample Location:	WALPO	LE, MA				Fiel	d Prep:	F	ield Filtered	t		
Matrix:	Water											
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Dissolved Metals by	y MCP 600	00/7000 ser	ies									
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 22:45	5 EPA 3005A	64,6020A	BM		
Arsenic, Dissolved	ND		mg/l	0.005	1	04/30/08 12:00	05/02/08 18:06	6 EPA 3005A	60,6010B	AI		

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:06 EPA 3005A

05/01/08 18:00 05/02/08 13:58 EPA 7470A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/01/08 22:45 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

04/30/08 12:00 05/02/08 18:06 EPA 3005A

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

0.025

ND

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPO 1270005	LE PARK S 58-003	OUTH				o Number: port Date:		L0806023 05/05/08		
-			SA		RESULT	S	-				
Lab ID:	L080602	3-05				Da	te Collected	:	04/28/08 12:	30	
Client ID:	RIZ-8S-0	-8S-042808				Da	Date Received:			04/29/08	
Sample Location:	WALPO	POLE, MA Field			ld Prep:		Field Filtered				
Matrix:	Water						-				
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals b	y MCP 600	00/7000 ser	ies								
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:0	7 EPA 3005	A 64,6020A	BM	

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:10 EPA 3005A

05/01/08 18:00 05/02/08 14:00 EPA 7470A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/01/08 23:07 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

04/30/08 12:00 05/02/08 18:10 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

0.054

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

A
ANALYTICAL

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:	WALPOLE PARK SOUTH 12700058-003						b Number: port Date:	L0806023 05/05/08			
	1210000		SA		RESULT				00/00/00		
Lab ID:	L080602	23-06	0,			-	te Collected	:	04/28/08 14:	36	
Client ID:	GHC-6-0)42808				Da	te Received	:	04/29/08		
Sample Location:	WALPO	LE, MA				Fie	ld Prep:		Field Filtered		
Matrix:	Water						·				
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals b	y MCP 600	00/7000 ser	ies								
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:1	3 EPA 3005	5A 64,6020A	BM	

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:14 EPA 3005A

05/01/08 18:00 05/02/08 14:02 EPA 7470A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/01/08 23:13 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

04/30/08 12:00 05/02/08 18:14 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

ND

0.059

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ALPHA
ANALYTICAL

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

RC

AI

AI

AI

ΒM

AI

AI

Project Name: Project Number:		WALPOLE PARK SOUTH 12700058-003					Lab Number:			L0806023	
Project Number.	1270005	08-003	S		RESULT		port Date:		05/05/08		
Lab ID:	L080602	3-07	Ŭ,			-	e Collected	:	04/28/08 14:	52	
Client ID:	MW-2-04	MW-2-042808					Date Received:			04/29/08	
Sample Location:	WALPO	WALPOLE, MA				Fie	Field Prep:			ł	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals b	y MCP 600	00/7000 ser	ies								
Antimony, Dissolved	ND		mg/l	0.0020	4	04/30/08 12:00	05/01/08 23:1	8 EPA 3005	A 64,6020A	BM	

1

1

1

1

1

1

1

1

1

1

4

1

1

04/30/08 12:00 05/02/08 18:17 EPA 3005A

05/01/08 18:00 05/02/08 14:04 EPA 7470A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/01/08 23:18 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

04/30/08 12:00 05/02/08 18:17 EPA 3005A

0.005

0.010

0.005

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

	$\mathbf{\lambda}$		P	H.	A
A	N	A L	Y/7	10	AL

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Selenium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.031

ND

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst Factor Prepared Analyzed Parameter **Result Qualifier** Units RDL Dissolved Metals by MCP 6000/7000 series for sample(s): 01-07 Batch: WG320004-1 0.005 Arsenic, Dissolved ND mg/l 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 Barium, Dissolved mg/l 1 05/02/08 15:41 60,6010B AI 04/30/08 12:00 Beryllium, Dissolved ND 0.005 1 60,6010B mg/l 04/30/08 12:00 05/02/08 15:41 AI Cadmium, Dissolved ND mg/l 0.004 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI Chromium, Dissolved ND mg/l 0.01 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 1 04/30/08 12:00 Lead, Dissolved mg/l 05/02/08 15:41 60,6010B AI Nickel, Dissolved ND mg/l 0.025 1 04/30/08 12:00 05/02/08 15:41 60,6010B AI ND 0.010 1 AI Selenium, Dissolved mg/l 05/02/08 15:41 60,6010B 04/30/08 12:00 ND 1 0.007 60,6010B AI Silver, Dissolved mg/l 04/30/08 12:00 05/02/08 15:41 ND 1 AI Vanadium, Dissolved mg/l 0.010 04/30/08 12:00 05/02/08 15:41 60,6010B Zinc, Dissolved ND mg/l 0.050 1 05/02/08 15:41 60,6010B AI 04/30/08 12:00

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MC	P 6000/7000 series f	or sample	e(s): 01	-07 Batch:	WG320013-	1		
Antimony, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	04/30/08 12:00	05/01/08 21:28	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01-	-07 Batch:	WG320203-	1		
Mercury, Dissolved	ND	mg/l	0.0002	1	05/01/08 18:00	05/02/08 13:25	64,7470A	RC

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: Report Date: L0806023 05/05/08

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003 Lab Number: L0806023 Report Date: 05/05/08

Parameter	LCS %Recovery	LCSD %Recove	%Recovery ery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch	n: WG320004-2 WG320004-3		
Arsenic, Dissolved	107	106	80-120	1	20
Barium, Dissolved	94	92	80-120	2	20
Beryllium, Dissolved	97	95	80-120	2	20
Cadmium, Dissolved	108	106	80-120	2	20
Chromium, Dissolved	95	95	80-120	0	20
Lead, Dissolved	97	95	80-120	2	20
Nickel, Dissolved	96	95	80-120	1	20
Selenium, Dissolved	103	103	80-120	0	20
Silver, Dissolved	94	92	80-120	2	20
Vanadium, Dissolved	98	96	80-120	2	20
Zinc, Dissolved	96	93	80-120	3	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch	n: WG320013-2 WG320013-3		
Antimony, Dissolved	93	96	80-120	3	20
Thallium, Dissolved	96	97	80-120	1	20
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-07 Batch	n: WG320203-2 WG320203-3		
Mercury, Dissolved	109	105	80-120	4	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler	Custody Seal
А	Absent

Container Information											
Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis				
L0806023-01A	Vial HCl preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-01B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-01C	Plastic 500ml HNO3 preserved	A	<2	4 C	Υ	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S				
L0806023-02A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-02B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-02C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S				
L0806023-03A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-03B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-03C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S				
L0806023-04A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-04B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				
L0806023-04C	Plastic 500ml HNO3 preserved	A	<2	4 C	Υ	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S				
L0806023-05A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2				

Project Name:WALPOLE PARK SOUTHProject Number:12700058-003

Lab Number: L0806023 Report Date: 05/05/08

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0806023-05B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-05C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-06A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-06B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-06C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-07A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-07B	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2
L0806023-07C	Plastic 500ml HNO3 preserved	A	<2	4 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-NI- 6010S,MCP-PB-6010S,MCP- TL-6020S,MCP-V-6010S,MCP- SB-6020S,MCP-7470S,MCP- BE-6010S,MCP-ZN- 6010S,MCP-BA-6010S,MCP- SE-6010S
L0806023-08A	Vial HCI preserved	А	NA	4 C	Y	Absent	524.2

L0806023-01A	IR Gun
L0806023-01B	IR Gun
L0806023-01C	IR Gun
L0806023-02A	IR Gun
L0806023-02B	IR Gun
L0806023-02C	IR Gun
L0806023-03A	IR Gun
L0806023-03B	IR Gun
L0806023-03C	IR Gun

Project Name:	WALPOLE PARK SOUTH	Lab Number: L0806023
Project Number:	12700058-003	Report Date: 05/05/08

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
	,						-

Container Comments

IR Gun
IR Gun

Project Name: WALPOLE PARK SOUTH

Project Number: 12700058-003

Lab Number: L0806023 Report Date: 05/05/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0806023

 Report Date:
 05/05/08

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ANALYTICAL REPORT

L0806993
Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
Ian Cannan
WAPOLE PARK SOUTH
12700053
05/21/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WAPOLE PARK SOUTHProject Number:12700053

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Alpha Sample ID	Client ID	Sample Location
L0806993-01	RIZ-3-051408	WALPOLE, MA
L0806993-02	MW-9-051408	WALPOLE, MA

Project Name:WAPOLE PARK SOUTHProject Number:12700053

Lab Number: L0806993 Report Date: 05/21/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A res	sponse to questions E and F is required for "Presumptive Certainty" status	
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WAPOLE PARK SOUTHProject Number:12700053

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives Sample Receipt The samples were Field Filtered for Dissolved Metals only. Metals In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

King I. Without

Title: Technical Director/Representative

Date: 05/21/08

ORGANICS

VOLATILES

L0806993

05/21/08

Lab Number:

Report Date:

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

SAMPLE RESULTS

Lab ID:	L0806993-01	Date Collected:	05/14/08 13:10
Client ID:	RIZ-3-051408	Date Received:	05/14/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/15/08 14:26		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

12700053

Project Number:

05210815:15

05/21/08

Lab Number: L0806993

Report Date:

SAMPLE RESULTS

ParameterResultQualifierUnitVolatile Organics by GC/MS 524.21,3-DichlorobenzeneNDug/1,4-DichlorobenzeneNDug/1,4-DichlorobenzeneNDug/StyreneNDug/o-XyleneNDug/1,1-DichloropropeneNDug/2,2-DichloropropaneNDug/1,1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/bromochloromethaneNDug/n-ButylbenzeneNDug/jchlorodifluoromethaneNDug/hexachlorobutadieneNDug/n-PropylbenzeneNDug/n-PropylbenzeneNDug/n-PropylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobutadieneNDug/1,2,3-TrichlorobutadieneNDug/1,2,3-TrichlorobutadieneNDug/1,2,3-TrichlorobutadieneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-Trichlorobenzen	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1
1,3-DichlorobenzeneNDug/1,4-DichlorobenzeneNDug/StyreneNDug/o-XyleneNDug/o-XyleneNDug/1,1-DichloropropeneNDug/2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloroptaneNDug/1,2,3-TrichloroptaneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-T	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1 1 1 1 1 1 1
1,4-DichlorobenzeneNDug/StyreneNDug/o-XyleneNDug/1,1-DichloropropeneNDug/1,1-DichloropropaneNDug/2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/ </td <td>0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1</td>	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1 1 1 1 1 1 1
StyreneNDug/o-XyleneNDug/1,1-DichloropropeneNDug/1,1-DichloropropeneNDug/2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/ <td>0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50</td> <td>1 1 1 1 1 1 1 1 1 1 1</td>	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1 1 1 1 1
o-XyleneNDug/1,1-DichloropropeneNDug/1,1-DichloropropeneNDug/2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/1,2,3-TrichloropropaneNDug/BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/n-PropylbenzeneNDug/n-PropylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1 1 1 1 1
1,1-DichloropropeneNDug/1,1-DichloropropaneNDug/2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50 0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1 1
2,2-DichloropropaneNDug/1,1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/IsopropylbenzeneNDug/n-PropylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,3-TrichlorobenzeneNDug/ </td <td>0.50 0.50 0.50 0.50 0.50 0.50</td> <td>1 1 1 1 1 1 1</td>	0.50 0.50 0.50 0.50 0.50 0.50	1 1 1 1 1 1 1
1,1,2-TetrachloroethaneNDug/1,2,3-TrichloropropaneNDug/BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/sec-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50 0.50 0.50 0.50 0.50	1 1 1 1 1
1,2,3-TrichloropropaneNDug/BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/n-PropylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50 0.50 0.50 0.50	1 1 1 1
BromochloromethaneNDug/n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/n-PropylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50 0.50 0.50	1 1 1
n-ButylbenzeneNDug/DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/n-PropylbenzeneNDug/1.2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50 0.50	1 1
DichlorodifluoromethaneNDug/HexachlorobutadieneNDug/IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/n-PropylbenzeneNDug/sec-ButylbenzeneNDug/tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
HexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l		
IsopropylbenzeneNDug/p-IsopropyltolueneNDug/NaphthaleneNDug/n-PropylbenzeneNDug/sec-ButylbenzeneNDug/tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
p-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l		
NaphthaleneNDug/n-PropylbenzeneNDug/sec-ButylbenzeneNDug/tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
n-PropylbenzeneNDug/sec-ButylbenzeneNDug/tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
sec-ButylbenzeneNDug/tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
tert-ButylbenzeneNDug/1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
1,2,3-TrichlorobenzeneNDug/1,2,4-TrichlorobenzeneNDug/	0.50	1
1,2,4-Trichlorobenzene ND ug/	0.50	1
	0.50	1
	0.50	1
1,2,4-Trimethylbenzene ND ug/	0.50	1
1,3,5-Trimethylbenzene ND ug/l	0.50	1
Bromobenzene ND ug/	0.50	1
o-Chlorotoluene ND ug/l	0.50	1
p-Chlorotoluene ND ug/l	0.50	1
Dibromomethane ND ug/	0.50	1
1,2-Dibromoethane ND ug/		1
1,2-Dibromo-3-chloropropane ND ug/		1
1,3-Dichloropropane ND ug/	0.00	1
Methyl tert butyl ether ND ug/		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	112		80-120	
4-Bromofluorobenzene	92		80-120	

05210815:15

L0806993

05/21/08

Lab Number:

Report Date:

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

SAMPLE RESULTS

Lab ID:	L0806993-02	Date Collected:	05/14/08 13:42
Client ID:	MW-9-051408	Date Received:	05/14/08
Sample Location:	WALPOLE, MA	Field Prep:	Field Filtered
Matrix:	Water		
Anaytical Method:	16,524.2		
Analytical Date:	05/15/08 14:58		
Analyst:	MM		

Parameter	Result	Qualifier	Units	RDL	Dilution Facto
Volatile Organics by GC/MS 524.2					
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	0.71		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

05210815:15

05/21/08

Lab Number: L0806993

Report Date:

Project Number: 12700053

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0806993-02 MW-9-051408 WALPOLE, MA				Date Collected: Date Received: Field Prep:	05/14/08 13:4 05/14/08 Field Filtered
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by G	C/MS 524.2					
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropar	ne	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	115		80-120	
4-Bromofluorobenzene	90		80-120	

Project Number: 12700053

Report Date:

Lab Number:

L0806993

05/21/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/15/08 12:14
Analyst:	MM

arameter	Result	Qualifier	Units	RDL
olatile Organics by GC/MS 524	4.2 for sample(s)	: 01-02	Batch: WG	321926-6
Methylene chloride	ND		ug/l	0.50
1,1-Dichloroethane	ND		ug/l	0.50
Chloroform	ND		ug/l	0.50
Carbon tetrachloride	ND		ug/l	0.50
1,2-Dichloropropane	ND		ug/l	0.50
Dibromochloromethane	ND		ug/l	0.50
1,1,2-Trichloroethane	ND		ug/l	0.50
Tetrachloroethene	ND		ug/l	0.50
Chlorobenzene	ND		ug/l	0.50
Trichlorofluoromethane	ND		ug/l	0.50
1,2-Dichloroethane	ND		ug/l	0.50
1,1,1-Trichloroethane	ND		ug/l	0.50
Bromodichloromethane	ND		ug/l	0.50
trans-1,3-Dichloropropene	ND		ug/l	0.50
cis-1,3-Dichloropropene	ND		ug/l	0.50
Bromoform	ND		ug/l	0.50
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50
Benzene	ND		ug/l	0.50
Toluene	ND		ug/l	0.50
Ethylbenzene	ND		ug/l	0.50
p/m-Xylene	ND		ug/l	0.50
Chloromethane	ND		ug/l	0.50
Bromomethane	ND		ug/l	0.50
Vinyl chloride	ND		ug/l	0.50
Chloroethane	ND		ug/l	0.50
1,1-Dichloroethene	ND		ug/l	0.50
trans-1,2-Dichloroethene	ND		ug/l	0.50
cis-1,2-Dichloroethene	ND		ug/l	0.50
Trichloroethene	ND		ug/l	0.50
1,2-Dichlorobenzene	ND		ug/l	0.50
1,3-Dichlorobenzene	ND		ug/l	0.50

Project Number: 12700053

Report Date:

Lab Number:

L0806993

05/21/08

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/15/08 12:14
Analyst:	MM

arameter	Result	Qualifier	Uni	its	RDL
olatile Organics by GC/MS 524.2 fo	or sample(s): 01-02	Batch:	WG32	1926-6
1,4-Dichlorobenzene	ND		ug	/I	0.50
Styrene	ND		ug	/I	0.50
o-Xylene	ND		ug	/I	0.50
1,1-Dichloropropene	ND		ug	/I	0.50
2,2-Dichloropropane	ND		ug	/I	0.50
1,1,1,2-Tetrachloroethane	ND		ug	/I	0.50
1,2,3-Trichloropropane	ND		ug	/I	0.50
Bromochloromethane	ND		ug	/I	0.50
n-Butylbenzene	ND		ug	/I	0.50
Dichlorodifluoromethane	ND		ug	/I	0.50
Hexachlorobutadiene	ND		ug	/I	0.50
Isopropylbenzene	ND		ug	/I	0.50
p-Isopropyltoluene	ND		ug	/I	0.50
Naphthalene	ND		ug	/I	0.50
n-Propylbenzene	ND		ug	/I	0.50
sec-Butylbenzene	ND		ug	/I	0.50
tert-Butylbenzene	ND		ug	/I	0.50
1,2,3-Trichlorobenzene	ND		ug	/I	0.50
1,2,4-Trichlorobenzene	ND		ug	/I	0.50
1,2,4-Trimethylbenzene	ND		ug	/I	0.50
1,3,5-Trimethylbenzene	ND		ug	/I	0.50
Bromobenzene	ND		ug	/I	0.50
o-Chlorotoluene	ND		ug	/I	0.50
p-Chlorotoluene	ND		ug	/I	0.50
Dibromomethane	ND		ug	/I	0.50
1,2-Dibromoethane	ND		ug	/I	0.50
1,2-Dibromo-3-chloropropane	ND		ug	/I	0.50
1,3-Dichloropropane	ND		ug	/I	0.50
Methyl tert butyl ether	ND		ug	/I	0.50

Project Name:WAPOLE PARK SOUTHLab Number:L0806993Project Number:12700053Report Date:05/21/08Mothod Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	05/15/08 12:14
Analyst:	MM

Parameter	Result	Qualifier	Uni	ts RDL	
Volatile Organics by GC/MS 524.2 f	or sample(s)	: 01-02	Batch:	WG321926-6	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichlorobenzene-d4	114		80-120		
4-Bromofluorobenzene	92		80-120		

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS 524.2 Associ	ated sample(s): 01-02	2 Batch: WG321926-5			
Methylene chloride	107	-	70-130	-	
1,1-Dichloroethane	115	-	70-130	-	
Chloroform	115	-	70-130	-	
Carbon tetrachloride	106	-	70-130	-	
1,2-Dichloropropane	117	-	70-130	-	
Dibromochloromethane	100	-	70-130	-	
1,1,2-Trichloroethane	110	-	70-130	-	
Tetrachloroethene	121	-	70-130	-	
Chlorobenzene	108	-	70-130	-	
Trichlorofluoromethane	94	-	70-130	-	
1,2-Dichloroethane	111	-	70-130	-	
1,1,1-Trichloroethane	111	-	70-130	-	
Bromodichloromethane	112	-	70-130	-	
trans-1,3-Dichloropropene	93	-	70-130	-	
cis-1,3-Dichloropropene	102	-	70-130	-	
Bromoform	85	-	70-130	-	
1,1,2,2-Tetrachloroethane	91	-	70-130	-	
Benzene	126	-	70-130	-	
Toluene	130	-	70-130	-	
Ethylbenzene	109	-	70-130	-	
p/m-Xylene	111	-	70-130	-	

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS 524.2	Associated sample(s): 01-02	2 Batch: WG321926-5			
Chloromethane	97	-	70-130	-	
Bromomethane	105	-	70-130	-	
Vinyl chloride	110	-	70-130	-	
Chloroethane	118	-	70-130	-	
1,1-Dichloroethene	107	-	70-130	-	
trans-1,2-Dichloroethene	111	-	70-130	-	
cis-1,2-Dichloroethene	115	-	70-130	-	
Trichloroethene	110	-	70-130	-	
1,2-Dichlorobenzene	91	-	70-130	-	
1,3-Dichlorobenzene	94	-	70-130	-	
1,4-Dichlorobenzene	91	-	70-130	-	
Styrene	108	-	70-130	-	
o-Xylene	110	-	70-130	-	
1,1-Dichloropropene	115	-	70-130	-	
2,2-Dichloropropane	107	-	70-130	-	
1,1,1,2-Tetrachloroethane	97	-	70-130	-	
1,2,3-Trichloropropane	94	-	70-130	-	
Bromochloromethane	114	-	70-130	-	
n-Butylbenzene	93	-	70-130	-	
Dichlorodifluoromethane	96	-	70-130	-	
Hexachlorobutadiene	92	-	70-130	-	

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

arameter	LCS r %Recovery					RPD	RPD Limits
olatile Organics by GC/MS 524.2 As	ssociated sample(s): 01-02	Batch: WG321926-5					
Isopropylbenzene	101	-	70-130	-			
p-Isopropyltoluene	100	-	70-130	-			
Naphthalene	77	-	70-130	-			
n-Propylbenzene	110	-	70-130	-			
sec-Butylbenzene	105	-	70-130	-			
tert-Butylbenzene	109	-	70-130	-			
1,2,3-Trichlorobenzene	82	-	70-130	-			
1,2,4-Trichlorobenzene	79	-	70-130	-			
1,2,4-Trimethylbenzene	101	-	70-130	-			
1,3,5-Trimethylbenzene	110	-	70-130	-			
Bromobenzene	101	-	70-130	-			
o-Chlorotoluene	106	-	70-130	-			
p-Chlorotoluene	101	-	70-130	-			
Dibromomethane	111	-	70-130	-			
1,2-Dibromoethane	92	-	70-130	-			
1,2-Dibromo-3-chloropropane	76	-	70-130	-			
1,3-Dichloropropane	111	-	70-130	-			
Methyl tert butyl ether	107	-	70-130	-			

Project Number: 12700053

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 A	ssociated sample(s): 01-02	Batch: WG321926-5			

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	100		80-120	
4-Bromofluorobenzene	105		80-120	

Matrix Spike Analysis Batch Quality Control

Project Number: 12700053

Lab Number: L0806993 Report Date: 05/21/08

MSD MS Recovery MS Found %Recovery MSD Found %Recovery Limits RPD **RPD** Limits Native Sample MS Added Parameter Volatile Organics by GC/MS 524.2 Associated sample(s): 01-02 QC Batch ID: WG321926-1 QC Sample: L0806945-01 Client ID: MS Sample Methylene chloride ND 4 4.1 103 70-130 20 --ND 1.1-Dichloroethane 4 4.8 120 70-130 20 ---Chloroform ND 4 4.7 117 70-130 20 --Carbon tetrachloride ND 4.7 4 119 70-130 20 --1,2-Dichloropropane ND 4 4.7 118 70-130 20 --Dibromochloromethane ND 4 4.2 106 70-130 20 ---1,1,2-Trichloroethane ND 4 4.4 111 70-130 20 --Tetrachloroethene ND 70-130 20 4 5.1 128 ---Chlorobenzene ND 4 4.3 70-130 20 108 --Trichlorofluoromethane ND 4 4.3 107 70-130 20 --1,2-Dichloroethane ND 4 4.6 70-130 20 115 --1,1,1-Trichloroethane ND 4 4.9 122 70-130 20 --Bromodichloromethane ND 4 4.6 115 --70-130 20 trans-1,3-Dichloropropene ND 4 3.8 94 70-130 20 --cis-1,3-Dichloropropene ND 4 4.1 103 70-130 20 -_ Bromoform ND 4 3.6 90 70-130 20 ---1.1.2.2-Tetrachloroethane ND 4 3.6 90 70-130 20 _ --Benzene ND 4 5.2 130 -70-130 20 --Toluene ND 4 5.2 130 70-130 20 -_ Ethylbenzene ND 4 4.5 113 70-130 20 --p/m-Xylene ND 8 9.2 115 70-130 20 --

Matrix Spike Analysis Batch Quality Control

Project Name:	WAPOLE PARK SOUTH
---------------	-------------------

Project Number: 12700053

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	524.2 Associated	sample(s): 01-0	02 QC Bat	tch ID: WG321	926-1 QC S	ample: L080694	5-01 Client	ID: MS S	Sample
Chloromethane	ND	4	4.0	100	-	-	70-130	-	20
Bromomethane	ND	4	4.4	111	-	-	70-130	-	20
Vinyl chloride	ND	4	4.9	123	-	-	70-130	-	20
Chloroethane	ND	4	5.0	125	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.7	117	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.6	114	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	4.8	119	-	-	70-130	-	20
Trichloroethene	ND	4	4.6	116	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.8	94	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	3.9	96	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.8	94	-	-	70-130	-	20
Styrene	ND	4	4.4	110	-	-	70-130	-	20
o-Xylene	ND	4	4.4	111	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	5.0	126	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.5	113	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	4.0	100	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.6	90	-	-	70-130	-	20
Bromochloromethane	ND	4	4.6	115	-	-	70-130	-	20
n-Butylbenzene	ND	4	4.0	101	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	4.5	112	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.0	100	-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name:	WAPOLE PARK SOUTH
---------------	-------------------

Project Number: 12700053 Lab Number: L0806993

Report Date: 05/21/08

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS	S 524.2 Associated	sample(s): 01-	02 QC Bat	ch ID: WG321	926-1 QC S	Sample: L080694	45-01 Client	D: MS S	Sample
Isopropylbenzene	ND	4	4.2	106	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	4.3	107	-	-	70-130	-	20
Naphthalene	ND	4	3.1	78	-	-	70-130	-	20
n-Propylbenzene	ND	4	4.6	116	-	-	70-130	-	20
sec-Butylbenzene	ND	4	4.5	113	-	-	70-130	-	20
tert-Butylbenzene	ND	4	4.6	116	-	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.4	84	-	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.3	83	-	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	4.3	107	-	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	4.6	115	-	-	70-130	-	20
Bromobenzene	ND	4	4.1	103	-	-	70-130	-	20
o-Chlorotoluene	ND	4	4.3	109	-	-	70-130	-	20
p-Chlorotoluene	ND	4	4.2	104	-	-	70-130	-	20
Dibromomethane	ND	4	4.4	110	-	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.6	91	-	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.1	77	-	-	70-130	-	20
1,3-Dichloropropane	ND	4	4.4	109	-	-	70-130	-	20
Methyl tert butyl ether	ND	4	4.2	105	-	_	70-130	-	20

80-120

Project Name:	WAPOLE PARK SOUTH	Matrix Spike Analysis Batch Quality Control		Lab Number:	L0806993
Project Number:	12700053	MS	MSD	Report Date:	05/21/08

Parameter	Native Sample MS Add	ed MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by GC/M	S 524.2 Associated sample(s): 01-02 QC Bate	ch ID: WG321	926-1 QC Sar	nple: L080694	5-01 Client I	D: MS S	Sample
		Μ	S	N	ISD	Acceptan	се	
	Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria		
	1,2-Dichlorobenzene-d4	99				80-120)	

101

4-Bromofluorobenzene

Lab Duplicate Analysis Batch Quality Control

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0806993 05/21/08 Report Date:

arameter		Native	Sample	Duplicate Sa	ample Ur	nits	RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s):	01-02	QC Batch ID:	WG321926-2	QC Sample:	L0806945-02	2 Client ID:	DUP Sample
Methylene chloride		Ν	D	ND	U	g/l	NC	20
1,1-Dichloroethane		Ν	D	ND	U	g/l	NC	20
Chloroform		Ν	D	ND	U	g/l	NC	20
Carbon tetrachloride		Ν	D	ND	U	g/l	NC	20
1,2-Dichloropropane		N	D	ND	U	g/l	NC	20
Dibromochloromethane		N	D	ND	U	g/l	NC	20
1,1,2-Trichloroethane		N	D	ND	U	g/l	NC	20
Tetrachloroethene		N	D	ND	U	g/l	NC	20
Chlorobenzene		N	D	ND	U	g/l	NC	20
Trichlorofluoromethane		N	D	ND	U	g/l	NC	20
1,2-Dichloroethane		N	D	ND	U	g/l	NC	20
1,1,1-Trichloroethane		N	D	ND	U	g/l	NC	20
Bromodichloromethane		N	D	ND	U	g/l	NC	20
trans-1,3-Dichloropropene		N	D	ND	U	g/l	NC	20
cis-1,3-Dichloropropene		N	D	ND	U	g/l	NC	20
Bromoform		N	D	ND	U	g/l	NC	20
1,1,2,2-Tetrachloroethane		Ν	D	ND	U	g/l	NC	20
Benzene		Ν	D	ND	U	g/l	NC	20
Toluene		Ν	D	ND	U	g/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0806993 Report Date: 05/21/08

rameter		Native S	ample	Duplicate S	Sample U	nits	RPD	RPD Limits
latile Organics by GC/MS 524.2	Associated sample(s):	01-02	QC Batch ID:	WG321926-2	QC Sample:	L0806945-02	Client ID:	DUP Sample
Ethylbenzene		NE)	ND	ι	ıg/l	NC	20
p/m-Xylene		NE)	ND	ι	ıg/l	NC	20
Chloromethane		NE)	ND	ι	ıg/l	NC	20
Bromomethane		NE)	ND	ι	ıg/l	NC	20
Vinyl chloride		NE)	ND	ι	ıg/l	NC	20
Chloroethane		NE)	ND	ι	ıg/l	NC	20
1,1-Dichloroethene		NE)	ND	ι	ıg/l	NC	20
trans-1,2-Dichloroethene		NE)	ND	ι	ıg/l	NC	20
cis-1,2-Dichloroethene		NE)	ND	ι	ıg/l	NC	20
Trichloroethene		NE)	ND	ι	ıg/l	NC	20
1,2-Dichlorobenzene		NE)	ND	ι	ıg/l	NC	20
1,3-Dichlorobenzene		NE)	ND	ι	ıg/l	NC	20
1,4-Dichlorobenzene		NE)	ND	ι	ıg/l	NC	20
Styrene		NE)	ND	ι	ıg/l	NC	20
o-Xylene		NE)	ND	ι	ıg/l	NC	20
1,1-Dichloropropene		NE)	ND	ι	ıg/l	NC	20
2,2-Dichloropropane		NE)	ND	ι	ıg/l	NC	20
1,1,1,2-Tetrachloroethane		NE)	ND	ι	ıg/l	NC	20
1,2,3-Trichloropropane		NE)	ND	ι	ıg/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0806993 05/21/08 Report Date:

arameter		Native	Sample	Duplicate Sa	ample Ur	nits	RPD	RPD Limits
olatile Organics by GC/MS 524.2	Associated sample(s):	01-02	QC Batch ID:	WG321926-2	QC Sample:	L0806945-02	2 Client ID:	DUP Sample
Bromochloromethane		Ν	1D	ND	U	g/l	NC	20
n-Butylbenzene		١	1D	ND	U	g/l	NC	20
Dichlorodifluoromethane		١	1D	ND	U	g/l	NC	20
Hexachlorobutadiene		Ν	1D	ND	U	g/l	NC	20
Isopropylbenzene		Ν	1D	ND	U	g/l	NC	20
p-Isopropyltoluene		Ν	1D	ND	U	g/l	NC	20
Naphthalene		Ν	1D	ND	U	g/l	NC	20
n-Propylbenzene		Ν	1D	ND	U	g/l	NC	20
sec-Butylbenzene		Ν	1D	ND	U	g/l	NC	20
tert-Butylbenzene		Ν	1D	ND	U	g/l	NC	20
1,2,3-Trichlorobenzene		Ν	1D	ND	U	g/l	NC	20
1,2,4-Trichlorobenzene		Ν	1D	ND	U	g/l	NC	20
1,2,4-Trimethylbenzene		Ν	1D	ND	U	g/l	NC	20
1,3,5-Trimethylbenzene		Ν	1D	ND	U	g/l	NC	20
Bromobenzene		Ν	1D	ND	U	g/l	NC	20
o-Chlorotoluene		Ν	1D	ND	U	g/l	NC	20
p-Chlorotoluene		١	1D	ND	U	g/l	NC	20
Dibromomethane		١	1D	ND	U	g/l	NC	20
1,2-Dibromoethane		Ν	1D	ND	U	g/l	NC	20

05210815:15

Project Name:WAPOLE PARK SOUTHProject Number:12700053

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS 524.2 Associated same	ole(s): 01-02 QC Batch ID:	WG321926-2 QC Sa	mple: L0806945-	02 Client ID:	DUP Sample
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	113		111		80-120	
4-Bromofluorobenzene	92		91		80-120	

05210815:15

METALS

05210815:15 **Project Name:** WAPOLE PARK SOUTH Lab Number: L0806993 **Project Number: Report Date:** 12700053 05/21/08 SAMPLE RESULTS Lab ID: L0806993-01 Date Collected: 05/14/08 13:10 Client ID: RIZ-3-051408 Date Received: 05/14/08 Sample Location: WALPOLE, MA Field Prep: **Field Filtered** Matrix: Water Analytical Method Dilution Date Date Prep Method Factor Prepared Analyzed Parameter Result Qualifier Units RDL Analyst Dissolved Metals by MCP 6000/7000 series

	,						
Arsenic, Dissolved	ND	mg/l	0.005	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Barium, Dissolved	0.044	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	05/20/08 15:00 05/21/08 12:09 EPA 7470A	64,7470A	RC
Selenium, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	05/15/08 18:30 05/19/08 16:07 EPA 3005A	60,6010B	AI

05210815:15 **Project Name:** WAPOLE PARK SOUTH Lab Number: L0806993 **Project Number: Report Date:** 12700053 05/21/08 SAMPLE RESULTS Lab ID: L0806993-02 Date Collected: 05/14/08 13:42 Client ID: MW-9-051408 Date Received: 05/14/08 Field Prep: **Field Filtered** Sample Location: WALPOLE, MA Matrix: Water Analytical Method Dilution Date Date Prep Method Factor Prepared Analyzed Parameter Result Qualifier Units RDL Analyst Dissolved Metals by MCP 6000/7000 series

Arsenic, Dissolved	ND	mg/l	0.005	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Barium, Dissolved	0.013	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	05/20/08 15:00 05/21/08 12:10 EPA 7470A	64,7470A	RC
Selenium, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	05/15/08 18:30 05/19/08 16:10 EPA 3005A	60,6010B	AI

05210815:15

Project Name:WAPOLE PARK SOUTHProject Number:12700053

 Lab Number:
 L0806993

 Report Date:
 05/21/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01-	02 Batch:	WG322026-	1		
Arsenic, Dissolved	ND	mg/l	0.005	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Barium, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	05/15/08 18:30	05/19/08 15:12	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	-	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MCF	9 6000/7000 series f	or sampl	e(s): 01-	02 Batch	: WG322565-	1		
Mercury, Dissolved	ND	mg/l	0.0002	1	05/20/08 15:00	05/21/08 11:44	64,7470A	RC

Prep Information

Digestion Method: EPA 7470A

Project Name: WAPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01-02	Batch:	WG322026-2 WG322026-3		
Arsenic, Dissolved	101		104	80-120	3	20
Barium, Dissolved	90		92	80-120	2	20
Cadmium, Dissolved	104		106	80-120	2	20
Chromium, Dissolved	90		95	80-120	5	20
Lead, Dissolved	94		96	80-120	2	20
Selenium, Dissolved	95		103	80-120	8	20
Silver, Dissolved	94		95	80-120	1	20
issolved Metals by MCP 6000/7000 series	Associated sample(s):	01-02	Batch:	WG322565-2 WG322565-3		
Mercury, Dissolved	104		106	80-120	4	20

05210815:15

Project Name:WAPOLE PARK SOUTHProject Number:12700053

Lab Number: L0806993 Report Date: 05/21/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0806993-01A	Vial HCI preserved	А	N/A	4.6 C	Y	Absent	524.2
L0806993-01B	Vial HCI preserved	А	N/A	4.6 C	Y	Absent	524.2
L0806993-01C	Plastic 500ml HNO3 preserved	A	<2	4.6 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-PB- 6010S,MCP-7470S,MCP-BA- 6010S,MCP-SE-6010S
L0806993-02A	Vial HCI preserved	А	N/A	4.6 C	Y	Absent	524.2
L0806993-02B	Vial HCI preserved	А	N/A	4.6 C	Y	Absent	524.2
L0806993-02C	Plastic 500ml HNO3 preserved	A	<2	4.6 C	Y	Absent	MCP-CR-6010S,MCP-AG- 6010S,MCP-AS-6010S,MCP- CD-6010S,MCP-PB-

6010S,MCP-7470S,MCP-BA-6010S,MCP-SE-6010S

Project Number: 12700053

Lab Number: L0806993 Report Date: 05/21/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0806993

 Report Date:
 05/21/08

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

will not start until any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side.	/ DateTime ソーソイ	d By:	Received By	Date/Time S.W.W /4/ YI		Rejurquisshed By:	Rejuqu	or CT RCP?	NA MCP or CT RC
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock			ACL N	Container Type Preservative	Q			PLEASE ANSWER QUESTIONS ABOVE!	PLEASEANSWE
			.						
÷			X	2	()yz h	* ();	*	MW-9-05/408	2
-~-			XX	145	1310 bu	5-14-08 13.		R12-3-051403	6983.
Sample Specific Comments s				Initia	n Sali pie Time Matrix	Date T		Sample ID	ALPHA Lab ID (Lab Use Only)
(Please specify below)			VOL.	0	Camp	Colloction			
			A S men						
Done #			NAL) dY.			ction Limits:	nments/Dete	Other Project Specific Requirements/Comments/Detection Limits:	Other Project Sp
Eiltration we kent					2/ Time:	M	Date Due:	These samples have been previously analyzed by Alpha	These samples ha
			\č / /	if pre-approved!)	RUSH (only confirmed if pre-approved!)		Standard	5 I	
stocols) Required?	sthods Required? Ible Corfidence Pro	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Corfidence Protocols) Required?	TYes DANO			Turn-Around Time	Turn-Ar	502 203 X	Phone: 50%
MA MCP PRESUMPTIVE CERTAINTY CT REASONABLE CONFIDENCE PROTOCOLS	-CT REASONAB	TIVE CERTAINTY	MA MCP PRESUMP			uote #:	ALPHA Quote #:	the me	Frank
	106 Gtu-1	O KAN R6	MA M C	Tobas	Cannor Pry	1	Project Manage:	1	
		ements/Report Limi	Regulatory Requirements/Report Limits	4	whe m	interly	Project #:	Tack Rizzo	Client: Tota
	: 	Add'l Deliverables			and I	-	Project Location:		atic
A same as Client info PO #:	A same as			LJL2	look fack s	Project Name: Luck pol	Project Na	FAX: 508-822-3288	30
Billing Information		n - Data Deliverables	Report Informatio			Project Information	Project I	RAYNHAM MA	
ALPHA Job #: 60806993	ALPHA .	5/14	Date Rec'd in Lab:		PAGE	TODY	OF CUS	CHAIN OF CUSTODY	
		~			-			-	

Final Report
 Re-Issued Report
 Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Tetra Tech Rizzo One Grant Street - P.O. Box 9005 Framingham, MA 01701 Attn: Ray Johnson

Project: Walpole Park South-Walpole, MA Project 12700058

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA87371-01	RIZ-10-GW	Ground Water	11-Nov-08 14:35	12-Nov-08 17:15
SA87371-02	RIZ-8-GW	Ground Water	11-Nov-08 13:50	12-Nov-08 17:15
SA87371-03	RIZ-3-GW	Ground Water	11-Nov-08 15:40	12-Nov-08 17:15
SA87371-04	MW-9-GW	Ground Water	11-Nov-08 11:50	12-Nov-08 17:15
SA87371-05	MW-2-GW	Ground Water	11-Nov-08 09:50	12-Nov-08 17:15
SA87371-06	RIZ-9-GW	Ground Water	11-Nov-08 11:00	12-Nov-08 17:15
SA87371-07	MW-3-GW	Ground Water	11-Nov-08 08:35	12-Nov-08 17:15
SA87371-08	GHC-6-GW	Ground Water	11-Nov-08 09:20	12-Nov-08 17:15
SA87371-09	Trip Blank 111108	Aqueous	11-Nov-08 00:00	12-Nov-08 17:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes.

Please note that this report contains 43 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

CASE NARRATIVE:

The samples were received 3.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-2.0 degrees Celsius was used immediately upon receipt of the samples.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method.

According to WSC-CAM 5/2004 Rev.4, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended 70%-130% recovery range, a range has been set based on historical control limits.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 624

Laboratory Control Samples:

8111076-BSD1

The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.

1,1,1-Trichloroethane 1,1-Dichloroethene Carbon tetrachloride Trichlorofluoromethane (Freon 11) Vinyl chloride

8111194-BSD1

Analyte out of acceptance range.

2-Hexanone (MBK) Vinyl chloride

EPA 624

Spikes:

8111194-MS1 Source: SA87191-03

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene Benzene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene

8111194-MSD1 Source: SA87191-03

Analyte out of acceptance range.

Toluene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

1,1-Dichloroethene Benzene Tetrachloroethene trans-1,2-Dichloroethene Trichloroethene

8111291-MS1 Source: SA87501-01

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

8111291-MSD1 Source: SA87501-01

Analyte out of acceptance range.

1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzene Bromodichloromethane Bromoform Chlorobenzene Chloroform cis-1,3-Dichloropropene Ethylbenzene Toluene trans-1,3-Dichloropropene

The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Carbon tetrachloride

SW846 6010B

SW846 6010B

Duplicates:

8111042-DUP1 Source: SA87401-01

Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.

Lead

RIZ-	ble Identification 10-GW /371-01			<u>t Project #</u> 700058	G	Matrix bround Wate		<u>n Date/Time</u> 7-08 14:35	_	Received 12-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
'olatile (Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	d by method SW846 5030 Water N	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	105		70-130	%			"	"	"	
		100		70-130				"	"		
	1,2-Dichloroethane-d4	107		70-130			"	"	"		
	Dibromofluoromethane	106		70-130				"	"	"	
	Ietals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Aetals by EPA 6000/7000 Series Metl	hods									
440-22-4	0	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
440-39-3	Barium	88.4		µg/l	5.0	1	"	"	"	"	

RIZ-1	<u>le Identification</u> 10-GW 371-01			<u>: Project #</u> 700058	G	<u>Matrix</u> fround Wate		<u>n Date/Tim</u> v-08 14:35	_	<u>Received</u> 12-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	letals by EPA 6000/7000 Seri	es Methods									
7440-41-7	Beryllium	BRL		µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		µg/l	2.5	1	"	"	"	"	
7440-47-3	Chromium	BRL		µg/l	5.0	1		"		"	
7440-02-0	Nickel	BRL		µg/l	5.0	1		"		"	
7439-92-1	Lead	BRL		µg/l	7.5	1		"		"	
7440-36-0	Antimony	BRL		µg/l	6.0	1		"	"	"	
7782-49-2	Selenium	BRL		µg/l	15.0	1		"	"	"	
7440-28-0	Thallium	11.6		µg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		µg/l	5.0	1		"	"	"	
7440-66-6	Zinc	36.3		µg/l	7.5	1		"	"	"	
Soluble M	letals by EPA 200 Series Met	hods									
7439-97-6	Mercury	BRL		µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

RIZ-	<u>ele Identification</u> 8-GW 1371-02			<u>t Project #</u> 700058	G	Matrix Fround Wate		<u>n Date/Tim</u> 7-08 13:50		Receive 12-Nov-(-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
'olatile (Organic Compounds										
olatile (Drganic Compounds by GCMS										
repared	by method SW846 5030 Water M	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	18-Nov-08	18-Nov-08	8111291	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	86		70-130	%				"	"	
		97		70-130			"		"		
	1,2-Dichloroethane-d4	107		70-130			"		"	"	
	Dibromofluoromethane	112		70-130				"	"	"	
	Ietals by EPA 200/6000 Series Meth										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Meth	hods									
440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
440-39-3	Barium	27.6		µg/l	5.0	1	"	"			

Sample Identification RIZ-8-GW SA87371-02			<u>Project #</u> 00058	G	<u>Matrix</u> fround Wate	-	<u>n Date/Tim</u> 7-08 13:50	_	<u>Received</u> 12-Nov-0	-
CAS No. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble Metals by EPA 6000/7000 Serie	s Methods									
7440-41-7 Beryllium	BRL		µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9 Cadmium	BRL		µg/l	2.5	1	"	"	"		
7440-47-3 Chromium	BRL		µg/l	5.0	1	"	"	"		
7440-02-0 Nickel	BRL		µg/l	5.0	1	"	"	"		
7439-92-1 Lead	BRL		µg/l	7.5	1	"	"	"		
7440-36-0 Antimony	BRL		µg/l	6.0	1	"	"	"	"	
7782-49-2 Selenium	BRL		µg/l	15.0	1	"	"	"	"	
7440-28-0 Thallium	BRL		µg/l	5.0	1	"	"	"	"	
7440-62-2 Vanadium	BRL		µg/l	5.0	1	"	"	"	"	
7440-66-6 Zinc	26.4		µg/l	7.5	1		"	"	"	
Soluble Metals by EPA 200 Series Meth	ods									
7439-97-6 Mercury	BRL		µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	х

RIZ-3	<u>le Identification</u> 3-GW /371-03			<u>it Project #</u> 700058	C	<u>Matrix</u> Fround Wate		<u>n Date/Tim</u> 7-08 15:40	_	Received 12-Nov-0	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
'olatile (Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	d by method SW846 5030 Water N	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	104		70-130	%			"	"		
		99		70-130			"	"	"		
	1,2-Dichloroethane-d4	114		70-130				"			
	Dibromofluoromethane	109		70-130				"			
	Ietals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Metl	hods									
440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		μg/l	4.0	1	"	"	"	"	
440-39-3	Barium	86.2		µg/l	5.0	1	"	"	"	"	

Sample Identification RIZ-3-GW SA87371-03		<u>Client Project</u> 12700058		<u>Matrix</u> Ground Wat		<u>n Date/Tim</u> 7-08 15:40	_	<u>Received</u> 12-Nov-0	-
CAS No. Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble Metals by EPA 6000/7000	Series Methods								
7440-41-7 Beryllium	BRL	µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9 Cadmium	BRL	µg/l	2.5	1		"	"		
7440-47-3 Chromium	BRL	µg/l	5.0	1	"	"	"		
7440-02-0 Nickel	BRL	µg/l	5.0	1	"	"	"		
7439-92-1 Lead	BRL	µg/l	7.5	1	"	"	"		
7440-36-0 Antimony	BRL	µg/l	6.0	1	"	"	"	"	
7782-49-2 Selenium	BRL	µg/I	15.0	1	"	"	"	"	
7440-28-0 Thallium	BRL	μg/l	5.0	1	"	"	24-Nov-08	"	
7440-62-2 Vanadium	BRL	µg/l	5.0	1	"	"	21-Nov-08	"	
7440-66-6 Zinc	21.0	µg/l	7.5	1	"	"	"	"	
Soluble Metals by EPA 200 Series	Methods								
7439-97-6 Mercury	BRL	µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	х

MW-	<u>ble Identification</u> 9-GW 7371-04			<u>t Project #</u> 700058	G	<u>Matrix</u> Fround Wate		<u>n Date/Tim</u> 7-08 11:50		Received 12-Nov-0	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
olatile C	Organic Compounds										
olatile C	Organic Compounds by GCMS										
repared	d by method SW846 5030 Water M	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	2.2		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"		Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5		BRL		µg/l	1.0	1	"	"	"	"	х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	2.7		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	х
79601-23-	⁻¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1		"	"		Х
urroaate	e recoveries:										
60-00-4	4-Bromofluorobenzene	103		70-130	%		"	"	"		
	Toluene-d8	100		70-130			"	"	"		
	1,2-Dichloroethane-d4	113		70-130				"	"	"	
	Dibromofluoromethane	110		70-130				"	"	"	
	Aetals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Meth	hods									
140-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
	Barium	18.6		µg/l	5.0	1	"	"	"	"	

Sample Identification MW-9-GW SA87371-04		<u>Client Proje</u> 1270005		<u>Matrix</u> Ground Wat		<u>n Date/Tim</u> 7-08 11:50	_	<u>Received</u> 12-Nov-0	-
CAS No. Analyte(s)	Result	Flag Unit	ts *RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble Metals by EPA 6000/7000 Se	eries Methods								
7440-41-7 Beryllium	BRL	μg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9 Cadmium	BRL	μg/l	2.5	1	"	"	"		
7440-47-3 Chromium	BRL	μg/l	5.0	1	"	"	"	"	
7440-02-0 Nickel	BRL	μg/l	5.0	1	"	"	"	"	
7439-92-1 Lead	BRL	μg/l	7.5	1	"	"	"	"	
7440-36-0 Antimony	BRL	μg/l	6.0	1	"	"	"	"	
7782-49-2 Selenium	BRL	μg/	15.0	1	"	"	"	"	
7440-28-0 Thallium	BRL	μg/	5.0	1	"	"	"	"	
7440-62-2 Vanadium	BRL	μg/l	5.0	1	"	"	"	"	
7440-66-6 Zinc	34.7	μg/l	7.5	1	"	"	"	"	
Soluble Metals by EPA 200 Series M	lethods								
7439-97-6 Mercury	BRL	μg/	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

MW-	<u>le Identification</u> 2-GW (371-05			<u>tt Project #</u> 700058	C	<u>Matrix</u> Fround Wate		<u>n Date/Tim</u> 7-08 09:50	_	Received 12-Nov-0	_
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
olatile (Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	by method SW846 5030 Water M	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"		х
urroaate	recoveries:										
60-00-4	4-Bromofluorobenzene	104		70-130	%		"	"	"		
	Toluene-d8	99		70-130			"	"	"	"	
	1,2-Dichloroethane-d4	111		70-130			"	"	"	"	
	Dibromofluoromethane	109		70-130				"			
	Ietals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Meth	hods									
440-22-4		BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
	Barium	129		µg/l	5.0	1	"	"	"	"	

<u>Sample</u> MW-2 SA873				<u>Project #</u> 00058	G	<u>Matrix</u> fround Wate		<u>n Date/Tim</u> -08 09:50	_	Received 2-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	etals by EPA 6000/7000	Series Methods									
7440-41-7	Beryllium	BRL		µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		µg/l	2.5	1		"	"	"	
7440-47-3	Chromium	BRL		µg/l	5.0	1		"		"	
7440-02-0	Nickel	BRL		µg/l	5.0	1		"		"	
7439-92-1	Lead	BRL		µg/l	7.5	1		"		"	
7440-36-0	Antimony	BRL		µg/l	6.0	1	"	"		"	
7782-49-2	Selenium	BRL		µg/l	15.0	1		"	"	"	
7440-28-0	Thallium	BRL		µg/l	5.0	1		"	"	"	
7440-62-2	Vanadium	BRL		µg/l	5.0	1		"	"	"	
7440-66-6	Zinc	28.0		µg/l	7.5	1		"	"	"	
Soluble M	etals by EPA 200 Series	Methods									
7439-97-6	Mercury	BRL		µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

RIZ-9	<u>ele Identification</u> 9-GW 1371-06			<u>t Project #</u> 700058	G	<u>Matrix</u> Fround Wat		<u>n Date/Tim</u> 7-08 11:00		Received 12-Nov-0	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
'olatile C	Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	d by method SW846 5030 Water N	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111077	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
urroaate	recoveries:										
60-00-4	4-Bromofluorobenzene	101		70-130	%		"	"			
	Toluene-d8	99		70-130			"	"			
	1,2-Dichloroethane-d4	111		70-130			"	"	"		
	Dibromofluoromethane	109		70-130			"	"	"		
	1etals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Mether	hods									
440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
	Barium	14.8		µg/l	5.0	1	"	"	"		

Sample Identification RIZ-9-GW SA87371-06		<u>Client Projec</u> 12700058		<u>Matrix</u> Ground Wat		<u>n Date/Tim</u> 7-08 11:00	_	<u>Received</u> 12-Nov-0	_
CAS No. Analyte(s)	Result	Flag Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble Metals by EPA 6000/7000	Series Methods								
7440-41-7 Beryllium	BRL	µg/I	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9 Cadmium	BRL	µg/I	2.5	1		"	"		
7440-47-3 Chromium	BRL	µg/l	5.0	1	"	"			
7440-02-0 Nickel	BRL	µg/l	5.0	1	"	"			
⁷⁴³⁹⁻⁹²⁻¹ Lead	BRL	µg/l	7.5	1	"	"			
7440-36-0 Antimony	BRL	µg/l	6.0	1	"	"	"	"	
7782-49-2 Selenium	BRL	µg/I	15.0	1	"	"	"	"	
7440-28-0 Thallium	BRL	µg/l	5.0	1	"	"	24-Nov-08	"	
7440-62-2 Vanadium	BRL	µg/l	5.0	1	"	"	21-Nov-08	"	
7440-66-6 Zinc	20.0	µg/l	7.5	1	"	"	"	"	
Soluble Metals by EPA 200 Series	Methods								
7439-97-6 Mercury	BRL	μg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	х

MW-	ile Identification 3-GW (371-07			<u>tt Project #</u> 700058	C	<u>Matrix</u> Fround Wate		<u>n Date/Tim</u> 7-08 08:35	_	Received 12-Nov-0	_
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
olatile C	Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	by method SW846 5030 Water N	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	17-Nov-08	17-Nov-08	8111194	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
8-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	Х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	Х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1	"	"	"	"	Х
urrogate	recoveries:										
60-00-4	4-Bromofluorobenzene	81		70-130	%		"	"	"	"	
	Toluene-d8	95		70-130			"	"	"		
	1,2-Dichloroethane-d4	127		70-130			"	"	"		
	Dibromofluoromethane	119		70-130			"	"	"		
	1etals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Metl	hods									
440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
	Barium	11.4		µg/l	5.0	1	"	"	"		

MW-3	le Identification 3-GW 371-07			<u>: Project #</u> 700058	G	<u>Matrix</u> fround Wate		<u>n Date/Tim</u> 7-08 08:35	_	<u>Received</u> 12-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble M	etals by EPA 6000/7000 Ser	ies Methods									
7440-41-7	Beryllium	BRL		µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		µg/l	2.5	1		"	"	"	
7440-47-3	Chromium	BRL		µg/l	5.0	1		"	"		
7440-02-0	Nickel	BRL		µg/l	5.0	1		"	"		
7439-92-1	Lead	8.8		µg/l	7.5	1		"	"		
7440-36-0	Antimony	BRL		µg/l	6.0	1		"	"		
7782-49-2	Selenium	BRL		µg/l	15.0	1	"	"	"		
7440-28-0	Thallium	BRL		µg/l	5.0	1		"	"	"	
7440-62-2	Vanadium	BRL		µg/l	5.0	1	"	"	"		
7440-66-6	Zinc	34.5		µg/l	7.5	1	"	"	"		
Soluble M	etals by EPA 200 Series Me	thods									
7439-97-6	Mercury	BRL		µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

GHC	-6-GW 371-08			<u>t Project #</u> 700058	G	<u>Matrix</u> fround Wate		<u>n Date/Tim</u> 7-08 09:20	_	<u>Received</u> 12-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
olatile C	Organic Compounds										
olatile C	Drganic Compounds by GCMS										
repared	by method SW846 5030 Water M	IS									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
1-43-2	Benzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-27-4	Bromodichloromethane	BRL		µg/l	1.0	1	"	"	"	"	х
5-25-2	Bromoform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-83-9	Bromomethane	BRL		µg/l	2.0	1	"	"	"	"	Х
8-93-3	2-Butanone (MEK)	BRL		µg/l	10.0	1	"	"	"	"	
6-23-5	Carbon tetrachloride	BRL		µg/l	1.0	1	"	"	"	"	Х
08-90-7	Chlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-00-3	Chloroethane	BRL		µg/l	2.0	1	"	"	"	"	Х
7-66-3	Chloroform	BRL		µg/l	1.0	1	"	"	"	"	Х
4-87-3	Chloromethane	BRL		µg/l	2.0	1	"	"	"	"	Х
24-48-1	Dibromochloromethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-50-1	1,2-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	х
41-73-1	1,3-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	х
06-46-7	1,4-Dichlorobenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
5-34-3	1,1-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
07-06-2	1,2-Dichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
5-35-4	1,1-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	Х
56-59-2	cis-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	
56-60-5	trans-1,2-Dichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
3-87-5	1,2-Dichloropropane	BRL		µg/l	1.0	1	"	"	"	"	х
0061-01-5	cis-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
0061-02-6	trans-1,3-Dichloropropene	BRL		µg/l	1.0	1	"	"	"	"	Х
00-41-4	Ethylbenzene	BRL		µg/l	1.0	1	"	"	"	"	Х
91-78-6	2-Hexanone (MBK)	BRL		µg/l	10.0	1	"	"	"	"	
634-04-4	Methyl tert-butyl ether	BRL		µg/l	1.0	1	"	"	"	"	
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		µg/l	10.0	1	"	"	"	"	
5-09-2	Methylene chloride	BRL		µg/l	10.0	1	"	"	"	"	х
00-42-5	Styrene	BRL		µg/l	1.0	1	"	"	"	"	
9-34-5	1,1,2,2-Tetrachloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
27-18-4	Tetrachloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
08-88-3	Toluene	BRL		µg/l	1.0	1	"	"	"	"	х
1-55-6	1,1,1-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	х
9-00-5	1,1,2-Trichloroethane	BRL		µg/l	1.0	1	"	"	"	"	Х
9-01-6	Trichloroethene	BRL		µg/l	1.0	1	"	"	"	"	х
5-69-4	Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0	1	"	"	"	"	Х
5-01-4	Vinyl chloride	BRL		µg/l	1.0	1	"	"	"	"	Х
79601-23-	¹ m,p-Xylene	BRL		µg/l	2.0	1	"	"	"	"	Х
5-47-6	o-Xylene	BRL		µg/l	1.0	1		"	"	"	Х
urroaate	recoveries:										
60-00-4	4-Bromofluorobenzene	84		70-130	%			"	"	"	
	Toluene-d8	95		70-130			"	"	"	"	
	1,2-Dichloroethane-d4	33 127		70-130				"	"	"	
	Dibromofluoromethane	120		70-130				"	"	"	
	Ietals by EPA 200/6000 Series Metho										
	Filtration	Field Filtered		N/A		1	EPA 200.7/3005A	14-Nov-08	14-Nov-08	8111039	
oluble N	Ietals by EPA 6000/7000 Series Meth	hods									
440-22-4	Silver	BRL		µg/l	5.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
440-38-2	Arsenic	BRL		µg/l	4.0	1	"	"	"	"	
	Barium	36.8		µg/l	5.0	1	"	"	"	"	

GHĊ	-6-GW 371-08			<u>Project #</u> 700058	G	<u>Matrix</u> fround Wate		<u>n Date/Tim</u> 7-08 09:20	_	<u>Received</u> 12-Nov-0	-
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert.
Soluble N	letals by EPA 6000/7000 Serie	es Methods									
7440-41-7	Beryllium	BRL		µg/l	2.0	1	SW846 6010B	21-Nov-08	21-Nov-08	8111042	
7440-43-9	Cadmium	BRL		µg/l	2.5	1		"	"	"	
7440-47-3	Chromium	BRL		µg/l	5.0	1		"	"	"	
7440-02-0	Nickel	BRL		µg/l	5.0	1		"	"	"	
7439-92-1	Lead	BRL		µg/l	7.5	1		"	"	"	
7440-36-0	Antimony	BRL		µg/l	6.0	1		"	"	"	
7782-49-2	Selenium	BRL		µg/l	15.0	1	"	"	"	"	
7440-28-0	Thallium	BRL		µg/l	5.0	1	"	"	"	"	
7440-62-2	Vanadium	BRL		µg/l	5.0	1	"	"	"	"	
7440-66-6	Zinc	21.6		µg/l	7.5	1		"	"	"	
Soluble N	Ietals by EPA 200 Series Met	hods									
7439-97-6	Mercury	BRL		µg/l	0.20	1	EPA 245.1/7470A	21-Nov-08	24-Nov-08	8111043	Х

Trip	<u>ele Identification</u> Blank 111108 1371-09			<u>t Project #</u> 700058		<u>Matrix</u> Aqueous		on Date/Time ov-08 00:00	_	<u>Receive</u> 12-Nov-	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Cert
olatile (Organic Compounds										
	Drganic Compounds by GCMS										
	by method SW846 5030 Water M	1S									
7-64-1	Acetone	BRL		µg/l	20.0	1	EPA 624	14-Nov-08	15-Nov-08	8111076	
1-43-2	Benzene	BRL		μg/l	1.0	1		"	"		х
5-27-4	Bromodichloromethane	BRL		μg/l	1.0	1	"	"	"		х
5-25-2	Bromoform	BRL		μg/l	1.0	1		"			х
4-83-9	Bromomethane	BRL		μg/l	2.0	1	"	"	"		х
8-93-3	2-Butanone (MEK)	BRL		μg/l	10.0	1		"			
6-23-5	Carbon tetrachloride	BRL		μg/l	1.0	1		"			х
08-90-7	Chlorobenzene	BRL		μg/l	1.0	1		"			Х
5-00-3	Chloroethane	BRL		μg/l	2.0	1		"			х
7-66-3	Chloroform	BRL		μg/l	1.0	1		"			х
4-87-3	Chloromethane	BRL		μg/l	2.0	1		"			х
24-48-1	Dibromochloromethane	BRL		μg/l	1.0	1		"			х
5-50-1	1,2-Dichlorobenzene	BRL		μg/l	1.0	1		"			х
11-73-1	1,3-Dichlorobenzene	BRL		μg/l	1.0	1		"			х
)6-46-7	1,4-Dichlorobenzene	BRL		μg/l	1.0	1		"			Х
5-34-3	1,1-Dichloroethane	BRL		μg/l	1.0	1		"			х
)7-06-2	1,2-Dichloroethane	BRL		μg/l	1.0	1		"			Х
5-35-4	1,1-Dichloroethene	BRL		μg/l	1.0	1		"			X
56-59-2	cis-1,2-Dichloroethene	BRL		μg/l	1.0	1		"			
56-60-5	trans-1,2-Dichloroethene	BRL		μg/l	1.0	1		"			х
3-87-5	1,2-Dichloropropane	BRL		μg/l	1.0	1		"			Х
	cis-1,3-Dichloropropene	BRL		μg/l	1.0	1		"			Х
	trans-1,3-Dichloropropene	BRL		μg/l	1.0	1		"			Х
)0-41-4	Ethylbenzene	BRL		μg/l	1.0	1		"			X
91-78-6	2-Hexanone (MBK)	BRL		μg/l	10.0	1		"			
634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1		"			
08-10-1	4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0	1		"			
5-09-2	Methylene chloride	BRL		μg/l	10.0	1		"			х
)0-42-5	Styrene	BRL		μg/l	1.0	1		"			
9-34-5	1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0	1		"			х
27-18-4	Tetrachloroethene	BRL		μg/l	1.0	1		"			Х
)8-88-3	Toluene	BRL		μg/l	1.0	1		"			Х
1-55-6	1,1,1-Trichloroethane	BRL		μg/l	1.0	1		"			x
9-00-5	1,1,2-Trichloroethane	BRL		μg/l	1.0	1		"			X
9-01-6	Trichloroethene	BRL		μg/l	1.0	1		"			x
-69-4	Trichlorofluoromethane (Freon 11)			μg/l	1.0	1		"			x
5-01-4	Vinyl chloride	BRL		μg/l	1.0	1		"			x
	¹ m,p-Xylene	BRL		μg/l	2.0	1		"			X
9001-23- 5-47-6	o-Xylene	BRL		μg/l	1.0	1					X
	•	51.12		۳۳,							
	recoveries:	00		70 400	0/			"			
50-00-4	4-Bromofluorobenzene	82 02		70-130							
037-26-5	Toluene-d8	93 107		70-130							
060-07-0	1,2-Dichloroethane-d4	127		70-130	%						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water MS										
Blank (8111076-BLK1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	BRL		µg/l	20.0						
Benzene	BRL		μg/l	1.0						
Bromodichloromethane	BRL		μg/l	1.0						
Bromoform	BRL		μg/l	1.0						
Bromomethane	BRL		µg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
Carbon tetrachloride	BRL		µg/l	1.0						
Chlorobenzene	BRL		µg/l	1.0						
Chloroethane	BRL		μg/l	2.0						
Chloroform	BRL		μg/l	1.0						
Chloromethane	BRL		μg/l	2.0						
Dibromochloromethane	BRL		μg/l	1.0						
1,2-Dichlorobenzene	BRL		µg/l	1.0						
1,3-Dichlorobenzene	BRL		μg/l	1.0						
1,4-Dichlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethane	BRL		μg/l	1.0						
1,2-Dichloroethane	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
cis-1,2-Dichloroethene	BRL		μg/l	1.0						
trans-1,2-Dichloroethene	BRL		μg/l	1.0						
1,2-Dichloropropane	BRL		μg/l	1.0						
cis-1,3-Dichloropropene	BRL		μg/l	1.0						
trans-1,3-Dichloropropene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
2-Hexanone (MBK)	BRL		μg/l	10.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL		μg/l	10.0						
Methylene chloride	BRL		μg/l	10.0						
Styrene	BRL		μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL		μg/l	1.0						
Tetrachloroethene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
1,1,1-Trichloroethane	BRL		μg/l	1.0						
1,1,2-Trichloroethane	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		μg/l	1.0						
Vinyl chloride	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.2		µg/l		30.0		84	70-130		
Surrogate: Toluene-d8	29.2		µg/l		30.0		98	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.0		µg/l		30.0		110	70-130		
Surrogate: Dibromofluoromethane	32.3		µg/l		30.0		108	70-130		
LCS (8111076-BS1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	18.0		µg/l		20.0		90	70-130		
Benzene	21.7		µg/l		20.0		108	70-130		
Bromodichloromethane	24.1		µg/l		20.0		121	35-155		
Bromoform	17.5		µg/l		20.0		87	45-169		
Bromomethane	22.2		µg/l		20.0		111	1-242		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water MS										
LCS (8111076-BS1)										
Prepared & Analyzed: 14-Nov-08										
2-Butanone (MEK)	18.1		µg/l		20.0		90	70-130		
Carbon tetrachloride	23.3		µg/l		20.0		117	70-140		
Chlorobenzene	21.2		µg/l		20.0		106	70-130		
Chloroethane	22.4		µg/l		20.0		112	14-230		
Chloroform	23.0		µg/l		20.0		115	51-138		
Chloromethane	20.3		µg/l		20.0		101	1-273		
Dibromochloromethane	19.2		µg/l		20.0		96	53-149		
1,2-Dichlorobenzene	20.4		µg/l		20.0		102	18-190		
1,3-Dichlorobenzene	22.2		μg/l		20.0		111	59-156		
1,4-Dichlorobenzene	20.4		µg/l		20.0		102	18-190		
1,1-Dichloroethane	20.8		µg/l		20.0		104	59-155		
1,2-Dichloroethane	20.1		µg/l		20.0		100	49-155		
1,1-Dichloroethene	20.1		µg/l		20.0		100	70-130		
cis-1,2-Dichloroethene	20.0		µg/l		20.0		100	70-130		
trans-1,2-Dichloroethene	21.0		µg/l		20.0		105	54-156		
1,2-Dichloropropane	21.4		µg/l		20.0		107	1-210		
cis-1,3-Dichloropropene	18.6		µg/l		20.0		93	1-227		
trans-1,3-Dichloropropene	18.3		μg/l		20.0		92	17-183		
Ethylbenzene	22.0		µg/l		20.0		110	37-162		
2-Hexanone (MBK)	14.5		µg/l		20.0		72	70-130		
Methyl tert-butyl ether	20.2		µg/l		20.0		101	70-130		
4-Methyl-2-pentanone (MIBK)	18.1		µg/l		20.0		90	70-130		
Methylene chloride	22.5		μg/l		20.0		113	1-221		
Styrene	19.4		μg/l		20.0		97	70-130		
1,1,2,2-Tetrachloroethane	20.1		μg/l		20.0		101	46-157		
Tetrachloroethene	19.0		μg/l		20.0		95	64-148		
Toluene	21.0		μg/l		20.0		105	70-130		
1,1,1-Trichloroethane	20.0		μg/l		20.0		100	52-162		
1,1,2-Trichloroethane	20.0		μg/l		20.0		100	52-162 52-150		
Trichloroethene	20.7		μg/l		20.0		105	71-157		
Trichlorofluoromethane (Freon 11)	20.3				20.0		103	17-181		
Vinyl chloride	21.4		µg/l µg/l		20.0		107	1-251		
m,p-Xylene	23.0 45.3				20.0 40.0		113	70-130		
o-Xylene	45.3 22.8		µg/l µg/l		40.0 20.0		113	70-130		
Surrogate: 4-Bromofluorobenzene	31.3		µg/l µg/l		30.0		104	70-130		
Surrogate: 4-Bromonuorobenzene Surrogate: Toluene-d8	37.3		µg/i µg/l		30.0 30.0		104 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	29.2		µg/l		30.0		97	70-130		
Surrogate: Dibromofluoromethane	30.8		µg/l		30.0		103	70-130		
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08					00.5		a-			
Acetone	17.0		µg/l		20.0		85	70-130	6	30
Benzene	17.3		µg/l		20.0		87	70-130	22	30
Bromodichloromethane	20.3		µg/l		20.0		101	35-155	17	30
Bromoform	16.3		µg/l		20.0		82	45-169	7	30
Bromomethane	17.8		µg/l		20.0		89	1-242	22	30
2-Butanone (MEK)	19.1		µg/l		20.0		96	70-130	6	30
Carbon tetrachloride	15.8	QR2	µg/l		20.0		79	70-140	39	30
Chlorobenzene	17.6		µg/l		20.0		88	70-130	18	30
Chloroethane	17.8		µg/l		20.0		89	14-230	23	30
Chloroform	19.4		µg/l		20.0		97	51-138	17	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Water	MS									
LCS Dup (8111076-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Chloromethane	15.6		µg/l		20.0		78	1-273	26	30
Dibromochloromethane	17.3		µg/l		20.0		87	53-149	10	30
1,2-Dichlorobenzene	17.4		µg/l		20.0		87	18-190	16	30
1,3-Dichlorobenzene	19.3		µg/l		20.0		96	59-156	14	30
1,4-Dichlorobenzene	17.5		µg/l		20.0		88	18-190	15	30
1,1-Dichloroethane	17.3		µg/l		20.0		87	59-155	18	30
1,2-Dichloroethane	17.9		µg/l		20.0		90	49-155	11	30
1,1-Dichloroethene	14.2	QR2	µg/l		20.0		71	70-130	34	30
cis-1,2-Dichloroethene	16.8		μg/l		20.0		84	70-130	18	30
trans-1,2-Dichloroethene	16.4		μg/l		20.0		82	54-156	24	30
1,2-Dichloropropane	17.9		μg/l		20.0		89	1-210	18	30
cis-1,3-Dichloropropene	16.1		μg/l		20.0		80	1-227	14	30
trans-1,3-Dichloropropene	16.3		µg/l		20.0		82	17-183	11	30
Ethylbenzene	17.1		μg/l		20.0		86	37-162	25	30
2-Hexanone (MBK)	14.2		µg/l		20.0		71	70-130	2	30
Methyl tert-butyl ether	19.1		μg/l		20.0		96	70-130	6	30
4-Methyl-2-pentanone (MIBK)	18.6		μg/l		20.0		93	70-130	3	30
Methylene chloride	19.0		μg/l		20.0		95	1-221	17	30
Styrene	15.7		µg/l		20.0		78	70-130	21	30
1,1,2,2-Tetrachloroethane	19.4		μg/l		20.0		97	46-157	4	30
Tetrachloroethene	14.4		μg/l		20.0		72	64-148	27	30
Toluene	17.0		μg/l		20.0		85	70-130	21	30
1,1,1-Trichloroethane	14.6	QR2	µg/l		20.0		73	52-162	31	30
1,1,2-Trichloroethane	18.8		μg/l		20.0		94	52-150	9	30
Trichloroethene	16.3		μg/l		20.0		82	71-157	25	30
Trichlorofluoromethane (Freon 11)	13.9	QR2	μg/l		20.0		69	17-181	43	30
Vinyl chloride	15.8	QR2	μg/l		20.0		79	1-251	41	30
m,p-Xylene	35.6		µg/l		40.0		89	70-130	24	30
o-Xylene	18.4		μg/l		20.0		92	70-130	21	30
Surrogate: 4-Bromofluorobenzene	30.9		µg/l		30.0		103	70-130		
Surrogate: Toluene-d8	30.4		µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.8		µg/l		30.0		99	70-130		
Surrogate: Dibromofluoromethane	31.1		µg/l		30.0		104	70-130		
Matrix Spike (8111076-MS1)	Source: SA8726	7-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.5		µg/l		20.0	BRL	88	70-130		
Bromodichloromethane	23.0		µg/l		20.0	BRL	115	35-155		
Bromoform	17.2		µg/l		20.0	BRL	86	45-169		
Bromomethane	11.9		µg/l		20.0	BRL	60	1-242		
Carbon tetrachloride	21.0		µg/l		20.0	BRL	105	70-140		
Chlorobenzene	19.3		µg/l		20.0	BRL	97	70-130		
Chloroethane	13.9		µg/l		20.0	BRL	70	14-230		
Chloroform	21.5		µg/l		20.0	BRL	108	51-138		
Chloromethane	10.0		µg/l		20.0	BRL	50	1-273		
Dibromochloromethane	18.5		µg/l		20.0	BRL	92	53-149		
1,2-Dichlorobenzene	21.4		µg/l		20.0	BRL	107	18-190		
1,3-Dichlorobenzene	21.8		µg/l		20.0	BRL	109	59-156		
1,4-Dichlorobenzene	20.1		µg/l		20.0	BRL	100	18-190		
1,1-Dichloroethane	19.3		µg/l		20.0	BRL	97	59-155		
1,2-Dichloroethane	18.0		µg/l		20.0	BRL	90	49-155		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111076 - SW846 5030 Water	· MS									
Matrix Spike (8111076-MS1)	Source: SA87267	-01								
Prepared & Analyzed: 14-Nov-08										
1,1-Dichloroethene	14.1		µg/l		20.0	BRL	71	70-130		
trans-1,2-Dichloroethene	14.1		μg/l		20.0	BRL	71	54-156		
1,2-Dichloropropane	20.1		μg/l		20.0	BRL	101	1-210		
cis-1,3-Dichloropropene	16.9		μg/l		20.0	BRL	84	1-227		
trans-1,3-Dichloropropene	17.0		μg/l		20.0	BRL	85	17-183		
Ethylbenzene	19.3		µg/l		20.0	BRL	97	37-162		
Methylene chloride	17.8		μg/l		20.0	BRL	89	1-221		
1,1,2,2-Tetrachloroethane	20.1		µg/l		20.0	BRL	101	46-157		
Tetrachloroethene	16.0		µg/l		20.0	BRL	80	64-148		
Toluene	17.6		µg/l		20.0	BRL	88	70-130		
1,1,1-Trichloroethane	19.1		µg/l		20.0	BRL	96	52-162		
1,1,2-Trichloroethane	20.8		μg/l		20.0	BRL	104	52-152		
Trichloroethene	17.5		μg/l		20.0	BRL	88	71-157		
Trichlorofluoromethane (Freon 11)	16.6		μg/l		20.0	BRL	83	17-181		
Vinyl chloride	10.0		μg/l		20.0	BRL	57	1-251		
Surrogate: 4-Bromofluorobenzene	30.6		μg/l		30.0		102	70-130		
Surrogate: Toluene-d8	30.1		μg/l		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	29.6		μg/l		30.0		99	70-130		
Surrogate: Dibromofluoromethane	31.5		µg/l		30.0		105	70-130		
Matrix Spike Dup (8111076-MSD1)	Source: SA87267	-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.5		µg/l		20.0	BRL	88	70-130	0.06	30
Bromodichloromethane	23.5		µg/l		20.0	BRL	118	35-155	2	30
Bromoform	17.2		µg/l		20.0	BRL	86	45-169	0.4	30
Bromomethane	12.0		µg/l		20.0	BRL	60	1-242	0.9	30
Carbon tetrachloride	20.9		µg/l		20.0	BRL	104	70-140	0.7	30
Chlorobenzene	19.1		µg/l		20.0	BRL	96	70-130	0.9	30
Chloroethane	13.0		µg/l		20.0	BRL	65	14-230	7	30
Chloroform	21.5		µg/l		20.0	BRL	107	51-138	0.2	30
Chloromethane	9.4		µg/l		20.0	BRL	47	1-273	7	30
Dibromochloromethane	19.0		µg/l		20.0	BRL	95	53-149	2	30
1,2-Dichlorobenzene	21.1		µg/l		20.0	BRL	105	18-190	1	30
1,3-Dichlorobenzene	21.8		µg/l		20.0	BRL	109	59-156	0.2	30
1,4-Dichlorobenzene	19.8		µg/l		20.0	BRL	99	18-190	1	30
1,1-Dichloroethane	19.1		µg/l		20.0	BRL	95	59-155	1	30
1,2-Dichloroethane	18.2		µg/l		20.0	BRL	91	49-155	1	30
1,1-Dichloroethene	14.4		µg/l		20.0	BRL	72	70-130	2	30
trans-1,2-Dichloroethene	14.2		µg/l		20.0	BRL	71	54-156	0.2	30
1,2-Dichloropropane	19.9		µg/l		20.0	BRL	100	1-210	1	30
cis-1,3-Dichloropropene	17.4		µg/l		20.0	BRL	87	1-227	3	30
trans-1,3-Dichloropropene	17.5		µg/l		20.0	BRL	88	17-183	3	30
Ethylbenzene	19.8		µg/l		20.0	BRL	99	37-162	2	30
Methylene chloride	17.5		µg/l		20.0	BRL	87	1-221	2	30
1,1,2,2-Tetrachloroethane	19.6		µg/l		20.0	BRL	98	46-157	3	30
Tetrachloroethene	16.5		μg/l		20.0	BRL	83	64-148	4	30
Toluene	18.1		μg/l		20.0	BRL	91	70-130	3	30
1,1,1-Trichloroethane	19.0		μg/l		20.0	BRL	95	52-162	0.5	30
1,1,2-Trichloroethane	20.6		µg/l		20.0	BRL	103	52-150	1	30
Trichloroethene	17.7		µg/l		20.0	BRL	88	71-157	1	30
			r 3' '						•	

				Spike	Source		%REC		RPD
Analyte(s)	Result Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111076 - SW846 5030 Wate	r MS								
Matrix Spike Dup (8111076-MSD1)	Source: SA87267-01								
Prepared & Analyzed: 14-Nov-08									
Vinyl chloride	11.5	µg/l		20.0	BRL	58	1-251	0.6	30
Surrogate: 4-Bromofluorobenzene	30.9	µg/l		30.0		103	70-130		
Surrogate: Toluene-d8	31.0	µg/l		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	30.2 31.4	µg/l µg/l		30.0 30.0		101 105	70-130 70-130		
Batch 8111077 - SW846 5030 Wate		P3/1		00.0		100	10 100		
Blank (8111077-BLK1)									
Prepared & Analyzed: 14-Nov-08									
Acetone	BRL	µg/l	20.0						
Benzene	BRL	µg/l	1.0						
Bromodichloromethane	BRL	µg/l	1.0						
Bromoform	BRL	µg/l	1.0						
Bromomethane	BRL	μg/l	2.0						
2-Butanone (MEK)	BRL	μg/l	10.0						
Carbon tetrachloride	BRL	μg/l	1.0						
Chlorobenzene	BRL	μg/l	1.0						
Chloroethane	BRL	µg/l	2.0						
Chloroform	BRL	µg/l	1.0						
Chloromethane	BRL	µg/l	2.0						
Dibromochloromethane	BRL	µg/l	1.0						
1,2-Dichlorobenzene	BRL	µg/l	1.0						
1,3-Dichlorobenzene	BRL	µg/l	1.0						
1,4-Dichlorobenzene	BRL	µg/l	1.0						
1,1-Dichloroethane	BRL	µg/l	1.0						
1,2-Dichloroethane	BRL	µg/l	1.0						
1,1-Dichloroethene	BRL	µg/l	1.0						
cis-1,2-Dichloroethene	BRL	µg/l	1.0						
trans-1,2-Dichloroethene	BRL	µg/l	1.0						
1,2-Dichloropropane	BRL	µg/l	1.0						
cis-1,3-Dichloropropene	BRL	µg/l	1.0						
trans-1,3-Dichloropropene	BRL	µg/l	1.0						
Ethylbenzene	BRL	µg/l	1.0						
2-Hexanone (MBK)	BRL	µg/l	10.0						
Methyl tert-butyl ether	BRL	µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	µg/l	10.0						
Methylene chloride	BRL	µg/l	10.0						
Styrene	BRL	µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL	µg/l	1.0						
Tetrachloroethene	BRL	µg/l	1.0						
Toluene	BRL	µg/l	1.0						
1,1,1-Trichloroethane	BRL	µg/l	1.0						
1,1,2-Trichloroethane	BRL	µg/l	1.0						
Trichloroethene	BRL	µg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	µg/l	1.0						
Vinyl chloride	BRL	µg/l	1.0						
m,p-Xylene	BRL	µg/l	2.0						
o-Xylene	BRL	µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	30.9	µg/l		30.0		103	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	29.7 30.9	µg/l µg/l		30.0 30.0		99 103	70-130 70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water MS										
Blank (8111077-BLK1)										
Prepared & Analyzed: 14-Nov-08										
Surrogate: Dibromofluoromethane	30.5		µg/l		30.0		102	70-130		
LCS (8111077-BS1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	19.6		µg/l		20.0		98	70-130		
Benzene	21.7		μg/l		20.0		108	70-130		
Bromodichloromethane	19.9		μg/l		20.0		99	35-155		
Bromoform	18.7				20.0		94	45-169		
Bromomethane	10.7		µg/l		20.0		54	1-242		
2-Butanone (MEK)	18.7		µg/l		20.0		93	70-130		
Carbon tetrachloride	20.3		μg/l μg/l		20.0		93 102	70-130		
Chlorobenzene	20.3				20.0		102	70-140		
Chloroethane	21.8 24.6		µg/l		20.0		123	70-130 14-230		
Chloroform	24.6 22.2		μg/l μg/l		20.0		123	14-230 51-138		
Chloromethane	19.5				20.0		98	1-273		
Dibromochloromethane	19.5 20.1		µg/l		20.0		98 101	53-149		
1,2-Dichlorobenzene	20.1		µg/l		20.0		110	18-190		
1,3-Dichlorobenzene	22.0 21.7		µg/l		20.0		108	59-156		
1,4-Dichlorobenzene	21.7		µg/l		20.0		106	18-190		
1,1-Dichloroethane	21.3		µg/l		20.0		100	59-155		
			µg/l							
1,2-Dichloroethane 1,1-Dichloroethene	21.6 21.1		µg/l		20.0 20.0		108 105	49-155 70-130		
	20.5		µg/l				103	70-130		
cis-1,2-Dichloroethene	20.5 22.4		µg/l		20.0		103			
trans-1,2-Dichloroethene 1,2-Dichloropropane	22.4 21.5		µg/l		20.0 20.0		108	54-156 1-210		
			µg/l							
cis-1,3-Dichloropropene	20.4		µg/l		20.0		102	1-227		
trans-1,3-Dichloropropene	20.0		µg/l		20.0		100	17-183		
Ethylbenzene	21.2		µg/l		20.0		106	37-162		
2-Hexanone (MBK)	20.0		µg/l		20.0		100	70-130		
Methyl tert-butyl ether	21.9		µg/l		20.0		110	70-130		
4-Methyl-2-pentanone (MIBK)	18.7		µg/l		20.0		94	70-130		
Methylene chloride	22.2		µg/l		20.0		111	1-221		
Styrene	20.6		µg/l		20.0		103	70-130		
1,1,2,2-Tetrachloroethane	20.9		µg/l		20.0		104	46-157		
Tetrachloroethene	21.0		µg/l		20.0		105	64-148		
	21.1		µg/l		20.0		106	70-130		
1,1,1-Trichloroethane	21.3		µg/l		20.0		107	52-162		
1,1,2-Trichloroethane	20.2		µg/l		20.0		101	52-150		
Trichloroethene	21.0		µg/l		20.0		105	71-157		
Trichlorofluoromethane (Freon 11)	23.3		µg/l		20.0		116	17-181		
Vinyl chloride	21.4		µg/l		20.0		107	1-251		
m,p-Xylene	42.5		µg/l		40.0		106	70-130		
	20.7		µg/l		20.0		103	70-130		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	30.2 30.2		µg/l µg/l		30.0 30.0		101 101	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	31.1		μg/l		30.0		101	70-130		
Surrogate: Dibromofluoromethane	31.4		µg/l		30.0		105	70-130		
LCS Dup (8111077-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Acetone	23.2		µg/l		20.0		116	70-130	17	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Water M	S									
LCS Dup (8111077-BSD1)										
Prepared & Analyzed: 14-Nov-08										
Benzene	23.9		µg/l		20.0		119	70-130	10	30
Bromodichloromethane	21.8		µg/l		20.0		109	35-155	9	30
Bromoform	20.7		µg/l		20.0		103	45-169	10	30
Bromomethane	13.2		µg/l		20.0		66	1-242	21	30
2-Butanone (MEK)	23.9		µg/l		20.0		119	70-130	24	30
Carbon tetrachloride	21.6		μg/l		20.0		108	70-140	6	30
Chlorobenzene	23.3		µg/l		20.0		116	70-130	8 7	30
Chloroethane	25.1		µg/l		20.0		125	14-230	2	30
Chloroform	23.1		µg/l		20.0		120	51-138	8	30
Chloromethane					20.0		120	1-273		30
Dibromochloromethane	20.3 22.1		µg/l		20.0				4	30 30
			µg/l				110	53-149	9	
1,2-Dichlorobenzene	23.1		µg/l		20.0		115	18-190	5	30 20
1,3-Dichlorobenzene	23.0		µg/l		20.0		115	59-156	6	30
1,4-Dichlorobenzene	22.3		µg/l		20.0		112	18-190	5	30
1,1-Dichloroethane	23.2		µg/l		20.0		116	59-155	6	30
1,2-Dichloroethane	24.0		µg/l		20.0		120	49-155	11	30
1,1-Dichloroethene	22.8		µg/l		20.0		114	70-130	8	30
cis-1,2-Dichloroethene	22.5		µg/l		20.0		113	70-130	9	30
trans-1,2-Dichloroethene	24.3		µg/l		20.0		122	54-156	8	30
1,2-Dichloropropane	23.3		µg/l		20.0		117	1-210	8	30
cis-1,3-Dichloropropene	21.9		µg/l		20.0		109	1-227	7	30
trans-1,3-Dichloropropene	22.2		µg/l		20.0		111	17-183	11	30
Ethylbenzene	22.2		µg/l		20.0		111	37-162	5	30
2-Hexanone (MBK)	22.8		µg/l		20.0		114	70-130	13	30
Methyl tert-butyl ether	24.8		µg/l		20.0		124	70-130	12	30
4-Methyl-2-pentanone (MIBK)	22.3		µg/l		20.0		111	70-130	17	30
Methylene chloride	24.4		µg/l		20.0		122	1-221	9	30
Styrene	21.9		µg/l		20.0		109	70-130	6	30
1,1,2,2-Tetrachloroethane	23.2		µg/l		20.0		116	46-157	11	30
Tetrachloroethene	22.4		µg/l		20.0		112	64-148	6	30
Toluene	22.8		µg/l		20.0		114	70-130	8	30
1,1,1-Trichloroethane	22.7		µg/l		20.0		113	52-162	6	30
1,1,2-Trichloroethane	23.0		µg/l		20.0		115	52-150	13	30
Trichloroethene	22.8		µg/l		20.0		114	71-157	8	30
Trichlorofluoromethane (Freon 11)	24.1		µg/l		20.0		120	17-181	4	30
Vinyl chloride	22.6		µg/l		20.0		113	1-251	5	30
m,p-Xylene	45.4		µg/l		40.0		113	70-130	5 7	30
o-Xylene	22.2		µg/l		20.0		113	70-130	7	30
Surrogate: 4-Bromofluorobenzene	30.6		µg/l		30.0		102	70-130	'	50
Surrogate: Toluene-d8	29.8		µg/l		30.0		99	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	31.4		µg/l		30.0		105	70-130		
Surrogate: Dibromofluoromethane	31.7		µg/l		30.0		106	70-130		
	Source: SA87315	5-01								
Prepared & Analyzed: 14-Nov-08										
Benzene	17.9		µg/l		20.0	BRL	89	70-130		
Bromodichloromethane	19.6		µg/l		20.0	BRL	98	35-155		
Bromoform	17.9		µg/l		20.0	BRL	89	45-169		
Bromomethane	7.3		µg/l		20.0	BRL	37	1-242		
Carbon tetrachloride	18.8		µg/l		20.0	BRL	94	70-140		
Chlorobenzene	20.5		µg/l		20.0	BRL	103	70-130		

				Spike	Source		%REC		RPD
Analyte(s)	Result	Flag Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111077 - SW846 5030 Water	r MS								
Matrix Spike (8111077-MS1)	Source: SA87315-0 ²	1							
Prepared & Analyzed: 14-Nov-08									
Chloroethane	14.6	µg/l		20.0	BRL	73	14-230		
Chloroform	21.3	μg/l		20.0	BRL	106	51-138		
Chloromethane	9.6	μg/l		20.0	BRL	48	1-273		
Dibromochloromethane	19.5	μg/l		20.0	BRL	97	53-149		
1,2-Dichlorobenzene	21.3	μg/l		20.0	BRL	106	18-190		
1,3-Dichlorobenzene	22.0	μg/l		20.0	BRL	110	59-156		
1,4-Dichlorobenzene	20.8	μg/l		20.0	BRL	104	18-190		
1,1-Dichloroethane	20.1	μg/l		20.0	BRL	100	59-155		
1,2-Dichloroethane	18.8	μg/l		20.0	BRL	94	49-155		
1,1-Dichloroethene	15.3	µg/l		20.0	BRL	76	70-130		
trans-1,2-Dichloroethene	15.3	μg/l		20.0	BRL	70	54-156		
1,2-Dichloropropane	20.0	μg/l		20.0	BRL	100	1-210		
cis-1,3-Dichloropropene	18.6	μg/l		20.0	BRL	93	1-227		
trans-1,3-Dichloropropene	18.4	μg/l		20.0	BRL	92	17-183		
Ethylbenzene	19.7	μg/l		20.0	BRL	92 99	37-162		
Methylene chloride	17.8	μg/l		20.0	BRL	99 89	1-221		
1,1,2,2-Tetrachloroethane	20.3	μg/l		20.0	BRL	102	46-157		
Tetrachloroethene	18.1	μg/l		20.0	BRL	91	64-148		
Toluene	18.2	μg/l		20.0	BRL	91	70-130		
1,1,1-Trichloroethane	20.7	μg/l		20.0	BRL	104	52-162		
1,1,2-Trichloroethane	19.7	μg/l		20.0	BRL	98	52-162		
Trichloroethene	18.2	μg/l		20.0	BRL	91	71-157		
Trichlorofluoromethane (Freon 11)	18.2	μg/l		20.0	BRL	91	17-181		
Vinyl chloride	12.7	μg/l		20.0	BRL	63	1-251		
Surrogate: 4-Bromofluorobenzene	30.6	μg/l		30.0	DITE	102	70-130		
Surrogate: Toluene-d8	29.6	μg/l		30.0		99	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	30.8	μg/l		30.0		103	70-130		
Surrogate: Dibromofluoromethane	31.6	μg/l		30.0		105	70-130		
Matrix Spike Dup (8111077-MSD1)	Source: SA87315-0	1							
Prepared & Analyzed: 14-Nov-08									
Benzene	18.6	μg/l		20.0	BRL	93	70-130	4	30
Bromodichloromethane	20.7	µg/l		20.0	BRL	104	35-155	6	30
Bromoform	19.6	µg/l		20.0	BRL	98	45-169	9	30
Bromomethane	7.1	µg/l		20.0	BRL	36	1-242	3	30
Carbon tetrachloride	19.1	µg/l		20.0	BRL	96	70-140	2	30
Chlorobenzene	21.0	µg/l		20.0	BRL	105	70-130	3	30
Chloroethane	14.5	µg/l		20.0	BRL	72	14-230	0.6	30
Chloroform	21.9	µg/l		20.0	BRL	110	51-138	3	30
Chloromethane	10.0	µg/l		20.0	BRL	50	1-273	4	30
Dibromochloromethane	20.4	µg/l		20.0	BRL	102	53-149	5	30
1,2-Dichlorobenzene	22.0	µg/l		20.0	BRL	110	18-190	3	30
1,3-Dichlorobenzene	22.8	µg/l		20.0	BRL	114	59-156	4	30
1,4-Dichlorobenzene	21.4	µg/l		20.0	BRL	107	18-190	3	30
1,1-Dichloroethane	21.0	μg/l		20.0	BRL	105	59-155	4	30
1,2-Dichloroethane	19.8	µg/l		20.0	BRL	99	49-155	5	30
1,1-Dichloroethene	15.6	µg/l		20.0	BRL	78	70-130	2	30
trans-1,2-Dichloroethene	15.9	µg/l		20.0	BRL	79	54-156	4	30
	21.0			20.0	BRL	105	1-210	5	30
1,2-Dichloropropane	21.0	µg/l		20.0					
1,2-Dichloropropane cis-1,3-Dichloropropene	19.4	μg/l		20.0	BRL	97	1-227	4	30

				Spike	Source		%REC		RPD
Analyte(s)	Result F	lag Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111077 - SW846 5030 Wate	r MS								
Matrix Spike Dup (8111077-MSD1)	Source: SA87315-01								
Prepared & Analyzed: 14-Nov-08									
Ethylbenzene	20.3	µg/l		20.0	BRL	102	37-162	3	30
Methylene chloride	18.5	µg/l		20.0	BRL	92	1-221	4	30
1,1,2,2-Tetrachloroethane	21.4	µg/l		20.0	BRL	107	46-157	5	30
Tetrachloroethene	19.0	µg/l		20.0	BRL	95	64-148	4	30
Toluene	18.7	µg/l		20.0	BRL	93	70-130	2	30
1,1,1-Trichloroethane	21.5	µg/l		20.0	BRL	108	52-162	4	30
1,1,2-Trichloroethane	21.3	µg/l		20.0	BRL	106	52-150	8	30
Trichloroethene	18.4	µg/l		20.0	BRL	92	71-157	1	30
Trichlorofluoromethane (Freon 11)	18.5	µg/l		20.0	BRL	92	17-181	2	30
Vinyl chloride	12.5	µg/l		20.0	BRL	63	1-251	1	30
Surrogate: 4-Bromofluorobenzene	30.4	µg/l		30.0		101	70-130		
Surrogate: Toluene-d8	30.2	µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	31.5 31.6	μg/l μg/l		30.0 30.0		105 105	70-130 70-130		
-		P.A.1		00.0		,00	10 100		
Batch 8111194 - SW846 5030 Water	r MS								
<u>3lank (8111194-BLK1)</u> Prepared & Analyzed: 17-Nov-08									
Acetone	BRL	uo/	20.0						
		µg/l							
Benzene	BRL	µg/l	1.0						
Bromodichloromethane	BRL	µg/l	1.0						
Bromoform	BRL	µg/l	1.0						
Bromomethane	BRL	µg/l	2.0						
2-Butanone (MEK)	BRL BRL	µg/l	10.0						
Carbon tetrachloride		µg/l	1.0						
Chlorobenzene	BRL	µg/l	1.0						
Chloroethane	BRL	µg/l	2.0						
Chloroform	BRL	µg/l	1.0						
Chloromethane	BRL	µg/l	2.0						
Dibromochloromethane	BRL	µg/l	1.0						
1,2-Dichlorobenzene	BRL	µg/l	1.0						
1,3-Dichlorobenzene	BRL	µg/l	1.0						
1,4-Dichlorobenzene	BRL	µg/l	1.0						
1,1-Dichloroethane	BRL	µg/l	1.0						
1,2-Dichloroethane	BRL	µg/l	1.0						
1,1-Dichloroethene	BRL	µg/l	1.0						
cis-1,2-Dichloroethene	BRL	µg/l	1.0						
trans-1,2-Dichloroethene	BRL	µg/l	1.0						
1,2-Dichloropropane	BRL	µg/l	1.0						
cis-1,3-Dichloropropene	BRL	µg/l	1.0						
trans-1,3-Dichloropropene	BRL	µg/l	1.0						
Ethylbenzene	BRL	µg/l	1.0						
2-Hexanone (MBK)	BRL	µg/l	10.0						
Methyl tert-butyl ether	BRL	µg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	µg/l	10.0						
Methylene chloride	BRL	µg/l	10.0						
Styrene	BRL	µg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL	µg/l	1.0						
Tetrachloroethene	BRL	µg/l	1.0						
Toluene	BRL	µg/l	1.0						

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - SW846 5030 Water MS										
Blank (8111194-BLK1)										
Prepared & Analyzed: 17-Nov-08										
1,1,1-Trichloroethane	BRL		µg/l	1.0						
1,1,2-Trichloroethane	BRL		µg/l	1.0						
Trichloroethene	BRL		µg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL		µg/l	1.0						
Vinyl chloride	BRL		µg/l	1.0						
m,p-Xylene	BRL		µg/l	2.0						
o-Xylene	BRL		µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.9		µg/l	-	30.0		86	70-130		
Surrogate: Toluene-d8	29.6		μg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.2		µg/l		30.0		111	70-130		
Surrogate: Dibromofluoromethane	34.4		µg/l		30.0		115	70-130		
LCS (8111194-BS1)										
Prepared & Analyzed: 17-Nov-08	46 5				00.0			70.400		
Acetone	18.5		µg/l		20.0		92	70-130		
Benzene	20.2		µg/l		20.0		101	70-130		
Bromodichloromethane	24.1		µg/l		20.0		121	35-155		
Bromoform	18.7		µg/l		20.0		93	45-169		
Bromomethane	19.8		µg/l		20.0		99	1-242		
2-Butanone (MEK)	20.0		µg/l		20.0		100	70-130		
Carbon tetrachloride	20.7		µg/l		20.0		103	70-140		
Chlorobenzene	20.3		µg/l		20.0		102	70-130		
Chloroethane	20.6		µg/l		20.0		103	14-230		
Chloroform	22.8		µg/l		20.0		114	51-138		
Chloromethane	18.6		µg/l		20.0		93	1-273		
Dibromochloromethane	20.0		µg/l		20.0		100	53-149		
1,2-Dichlorobenzene	18.8		µg/l		20.0		94	18-190		
1,3-Dichlorobenzene	22.0		µg/l		20.0		110	59-156		
1,4-Dichlorobenzene	18.9		µg/l		20.0		94	18-190		
1,1-Dichloroethane	20.4		µg/l		20.0		102	59-155		
1,2-Dichloroethane	20.4		µg/l		20.0		102	49-155		
1,1-Dichloroethene	17.5		µg/l		20.0		87	70-130		
cis-1,2-Dichloroethene	19.2		µg/l		20.0		96	70-130		
trans-1,2-Dichloroethene	19.6		µg/l		20.0		98	54-156		
1,2-Dichloropropane	20.7		µg/l		20.0		103	1-210		
cis-1,3-Dichloropropene	18.4		µg/l		20.0		92	1-227		
trans-1,3-Dichloropropene	19.0		µg/l		20.0		95	17-183		
Ethylbenzene	20.1		µg/l		20.0		100	37-162		
2-Hexanone (MBK)	14.5		µg/l		20.0		73	70-130		
Methyl tert-butyl ether	21.2		µg/l		20.0		106	70-130		
4-Methyl-2-pentanone (MIBK)	19.4		µg/l		20.0		97	70-130		
Methylene chloride	21.6		µg/l		20.0		108	1-221		
Styrene	18.3		µg/l		20.0		92	70-130		
1,1,2,2-Tetrachloroethane	21.3		µg/l		20.0		106	46-157		
	16.8		µg/l		20.0		84	64-148		
Toluene	19.8		µg/l		20.0		99	70-130		
1,1,1-Trichloroethane	18.7		µg/l		20.0		94	52-162		
1,1,2-Trichloroethane	21.4		µg/l		20.0		107	52-150		
Trichloroethene	19.6		µg/l		20.0		98	71-157		
Trichlorofluoromethane (Freon 11)	17.0		µg/l		20.0		85	17-181		
Vinyl chloride	19.7		µg/l		20.0		99	1-251		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - SW846 5030 Water MS										
<u>-CS (8111194-BS1)</u>										
Prepared & Analyzed: 17-Nov-08										
m,p-Xylene	41.8		µg/l		40.0		105	70-130		
o-Xylene	21.1		μg/l		20.0		105	70-130		
Surrogate: 4-Bromofluorobenzene	31.9		µg/l		30.0		106	70-130		
Surrogate: Toluene-d8	30.2		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	30.8		µg/l		30.0		103	70-130		
Surrogate: Dibromofluoromethane	31.8		µg/l		30.0		106	70-130		
LCS Dup (8111194-BSD1)										
Prepared & Analyzed: 17-Nov-08										
Acetone	19.0		µg/l		20.0		95	70-130	3	30
Benzene	22.1		µg/l		20.0		111	70-130	9	30
Bromodichloromethane	26.3		µg/l		20.0		131	35-155	9	30
Bromoform	19.2		µg/l		20.0		96	45-169	3	30
Bromomethane	24.0		µg/l		20.0		120	1-242	19	30
2-Butanone (MEK)	19.7		µg/l		20.0		98	70-130	2	30
Carbon tetrachloride	25.3		µg/l		20.0		127	70-140	20	30
Chlorobenzene	22.4		µg/l		20.0		112	70-130	10	30
Chloroethane	23.7		µg/l		20.0		119	14-230	14	30
Chloroform	25.1		µg/l		20.0		126	51-138	10	30
Chloromethane	21.0		µg/l		20.0		105	1-273	12	30
Dibromochloromethane	21.0		µg/l		20.0		105	53-149	5	30
1,2-Dichlorobenzene	20.8		µg/l		20.0		104	18-190	10	30
1,3-Dichlorobenzene	24.3		µg/l		20.0		121	59-156	10	30
1,4-Dichlorobenzene	21.1		µg/l		20.0		105	18-190	11	30
1,1-Dichloroethane	22.6		μg/l		20.0		113	59-155	10	30
1,2-Dichloroethane	21.7		μg/l		20.0		109	49-155	6	30
1,1-Dichloroethene	20.4		μg/l		20.0		102	70-130	15	30
cis-1,2-Dichloroethene	21.1		μg/l		20.0		106	70-130	9	30
trans-1,2-Dichloroethene	22.2		µg/l		20.0		111	54-156	12	30
1,2-Dichloropropane	22.1		µg/l		20.0		110	1-210	7	30
cis-1,3-Dichloropropene	19.1		µg/l		20.0		95	1-227	4	30
trans-1,3-Dichloropropene	19.1		µg/l		20.0		96	17-183	0.8	30
Ethylbenzene	23.0		μg/l		20.0		115	37-162	13	30
2-Hexanone (MBK)	13.6	QC1	μg/l		20.0		68	70-130	6	30
Methyl tert-butyl ether	21.1		μg/l		20.0		106	70-130	0.5	30
4-Methyl-2-pentanone (MIBK)	18.0		μg/l		20.0		90	70-130	8	30
Methylene chloride	23.9		μg/l		20.0		119	1-221	10	30
Styrene	19.5		μg/l		20.0		97	70-130	6	30
1,1,2,2-Tetrachloroethane	22.0		μg/l		20.0		97 110	46-157	3	30
Tetrachloroethene	22.0 19.9		μg/l		20.0		100	40-157 64-148	3 17	30
Toluene	22.1				20.0		100	70-130	11	30
1,1,1-Trichloroethane	22.1		µg/l		20.0		108	70-130 52-162	15	30 30
	21.7		µg/l		20.0		108	52-162 52-150		30 30
1,1,2-Trichloroethane Trichloroethene	21.8 22.0		µg/l				109		2 12	30 30
			µg/l		20.0			71-157	12 24	
Trichlorofluoromethane (Freon 11)	21.7	001	µg/l		20.0		108	17-181	24 20	30 20
Vinyl chloride	29.3	QC1	µg/l		20.0		147	1-251	39	30
m,p-Xylene	47.7		µg/l		40.0		119	70-130	13	30
o-Xylene	23.9		µg/l		20.0		119	70-130	12	30
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	32.4 30.2		µg/l		30.0 30.0		108 101	70-130 70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	30.2 30.4		µg/l µg/l		30.0 30.0		101	70-130 70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111194 - SW846 5030 Water	· MS									
LCS Dup (8111194-BSD1)										
Prepared & Analyzed: 17-Nov-08										
Surrogate: Dibromofluoromethane	32.1		µg/l		30.0		107	70-130		
Matrix Spike (8111194-MS1)	Source: SA8719 [,]	1_03								
Prepared & Analyzed: 17-Nov-08	Source. SAULTS	1-03								
Benzene	12.8	QM7	µg/l		20.0	BRL	64	70-130		
Bromodichloromethane	24.2	Guin			20.0	BRL	121	35-155		
Bromoform	19.6		µg/l µg/l		20.0	BRL	98	45-169		
Bromomethane	6.1				20.0	BRL	30	1-242		
Carbon tetrachloride	17.9		µg/l		20.0	BRL	89	70-140		
Chlorobenzene	18.4		µg/l µg/l		20.0	BRL	89 92	70-140		
Chloroethane	8.6				20.0	BRL	92 43	14-230		
Chloroform	0.0 21.9		µg/l µg/l		20.0	BRL	43 109	14-230 51-138		
Chloromethane	4.4		µg/l µg/l		20.0	BRL	22	1-273		
Dibromochloromethane	4.4 20.3		µg/I		20.0	BRL	101	53-149		
1,2-Dichlorobenzene	20.3		μg/l		20.0	BRL	109	18-190		
1,3-Dichlorobenzene	24.4		μg/l		20.0	BRL	109	59-156		
1,4-Dichlorobenzene	19.8				20.0	BRL	99	18-190		
1,1-Dichloroethane	17.6		µg/l µg/l		20.0	BRL	99 88	59-155		
1,2-Dichloroethane	18.4		µg/l		20.0	BRL	92	49-155		
1,1-Dichloroethene	9.2	QM7	µg/l µg/l		20.0	BRL	92 46	70-130		
trans-1,2-Dichloroethene	9.2	QM7	μg/l		20.0	BRL	46	54-156		
1,2-Dichloropropane	18.0	Gini	μg/l		20.0	BRL	40 90	1-210		
cis-1,3-Dichloropropene	15.2				20.0	BRL	30 76	1-227		
trans-1,3-Dichloropropene	16.9		µg/l		20.0	BRL	84	17-183		
Ethylbenzene	17.1		µg/l		20.0	BRL	86	37-162		
Methylene chloride	14.4		µg/l µg/l		20.0	BRL	72	1-221		
1,1,2,2-Tetrachloroethane	23.7		μg/l		20.0	BRL	118	46-157		
Tetrachloroethene	12.6	QM7	μg/l		20.0	BRL	63	40-137 64-148		
Toluene	15.3	QIVIT			20.0	BRL	76	70-130		
1,1,1-Trichloroethane	20.2		µg/l		20.0	1.3	95	52-162		
1,1,2-Trichloroethane	20.2		µg/l		20.0	BRL	95 111	52-162 52-150		
Trichloroethene	14.1	QM7	µg/l		20.0	BRL	70	71-157		
Trichlorofluoromethane (Freon 11)	14.1	QIVIT	µg/l		20.0	BRL	62	17-181		
Vinyl chloride	5.9		µg/l µg/l		20.0	BRL	29	1-251		
Surrogate: 4-Bromofluorobenzene	33.5		µg/l		30.0	DIXL	112	70-130		
Surrogate: Toluene-d8	33.5		µg/l		30.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	34.5		µg/l		30.0		115	70-130		
Surrogate: Dibromofluoromethane	33.6		µg/l		30.0		112	70-130		
Matrix Spike Dup (8111194-MSD1)	Source: SA8719	1-03								
Prepared & Analyzed: 17-Nov-08		-								
Benzene	12.1	QM7	µg/l		20.0	BRL	61	70-130	6	30
Bromodichloromethane	21.7		µg/l		20.0	BRL	109	35-155	11	30
Bromoform	17.6		µg/l		20.0	BRL	88	45-169	11	30
Bromomethane	6.3		µg/l		20.0	BRL	31	1-242	3	30
Carbon tetrachloride	15.6		µg/l		20.0	BRL	78	70-140	14	30
Chlorobenzene	17.1		µg/l		20.0	BRL	85	70-130	7	30
Chloroethane	8.1		µg/l		20.0	BRL	41	14-230	6	30
Chloroform	19.8		µg/l		20.0	BRL	99	51-138	10	30
Chloromethane	4.1		µg/l		20.0	BRL	21	1-273	7	30
Dibromochloromethane	18.4		µg/l		20.0	BRL	92	53-149	10	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111194 - SW846 5030 Wate	r MS									
Matrix Spike Dup (8111194-MSD1)	Source: SA8719	1-03								
Prepared & Analyzed: 17-Nov-08		1-00								
1,2-Dichlorobenzene	20.2		µg/l		20.0	BRL	101	18-190	8	30
1,3-Dichlorobenzene	22.1		μg/l		20.0	BRL	111	59-156	10	30
1,4-Dichlorobenzene	18.6		µg/l		20.0	BRL	93	18-190	6	30
1,1-Dichloroethane	16.2		µg/l		20.0	BRL	81	59-155	9	30
1,2-Dichloroethane	16.5		µg/l		20.0	BRL	82	49-155	11	30
1,1-Dichloroethene	8.4	QM7	µg/l		20.0	BRL	42	70-130	8	30
trans-1,2-Dichloroethene	8.7	QM7	µg/l		20.0	BRL	44	54-156	5	30
1,2-Dichloropropane	16.9		µg/l		20.0	BRL	84	1-210	7	30
cis-1,3-Dichloropropene	14.3		µg/l		20.0	BRL	72	1-227	6	30
trans-1,3-Dichloropropene	15.5		µg/l		20.0	BRL	77	17-183	9	30
Ethylbenzene	15.9		μg/l		20.0	BRL	80	37-162	7	30
Methylene chloride	13.1		μg/l		20.0	BRL	65	1-221	10	30
1,1,2,2-Tetrachloroethane	21.8		µg/l		20.0	BRL	109	46-157	8	30
Tetrachloroethene	11.8	QM7	µg/l		20.0	BRL	59	64-148	7	30
Toluene	13.9	QC1	μg/l		20.0	BRL	69	70-130	10	30
1,1,1-Trichloroethane	18.1		μg/l		20.0	1.3	84	52-162	12	30
1,1,2-Trichloroethane	20.2		μg/l		20.0	BRL	101	52-150	10	30
Trichloroethene	13.2	QM7	µg/l		20.0	BRL	66	71-157	6	30
Trichlorofluoromethane (Freon 11)	11.0		µg/l		20.0	BRL	55	17-181	12	30
Vinyl chloride	5.2		µg/l		20.0	BRL	26	1-251	13	30
Surrogate: 4-Bromofluorobenzene	32.2		µg/l		30.0		107	70-130		
Surrogate: Toluene-d8	30.2		µg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.8		µg/l		30.0		109	70-130		
Surrogate: Dibromofluoromethane	32.8		µg/l		30.0		109	70-130		
Batch 8111291 - SW846 5030 Wate	r MS									
Blank (8111291-BLK1)										
Prepared & Analyzed: 18-Nov-08				00.0						
Acetone	BRL		µg/l	20.0						
Benzene	BRL		µg/l	1.0						
Bromodichloromethane	BRL		µg/l	1.0						
Bromoform	BRL		µg/l	1.0						
Bromomethane	BRL		µg/l	2.0						
2-Butanone (MEK)	BRL		µg/l	10.0						
Carbon tetrachloride	BRL		µg/l	1.0						
Chlorobenzene	BRL		µg/l	1.0						
Chloroethane	BRL		µg/l	2.0						
Chloroform	BRL		µg/l	1.0						
Chloromethane	BRL		µg/l	2.0						
Dibromochloromethane	BRL		µg/l	1.0						
1,2-Dichlorobenzene	BRL		µg/l	1.0						
1,3-Dichlorobenzene	BRL		µg/l	1.0						
1,4-Dichlorobenzene	BRL		µg/l	1.0						
1,1-Dichloroethane	BRL		µg/l	1.0						
1,2-Dichloroethane	BRL		µg/l	1.0						
1,1-Dichloroethene	BRL		µg/l	1.0						
cis-1,2-Dichloroethene	BRL		µg/l	1.0						
	BRL			1.0						
			µg/l							
trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene	BRL BRL		µg/i µg/l	1.0 1.0 1.0						

				Spike	Source		%REC		RPD
Analyte(s)	Result Fla	g Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water MS									
Blank (8111291-BLK1)									
Prepared & Analyzed: 18-Nov-08									
trans-1,3-Dichloropropene	BRL	µg/l	1.0						
Ethylbenzene	BRL	μg/l	1.0						
2-Hexanone (MBK)	BRL	μg/l	10.0						
Methyl tert-butyl ether	BRL	μg/l	1.0						
4-Methyl-2-pentanone (MIBK)	BRL	μg/l	10.0						
Methylene chloride	BRL	μg/l	10.0						
Styrene	BRL	μg/l	1.0						
1,1,2,2-Tetrachloroethane	BRL	μg/l	1.0						
Tetrachloroethene	BRL	μg/l	1.0						
Toluene	BRL	μg/l	1.0						
1,1,1-Trichloroethane	BRL	μg/l	1.0						
1,1,2-Trichloroethane	BRL	μg/l	1.0						
Trichloroethene	BRL	μg/l	1.0						
Trichlorofluoromethane (Freon 11)	BRL	μg/l	1.0						
Vinyl chloride	BRL	μg/l	1.0						
m,p-Xylene	BRL	μg/l	2.0						
o-Xylene	BRL	μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	25.1	μg/l	1.0	30.0		84	70-130		
Surrogate: Toluene-d8	29.7	μg/l		30.0		99	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.8	μg/l		30.0		113	70-130		
Surrogate: Dibromofluoromethane	36.4	µg/l		30.0		121	70-130		
LCS (8111291-BS1)									
Prepared & Analyzed: 18-Nov-08									
Acetone	20.6	µg/l		20.0		103	70-130		
Benzene	20.6	μg/l		20.0		103	70-130		
Bromodichloromethane	24.1	μg/l		20.0		121	35-155		
Bromoform	18.3	μg/l		20.0		92	45-169		
Bromomethane	23.3	μg/l		20.0		116	1-242		
2-Butanone (MEK)	19.0	μg/l		20.0		95	70-130		
Carbon tetrachloride	22.8	μg/l		20.0		114	70-140		
Chlorobenzene	20.8	μg/l		20.0		104	70-130		
Chloroethane	20.0	μg/l		20.0		104	14-230		
Chloroform	23.2	μg/l		20.0		116	51-138		
Chloromethane	19.7			20.0		99	1-273		
Dibromochloromethane	19.7	µg/l		20.0		99 98	53-149		
1,2-Dichlorobenzene	19.7	µg/l		20.0		98 96	18-190		
1,3-Dichlorobenzene	22.7	µg/l		20.0		96 113	59-156		
1,4-Dichlorobenzene		µg/l							
,	19.3 21.0	µg/l		20.0		96 105	18-190		
1,1-Dichloroethane	21.0	µg/l		20.0		105	59-155		
1,2-Dichloroethane	20.6	µg/l		20.0		103	49-155		
1,1-Dichloroethene	19.1	µg/l		20.0		96	70-130		
cis-1,2-Dichloroethene	19.7	µg/l		20.0		99 103	70-130		
trans-1,2-Dichloroethene	20.7	µg/l		20.0		103	54-156		
1,2-Dichloropropane	20.8	µg/l		20.0		104	1-210		
cis-1,3-Dichloropropene	17.8	µg/l		20.0		89	1-227		
trans-1,3-Dichloropropene	17.9	µg/l		20.0		89	17-183		
Ethylbenzene	21.1	µg/l		20.0		106	37-162		
2-Hexanone (MBK)	14.0	µg/l		20.0		70	70-130		
Methyl tert-butyl ether	21.0	μg/l		20.0		105	70-130		
4-Methyl-2-pentanone (MIBK)	18.0	µg/l		20.0		90	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111291 - SW846 5030 Water MS										
LCS (8111291-BS1)										
Prepared & Analyzed: 18-Nov-08										
Methylene chloride	22.5		µg/l		20.0		113	1-221		
Styrene	18.0		μg/l		20.0		90	70-130		
1,1,2,2-Tetrachloroethane	21.1		μg/l		20.0		106	46-157		
Tetrachloroethene	18.1		μg/l		20.0		90	64-148		
Toluene	20.4		μg/l		20.0		102	70-130		
1,1,1-Trichloroethane	19.9		μg/l		20.0		100	52-162		
1,1,2-Trichloroethane	21.0		μg/l		20.0		105	52-150		
Trichloroethene	20.1		μg/l		20.0		101	71-157		
Trichlorofluoromethane (Freon 11)	19.6		μg/l		20.0		98	17-181		
Vinyl chloride	23.2		μg/l		20.0		116	1-251		
m,p-Xylene	43.9		μg/l		40.0		110	70-130		
o-Xylene	22.1		μg/l		20.0		111	70-130		
Surrogate: 4-Bromofluorobenzene	32.0		μg/l		30.0		107	70-130		
Surrogate: Toluene-d8	30.3		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.3		µg/l		30.0		104	70-130		
Surrogate: Dibromofluoromethane	32.1		µg/l		30.0		107	70-130		
LCS Dup (8111291-BSD1)										
Prepared & Analyzed: 18-Nov-08										
Acetone	21.4		µg/l		20.0		107	70-130	4	30
Benzene	20.1		µg/l		20.0		100	70-130	3	30
Bromodichloromethane	23.8		µg/l		20.0		119	35-155	1	30
Bromoform	18.8		µg/l		20.0		94	45-169	2	30
Bromomethane	22.6		µg/l		20.0		113	1-242	3	30
2-Butanone (MEK)	20.9		µg/l		20.0		104	70-130	10	30
Carbon tetrachloride	21.8		µg/l		20.0		109	70-140	4	30
Chlorobenzene	20.5		µg/l		20.0		103	70-130	1	30
Chloroethane	21.0		µg/l		20.0		105	14-230	5	30
Chloroform	23.3		µg/l		20.0		117	51-138	0.6	30
Chloromethane	18.6		µg/l		20.0		93	1-273	6	30
Dibromochloromethane	19.6		µg/l		20.0		98	53-149	0.1	30
1,2-Dichlorobenzene	19.6		µg/l		20.0		98	18-190	2	30
1,3-Dichlorobenzene	22.9		µg/l		20.0		114	59-156	0.7	30
1,4-Dichlorobenzene	20.0		µg/l		20.0		100	18-190	4	30
1,1-Dichloroethane	20.6		µg/l		20.0		103	59-155	2	30
1,2-Dichloroethane	21.0		µg/l		20.0		105	49-155	2	30
1,1-Dichloroethene	18.3		µg/l		20.0		92	70-130	4	30
cis-1,2-Dichloroethene	19.3		µg/l		20.0		96	70-130	2	30
trans-1,2-Dichloroethene	19.9		µg/l		20.0		99	54-156	4	30
1,2-Dichloropropane	20.4		µg/l		20.0		102	1-210	2	30
cis-1,3-Dichloropropene	17.7		µg/l		20.0		88	1-227	0.4	30
trans-1,3-Dichloropropene	18.0		µg/l		20.0		90	17-183	0.8	30
Ethylbenzene	20.1		µg/l		20.0		100	37-162	5	30
2-Hexanone (MBK)	15.4		µg/l		20.0		77	70-130	9	30
Methyl tert-butyl ether	21.6		µg/l		20.0		108	70-130	3	30
4-Methyl-2-pentanone (MIBK)	19.2		µg/l		20.0		96	70-130	7	30
Methylene chloride	22.3		µg/l		20.0		111	1-221	1	30
Styrene	17.6		µg/l		20.0		88	70-130	2	30
1,1,2,2-Tetrachloroethane	22.2		µg/l		20.0		111	46-157	5	30
Tetrachloroethene	17.8		µg/l		20.0		89	64-148	2	30
Toluene	20.0		µg/l		20.0		100	70-130	2	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111291 - SW846 5030 Water	r MS									
<u>-CS Dup (8111291-BSD1)</u>										
Prepared & Analyzed: 18-Nov-08										
1,1,1-Trichloroethane	19.3		µg/l		20.0		97	52-162	3	30
1,1,2-Trichloroethane	21.9		µg/l		20.0		109	52-150	4	30
Trichloroethene	19.8		µg/l		20.0		99	71-157	2	30
Trichlorofluoromethane (Freon 11)	19.2		µg/l		20.0		96	17-181	2	30
Vinyl chloride	22.6		μg/l		20.0		113	1-251	3	30
m,p-Xylene	42.8		μg/l		40.0		107	70-130	3	30
o-Xylene	22.0		μg/l		20.0		110	70-130	0.7	30
Surrogate: 4-Bromofluorobenzene	32.0		μg/l		30.0		106	70-130	•	
Surrogate: Toluene-d8	30.0		μg/l		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	31.1		µg/l		30.0		104	70-130		
Surrogate: Dibromofluoromethane	32.0		µg/l		30.0		107	70-130		
Matrix Spike (8111291-MS1)	Source: SA8750	1-01								
Prepared & Analyzed: 18-Nov-08										
Benzene	23.0		µg/l		20.0	BRL	115	70-130		
Bromodichloromethane	29.2		µg/l		20.0	BRL	146	35-155		
Bromoform	22.7		µg/l		20.0	BRL	113	45-169		
Bromomethane	24.8		µg/l		20.0	BRL	124	1-242		
Carbon tetrachloride	28.8	QM7	µg/l		20.0	BRL	144	70-140		
Chlorobenzene	23.8		µg/l		20.0	BRL	119	70-130		
Chloroethane	25.0		µg/l		20.0	BRL	125	14-230		
Chloroform	27.4		µg/l		20.0	BRL	137	51-138		
Chloromethane	20.8		μg/l		20.0	BRL	104	1-273		
Dibromochloromethane	23.8		μg/l		20.0	BRL	119	53-149		
1,2-Dichlorobenzene	21.4		μg/l		20.0	BRL	107	18-190		
1,3-Dichlorobenzene	28.0		μg/l		20.0	BRL	140	59-156		
1.4-Dichlorobenzene	21.9		µg/l		20.0	BRL	109	18-190		
1,1-Dichloroethane	24.1		µg/l		20.0	BRL	121	59-155		
1,2-Dichloroethane	25.8		µg/l		20.0	BRL	129	49-155		
1,1-Dichloroethene	21.9		μg/l		20.0	BRL	110	70-130		
trans-1,2-Dichloroethene	23.8		µg/l		20.0	BRL	119	54-156		
1,2-Dichloropropane	23.4		μg/l		20.0	BRL	117	1-210		
cis-1,3-Dichloropropene	19.3		μg/l		20.0	BRL	97	1-227		
trans-1,3-Dichloropropene	20.6		μg/l		20.0	BRL	103	17-183		
Ethylbenzene	23.8		μg/l		20.0	BRL	119	37-162		
Methylene chloride	25.8		μg/l		20.0	BRL	129	1-221		
1,1,2,2-Tetrachloroethane	30.4		μg/l		20.0	BRL	152	46-157		
Tetrachloroethene	22.8		μg/i μg/l		20.0	BRL	152	40-157 64-148		
Toluene	22.8				20.0	BRL	122	70-130		
1,1,1-Trichloroethane	24.3 24.2		µg/l		20.0 20.0	BRL	122	70-130 52-162		
1,1,1-Trichloroethane			µg/l							
	26.7 23.9		µg/l		20.0	BRL	134 120	52-150 71 157		
Trichloroethene			µg/l		20.0	BRL	120	71-157		
Trichlorofluoromethane (Freon 11)	24.6		µg/l		20.0	BRL	123	17-181		
Vinyl chloride	19.4		µg/l		20.0	BRL	97	1-251		
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8	34.6 31.1		µg/l µg/l		30.0 30.0		115 104	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	37.6		μg/l		30.0		125	70-130		
Surrogate: Dibromofluoromethane	35.0		µg/l		30.0		117	70-130		
Matrix Spike Dup (8111291-MSD1)	Source: SA8750	1-01								
Prepared & Analyzed: 18-Nov-08										
Benzene	26.5	QC1	µg/l		20.0	BRL	132	70-130	14	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 8111291 - SW846 5030 Water	MS									
Matrix Spike Dup (8111291-MSD1)	Source: SA8750	1-01								
Prepared & Analyzed: 18-Nov-08										
Bromodichloromethane	40.1	QC1	µg/l		20.0	BRL	201	35-155	32	30
Bromoform	35.2	QC1	µg/l		20.0	BRL	176	45-169	43	30
Bromomethane	24.8		µg/l		20.0	BRL	124	1-242	0.2	30
Carbon tetrachloride	31.1	QM7	µg/l		20.0	BRL	156	70-140	8	30
Chlorobenzene	34.5	QC1	µg/l		20.0	BRL	172	70-130	37	30
Chloroethane	24.4		µg/l		20.0	BRL	122	14-230	3	30
Chloroform	31.7	QC1	µg/l		20.0	BRL	158	51-138	15	30
Chloromethane	20.6		µg/l		20.0	BRL	103	1-273	0.9	30
Dibromochloromethane	35.7	QC1	µg/l		20.0	BRL	179	53-149	40	30
1,2-Dichlorobenzene	36.5	QC1	µg/l		20.0	BRL	182	18-190	52	30
1,3-Dichlorobenzene	41.8	QC1	µg/l		20.0	BRL	209	59-156	40	30
1,4-Dichlorobenzene	35.2	QC1	µg/l		20.0	BRL	176	18-190	47	30
1,1-Dichloroethane	25.4		µg/l		20.0	BRL	127	59-155	5	30
1,2-Dichloroethane	30.3		µg/l		20.0	BRL	152	49-155	16	30
1,1-Dichloroethene	21.8		µg/l		20.0	BRL	109	70-130	0.7	30
trans-1,2-Dichloroethene	23.9		µg/l		20.0	BRL	120	54-156	0.6	30
1,2-Dichloropropane	30.2		µg/l		20.0	BRL	151	1-210	25	30
cis-1,3-Dichloropropene	28.3	QC1	µg/l		20.0	BRL	141	1-227	38	30
trans-1,3-Dichloropropene	32.1	QC1	µg/l		20.0	BRL	161	17-183	43	30
Ethylbenzene	37.0	QC1	µg/l		20.0	BRL	185	37-162	43	30
Methylene chloride	26.3		µg/l		20.0	BRL	131	1-221	2	30
1,1,2,2-Tetrachloroethane	45.6	QC1	µg/l		20.0	BRL	228	46-157	40	30
Tetrachloroethene	29.1		µg/l		20.0	BRL	146	64-148	24	30
Toluene	31.4	QC1	µg/l		20.0	BRL	157	70-130	25	30
1,1,1-Trichloroethane	28.8		µg/l		20.0	BRL	144	52-162	18	30
1,1,2-Trichloroethane	38.9	QC1	µg/l		20.0	BRL	195	52-150	37	30
Trichloroethene	28.8		µg/l		20.0	BRL	144	71-157	18	30
Trichlorofluoromethane (Freon 11)	23.0		µg/l		20.0	BRL	115	17-181	7	30
Vinyl chloride	17.8		µg/l		20.0	BRL	89	1-251	9	30
Surrogate: 4-Bromofluorobenzene	33.2		µg/l		30.0		111	70-130		
Surrogate: Toluene-d8	30.7		µg/l		30.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	33.3 32.0		µg/l µg/l		30.0 30.0		111 107	70-130 70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Blank (8111042-BLK1)										
Prepared & Analyzed: 21-Nov-08										
Thallium	BRL		µg/l	5.00						
Zinc	BRL		µg/l	7.50						
Antimony	BRL		µg/l	6.00						
Lead	BRL		µg/l	7.50						
Nickel	BRL		µg/l	5.00						
Selenium	BRL		µg/l	15.0						
Beryllium	BRL		µg/l	2.00						
Cadmium	BRL		µg/l	2.50						
Chromium	BRL		µg/l	5.00						
Arsenic	BRL		µg/l	4.00						
Vanadium	BRL		µg/l	5.00						
Silver	BRL		µg/l	5.00						
Barium	BRL		µg/l	5.00						
			10							
<u>-CS (8111042-BS1)</u>										
Prepared & Analyzed: 21-Nov-08	1000			7.50	4050		105	05 445		
Zinc	1320		µg/l	7.50	1250		105	85-115		
Nickel	1250		µg/l	5.00	1250		100	85-115		
Lead	1260		µg/l	7.50	1250		100	85-115		
Thallium	1210		µg/l	5.00	1250		97	85-115		
Selenium	1230		µg/l	15.0	1250		99	85-115		
Antimony	1310		µg/l	6.00	1250		105	85-115		
Barium	1230		µg/l	5.00	1250		99	85-115		
Cadmium	1330		µg/l	2.50	1250		106	85-115		
Chromium	1250		µg/l	5.00	1250		100	85-115		
Arsenic	1240		µg/l	4.00	1250		99	85-115		
Beryllium	1230		µg/l	2.00	1250		99	85-115		
Vanadium	1220		µg/l	5.00	1250		98	85-115		
Silver	1250		µg/l	5.00	1250		100	85-115		
<u>_CS Dup (8111042-BSD1)</u>										
Prepared & Analyzed: 21-Nov-08	1000				1050			05.445		
Lead	1200		µg/l	7.50	1250		96	85-115	4	20
Thallium	1170		µg/l	5.00	1250		94	85-115	3	20
Antimony	1270		µg/l	6.00	1250		102	85-115	3	20
Selenium	1200		µg/l	15.0	1250		96	85-115	3	20
Nickel	1220		µg/l	5.00	1250		97	85-115	3	20
Zinc	1280		µg/l	7.50	1250		102	85-115	3	20
Barium	1200		µg/l	5.00	1250		96	85-115	3	20
Silver	1210		µg/l	5.00	1250		97	85-115	3	20
Chromium	1210		µg/l	5.00	1250		97	85-115	3	20
Vanadium	1180		µg/l	5.00	1250		95	85-115	4	20
Beryllium	1190		µg/l	2.00	1250		95	85-115	3	20
Cadmium	1290		µg/l	2.50	1250		103	85-115	3	20
Arsenic	1200		µg/l	4.00	1250		96	85-115	3	20
Duplicate (8111042-DUP1)	Source: SA8740	1-01								
Prepared & Analyzed: 21-Nov-08										
Thallium	3.80		µg/l	5.00		BRL				20
Zinc	22.6		µg/l	7.50		23.7			5	20
Selenium	BRL		µg/l	15.0		BRL				20

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
3atch 8111042 - SW846 3005A										
Duplicate (8111042-DUP1)	Source: SA8740 [°]	1-01								
Prepared & Analyzed: 21-Nov-08										
Antimony	BRL		µg/l	6.00		BRL				20
Nickel	BRL		µg/l	5.00		BRL				20
Lead	12.6	QR8	μg/l	7.50		6.00			71	20
Barium	8.20		μg/l	5.00		7.90			3	20
Silver	BRL		μg/l	5.00		BRL				20
Beryllium	BRL		μg/l	2.00		BRL				20
Chromium	BRL		µg/l	5.00		BRL				20
Arsenic	BRL		µg/l	4.00		BRL				20
Cadmium	0.500	J	µg/l	2.50		BRL				20
Vanadium	BRL		μg/l	5.00		BRL				20
Matrix Spike (8111042-MS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Antimony	1300		µg/l	6.00	1250	BRL	104	75-125		
Zinc	1310		µg/l	7.50	1250	16.9	103	75-125		
Thallium	1190		µg/l	5.00	1250	BRL	95	75-125		
Selenium	1220		µg/l	15.0	1250	BRL	97	75-125		
Lead	1230		µg/l	7.50	1250	5.35	98	75-125		
Nickel	1230		µg/l	5.00	1250	4.50	98	75-125		
Beryllium	1210		µg/l	2.00	1250	BRL	97	75-125		
Chromium	1220		µg/l	5.00	1250	BRL	97	75-125		
Vanadium	1200		µg/l	5.00	1250	BRL	96	70-130		
Silver	1230		µg/l	5.00	1250	BRL	98	75-125		
Arsenic	1210		µg/l	4.00	1250	BRL	97	75-125		
Barium	1260		µg/l	5.00	1250	69.4	95	75-125		
Cadmium	1300		µg/l	2.50	1250	BRL	104	75-125		
Matrix Spike Dup (8111042-MSD1)	Source: SA8740 ⁻	1-02								
Prepared & Analyzed: 21-Nov-08										
Nickel	1230		µg/l	5.00	1250	4.50	98	75-125	0.3	20
Zinc	1310		µg/l	7.50	1250	16.9	103	75-125	0.3	20
Thallium	1180		µg/l	5.00	1250	BRL	95	75-125	0.5	20
Selenium	1220		µg/l	15.0	1250	BRL	97	75-125	0.04	20
Lead	1220		µg/l	7.50	1250	5.35	97	75-125	0.6	20
Antimony	1290		µg/l	6.00	1250	BRL	103	75-125	0.4	20
Arsenic	1210		µg/l	4.00	1250	BRL	97	75-125	0	20
Silver	1230		µg/l	5.00	1250	BRL	98	75-125	0	20
Cadmium	1300		µg/l	2.50	1250	BRL	104	75-125	0.5	20
Barium	1260		µg/l	5.00	1250	69.4	95	75-125	0.04	20
Chromium	1220		µg/l	5.00	1250	BRL	98	75-125	0.6	20
Vanadium	1200		µg/l	5.00	1250	BRL	96	70-130	0.5	20
Beryllium	1200		µg/l	2.00	1250	BRL	96	75-125	0.8	20
Post Spike (8111042-PS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Thallium	1250		µg/l	5.00	1250	BRL	100	80-120		
Nickel	1270		µg/l	5.00	1250	4.50	101	80-120		
Lead	1280		µg/l	7.50	1250	5.35	102	80-120		
Zinc	1350		µg/l	7.50	1250	16.9	107	80-120		
Antimony	1320		µg/l	6.00	1250	BRL	106	80-120		
Selenium	1260		µg/l	15.0	1250	BRL	101	80-120		

Soluble Metals by EPA 6000/7000 Series Methods - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111042 - SW846 3005A										
Post Spike (8111042-PS1)	Source: SA8740	1-02								
Prepared & Analyzed: 21-Nov-08										
Barium	1320		µg/l	5.00	1250	69.4	100	80-120		
Chromium	1260		µg/l	5.00	1250	BRL	101	80-120		
Cadmium	1350		µg/l	2.50	1250	BRL	108	80-120		
Arsenic	1250		µg/l	4.00	1250	BRL	100	80-120		
Beryllium	1260		µg/l	2.00	1250	BRL	100	80-120		
Vanadium	1240		µg/l	5.00	1250	BRL	99	80-120		
Silver	1270		µg/l	5.00	1250	BRL	102	80-120		
	Soluble Me	tals by]	EPA 200 S	Series Meth	ods - Qual	ity Contr	ol			

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 8111043 - EPA200/SW7000 Series										
Blank (8111043-BLK1)										
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	BRL		µg/l	0.200						
LCS (8111043-BS1)										
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	4.48		µg/l	0.200	5.00		90	85-115		
Duplicate (8111043-DUP1) Sour	ce: SA8737	1-01								
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	BRL		µg/l	0.200		BRL				20
Matrix Spike (8111043-MS1) Sour	ce: SA8737	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	4.99		µg/l	0.200	5.00	BRL	100	75-125		
Matrix Spike Dup (8111043-MSD1) Sour	ce: SA8737	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	4.61		µg/l	0.200	5.00	BRL	92	75-125	8	20
Post Spike (8111043-PS1) Sour	ce: SA8737′	1-02								
Prepared: 21-Nov-08 Analyzed: 24-Nov-08										
Mercury	4.35		µg/l	0.200	5.00	BRL	87	85-115		

Notes and Definitions

- QC1 Analyte out of acceptance range.
- QM7 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- QR8 Analyses are not controlled on RPD values from sample concentrations that are less than 5 times the reporting level. The batch is accepted based upon the difference between the sample and duplicate is less than or equal to the reporting limit.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Rebecca Merz

MADEP MCP ANALYTICAL METHOD REPORT CERTIFICATION FORM

Labo	ratory Name: S	Spectrum Analytical,	Inc Agawam, MA	4	Project #: 127000	58		
Proje	ect Location: W	alpole Park South-W	alpole, MA		MADEP RTN ¹ :			
	-	certifications for the sugh SA87371-09	following data set:					
Samp	ole matrices:	Aqueous Groun	d Water					
		□ 8260B	🗆 8151A	□ 8330	☑ 6010B	☑ 7470A/1A		
	P SW-846 lods Used	□ 8270C	B 8081A	□ VPH	6020	□ 9014M ²		
	ious eseu	8082	□ 8021B	□ EPH	□ 7000S ³	□ 7196A		
2 M -	SW-846 Method 9	Number (RTN), if known 014 or MADEP Physiolog 7000 Series List individua		e (PAC) Method				
		An affirmative resp	onse to questions A	l, B, C and D is requ	uired for "Presumpt	ive Certainty" statu	<i>s</i>	
A		mples received by the ustody documentatior		ndition consistent wi	ith that described on	the	🗹 Yes	🗆 No
В	followed, in	A/QC procedures required the requirem performance standar	ent to note and dis				🗹 Yes	□ No
С	Certainty",	ata included in this rep as described in Section ssurance and Quality Data"?	on 2.0 (a), (b), (c) a	nd (d) of the MADE	P document CAM V	/II A,	🗹 Yes	🗖 No
D		EPH methods only: Works (see Section 11.3 of			without significant		□ Yes	🛛 No
		A response to	questions E and F	below is required fo	or "Presumptive Ce	rtainty" status		
Е	Were all an achieved?	alytical QC performa	nce standards and i	recommendations for	r the specified metho	ods	🗹 Yes	🗖 No
F	Were result	s for all analyte-list c	ompounds/element	s for the specified m	nethod(s) reported?		🗹 Yes	🛛 No
		All negative res	sponses are addres	sed in a case narrati	ive on the cover pag	e of this report.	-	
respo	onsible for obt	attest under the pai aining the information ief, accurate and con	on, the material co		lytical report is, to t E P			

Condition upon receipt: Effect and Ambient and and and and and and and and	EDD Format PDF, excel whall Dis + in ugh " Repeaced in the office of the office office of the office	E-mail to counter phason & tobatech com Wash Telinger Deliger	Fax results when available to () Received by: Received by:	TripBlank IIII08 2 1 X	120 1 1 4 X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 MW- 3- GW 8:35	11:00 1 X X	MW-2-GW 9:50 1 X X	MW-9-GW 11:50 1 X X	RIZ-3- GW 11/11/08 15:40 XX	2 RIZ-8-GW 4 13:50 1 1 1 X X	1 PIZ-10-GW 11/11/08 14:35 G GW 3/4 2 1 XX	Type Matri Prese # of V	x ervati /OA Mbe Clear Plastic s &	Vials r Glass Glass	3=H ₂ SO ₄ 4=HNO ₃	Johnson	Iorio MA Jorio	Grant St	~ 1	Page 1 of 1	
-	Inferris Luis	11/12/08 10:00	Date: Time:								b	* Hetals have been	State specific reporting standards: MA MCP GW-1	Standard INo QC	Provide MA DEP MCP CAM Report Provide CT DEP RCP Report QA/QC Reporting Level	QA Reporting Notes: (check if needed)	bequist	State: MA	Tack Jouth	-	Samples disposed of after 60 days unless otherwise instructed.	All LATS subject to laboratory approval. Min. 24-hour notification needed for rushes.

ANALYTICAL REPORT

Lab Number:	L0818397
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ian Cannan
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700058
Report Date:	12/23/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Alpha Sample ID L0818397-01 Client ID RIZ-10 Sample Location WALPOLE, MA

12230812:22

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status							
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES						
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES						
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	NO						
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A						
A re	A response to questions E and F is required for "Presumptive Certainty" status							
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES						
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700058 Lab Number: L0818397 Report Date: 12/23/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

Sample Receipt

In reference to question C:

The samples were received at the laboratory requiring filtration for Dissolved Metals; however, the samples were received beyond the 24 hour holding time recommended for filtration. The samples were filtered and preserved appropriately.

Dissolved Metals

L0818397-01 has an elevated detection limit for Thallium due to the dilution required by the high concentrations of non-target analytes. The requested reporting limit was achieved.

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Case Narrative (continued)

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Upibeth & Simmon

Title: Technical Director/Representative

Date: 12/23/08

12230812:22

METALS

									12230812:2	22	
Project Name:	WALPO	LE PARK S	OUTH			Lal	Number:		L0818397		
Project Number:	1270005	58				Re	port Date:	12/23/08			
			SA	MPLE	RESULT	S					
Lab ID:	L081839	7-01				Da	e Collected:	:	12/11/08 09:	30	
Client ID:	RIZ-10					Da	e Received:	12/15/08			
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Not Specified			
Matrix:	Water										
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Dissolved Metals b	y MCP 600	00/7000 ser	ies								
Thallium, Dissolved	ND		mg/l	0.0020	4	12/16/08 11:15	5 12/17/08 00:50	0 EPA 3005	A 64,6020A	BM	

12230812:22

Project Name:WALPOLE PARK SOUTHProject Number:12700058

 Lab Number:
 L0818397

 Report Date:
 12/23/08

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals by MCP	6000/7000 series	for sample	e(s): 01	Batch:	WG347338-1			
Thallium, Dissolved	ND	mg/l	0.0005	1	12/16/08 11:15	12/16/08 23:33	64,6020A	BM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Project Name:	WALPOLE PARK SOUTH	Batch Quality Control	Lab Number:	L0818397
Project Number:	12700058		Report Date:	12/23/08

Parameter	LCS %Recovery		LCSD Recovery		Recovery Limits	RPD	RPD Limits
Dissolved Metals by MCP 6000/7000 series	Associated sample(s):	01 Ba	atch: WG347	338-2	WG347338-3		
Thallium, Dissolved	95		96		80-120	1	20

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0818397-01A	Plastic 500ml unpreserved	А	7	2C	Y	Absent	
L0818397-01B	Plastic 500ml HNO3 preserved spl	А	<2	2C	Y	Absent	MCP-TL-6020S(180)

Project Number: 12700058

Lab Number: L0818397 Report Date: 12/23/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Project Name:WALPOLE PARK SOUTHProject Number:12700058

Lab Number: L0818397 Report Date: 12/23/08

REFERENCES

64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

	-		0.0	106	अस्ति	1190	5.55	1000	<u></u>	23.2.9	120.5												12	<u>23081</u>	<u>2:22</u>	
	IS VOUR BEO IECT	PLEASE ANSWER QUESTIONS ABOVE									1857 / · · / RIZ-10		ALPHA Lab ID Sample ID	DLs <rcgw-1< td=""><td>Other Project Specific Requirements/Comments/Detection Limits</td><td>These samples have been Previously analyzed by Alpha</td><td>Email: ian.cannan@tetratech.com</td><td>Fax: 508-903-2001</td><td>Phone: 508-903-2039</td><td>Framingham, MA</td><td>Address: One Grant Street</td><td>Client: Tetra Tech Rizzo</td><td>Client Information</td><td>wesuorougn, MA manstinin, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288</td><td></td><td>CHAIN OF</td></rcgw-1<>	Other Project Specific Requirements/Comments/Detection Limits	These samples have been Previously analyzed by Alpha	Email: ian.cannan@tetratech.com	Fax: 508-903-2001	Phone: 508-903-2039	Framingham, MA	Address: One Grant Street	Client: Tetra Tech Rizzo	Client Information	wesuorougn, MA manstinin, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288		CHAIN OF
Jon											12-11-08 0930	Date Time	Collection		nts/Detection Limits:	Due Date: 17/77 WTime:	-	🛛 Standard 🛛 🗆 Rush (Turn-Around Time	ALPHA Quote #:	Project Manager: Ray Johnson	Project #: 12700058	Project Location: Walpole, MA	Project Name: Walpole Park South	Project Information	CHAIN OF CUSTODY
	Preservative	Container Type									GW ISC	Matrix Initials	Sample Sampler's					Rush (ONLY IF PRE-APPROVED)						outh		PAGE OF STATES AND
12-15-08 165 00		-										Disso	lved	I Thallium					SIS		RESUN	MA MCP CAM	Kegulatory Kegul State/Fed Program	ADEx	Report Information	Date Rec'd in Lab
2 Arthurt		· · ·																· ·		-	VE CERTAINTY-CT R		State/Fed Program	Add'I Deliverables	n Data Deliverables ⊠ EMAIL	12-115/08
Date/Time 7 12,568 /6/30 7 12,568																<u> </u>				Are MCP Analytical Methods Required?	EASONABLE CONFI	RCGW-1	S Criteria		Billing Information	ALPHA Job #: 2
turnaround time clock will not- start until any ambiguities are submitted are subject to 3 Alpha's Payment Terms 9 Page	Please print clearly, legibly and completely Samples can not be logged in and										Lab to filter 1	Sampte Specific Comments		M Lab to do (Please specify below) S		eeded	Filtration	SAMPLE HANDLING			CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS				D PO #	Los18397
[e	811 S :																									16965

ANALYTICAL REPORT

Lab Number:	L0907670
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ray Johnson
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700053
Report Date:	06/17/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0907670
Project Number:	12700053	Report Date:	06/17/09

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L0907670-01	RIZ-10	WALPOLE, MA	06/10/09 13:00
L0907670-02	RIZ-8	WALPOLE, MA	06/10/09 13:28
L0907670-03	RIZ-8S	WALPOLE, MA	06/10/09 13:18
L0907670-04	MW-9	WALPOLE, MA	06/10/09 13:45
L0907670-05	GHC-6	WALPOLE, MA	06/10/09 14:05
L0907670-06	RIZ-3	WALPOLE, MA	06/10/09 14:12
L0907670-07	MW-2	WALPOLE, MA	06/10/09 14:26
L0907670-08	RIZ-9	WALPOLE, MA	06/10/09 14:41

06170918:25

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status						
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES					
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES					
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES					
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A					
A response to questions E and F is required for "Presumptive Certainty" status							
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES					
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: WALPOLE PARK SOUTH Project Number: 12700053
 Lab Number:
 L0907670

 Report Date:
 06/17/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives Sample Receipt The samples were Field Filtered for Dissolved Metals only. Metals L0907670-01 through -08 have elevated detection limits for Antimony and Thallium due to the dilutions

required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Uppbeth & Summers

Title: Technical Director/Representative

Date: 06/17/09

06170918:25

ORGANICS

06170918:25

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-01 06/10/09 13:00 Client ID: Date Received: 06/11/09 **RIZ-10** Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 14:10 Analytical Date: Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

ParameterResultQualifierUnitisRDLDilution PactorVolatile Organics by GC/MS - Westborough Lab1.3-DichlorobenzeneNDugl0.5011.4-DichlorobenzeneNDugl0.501SyreneNDugl0.501SyreneNDugl0.5011.1-DichloropropaneNDugl0.5011.1.2-TetrachloroethaneNDugl0.5011.1.3-TrichloropropaneNDugl0.5011.3-TrichloroethaneNDugl0.501DichloroptonethaneNDugl0.501DichloroptonethaneNDugl0.501ExerchlorobtadieneNDugl0.501DichloroptonethaneNDugl0.501DichloroptonethaneNDugl0.501PosprophtoueneNDugl0.501PosprophtoueneNDugl0.501PosprophtoueneNDugl0.501L2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.5011.2-TrintehybenzeneNDugl0.501<	Lab ID: Client ID: Sample Location:	L0907670-01 RIZ-10 WALPOLE, MA			Dat	e Collected: e Received: d Prep:	06/10/09 13:0 06/11/09 See Narrative
1.3-Dicklorobenzene ND ug/l 0.50 1 1.4-Dicklorobenzene ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 c/xjerne ND ug/l 0.50 1 1,1-Dickloropropene ND ug/l 0.50 1 1,1-2-Zarchichorophane ND ug/l 0.50 1 1,1.2-Zarchichorophane ND ug/l 0.50 1 1,1.2-Zarchichorophane ND ug/l 0.50 1 1,2.3-Trichlorophane ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1	Parameter		Result	Qualifier	Units	RDL	Dilution Factor
ND ug/l 0.50 1 Styrene ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 2.2-Dichloropropane ND ug/l 0.50 1 1.1.1_2-Tetrachloropropane ND ug/l 0.50 1 1.2.3-Trichloropropane ND ug/l 0.50 1 1.2.3-Trichloropropane ND ug/l 0.50 1 I.2.3-Trichloropropane ND ug/l 0.50 1 In-Butybenzene ND ug/l 0.50 1 Ichloroditudiene ND ug/l 0.50 1 Isporpolytouene ND ug/l 0.50 1 Isporpolytouene ND ug/l 0.50 1 Iz/3-Trichlorobenzene ND ug/l 0.50 1	Volatile Organics by (GC/MS - Westborough I	_ab				
ND ug/l 0.50 1 o-Xylene ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 2,2-Dichloropropene ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Dichlorodfluoromethane ND ug/l 0.50 1 Dichlorodfluoromethane ND ug/l 0.50 1 Dichlorodfluoromethane ND ug/l 0.50 1 Isopropylenzene ND ug/l 0.50 1 Isopropylenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1	1,3-Dichlorobenzene		ND		ug/l	0.50	1
o-Xylene ND ugl 0.50 1 1,1-Dichloropropene ND ugl 0.50 1 2,2-Dichloropropane ND ugl 0.50 1 1,1,1,2-Tetrachloropethane ND ugl 0.50 1 1,2,3-Trichloropropane ND ugl 0.50 1 1,2,3-Trichloropropane ND ugl 0.50 1 Dichlorodfloromethane ND ugl 0.50 1 Dichlorodfloromethane ND ugl 0.50 1 Dichlorodfloromethane ND ugl 0.50 1 Isopropylbenzene ND ugl 0.50 1 1,2,3-Trichlorobenzene ND ugl 0.50 1 1,2,4-Trichlorobenzene ND ugl 0.50	1,4-Dichlorobenzene		ND		ug/l	0.50	1
ND Ug1 0.50 1 2.2-Dichloropropane ND Ug1 0.50 1 1.1,1.2-Tetrachloroethane ND Ug1 0.50 1 1.1,1.2-Tetrachloroethane ND Ug1 0.50 1 1.2.3-Trichloropropane ND Ug1 0.50 1 Bromochloromethane ND Ug1 0.50 1 n-Butylbenzene ND Ug1 0.50 1 Dichlorobfuroomethane ND Ug1 0.50 1 Bromochloromethane ND Ug1 0.50 1 Dichlorobfuroomethane ND Ug1 0.50 1 Bromochloromethane ND Ug1 0.50 1 Isopropylbenzene ND Ug1 0.50 1 Naphthalene ND Ug1 0.50 1 NPeroylbenzene ND Ug1 0.50 1 1.2.4-Trichlorobenzene ND Ug1 0.50 1	Styrene		ND		ug/l	0.50	1
2.2-Dichloropropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 n-Propylberzene ND ug/l 0.50 1 n-Propylbrezene ND ug/l 0.50 1 n-Propylbrezene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l	o-Xylene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,1,2Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 <tr< td=""><td>1,1-Dichloropropene</td><td></td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></tr<>	1,1-Dichloropropene		ND		ug/l	0.50	1
I.2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimetrylbenzene ND ug/l 0.50	2,2-Dichloropropane		ND		ug/l	0.50	1
Bromochlonerthane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Triinethylbenzene ND ug/l 0.50 1 1,2-Dirorobenzene ND ug/l 0.5	1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2-Dirorobethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 </td <td>1,2,3-Trichloropropane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,2,3-Trichloropropane		ND		ug/l	0.50	1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 retr-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Libormoethane ND ug/l 0.50 <td>Bromochloromethane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Bromochloromethane		ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Dibromoethane ND ug/l 0.50	n-Butylbenzene		ND		ug/l	0.50	1
Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 <td>Dichlorodifluoromethane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Dichlorodifluoromethane		ND		ug/l	0.50	1
P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50<	Hexachlorobutadiene		ND		ug/l	0.50	1
Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 j.2-Dibromoethane ND ug/l 0.50 1 j.2-Dibromo-3-chloropropane ND ug/l	Isopropylbenzene		ND		ug/l	0.50	1
n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 jbromomethane ND ug/l 0.50 1 j.2-Dibromo-3-chloropropane ND ug/l 0.50 1 j.3-Dichloropropane ND ug/l	p-Isopropyltoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50	Naphthalene		ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 promobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 jbromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	sec-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,3-Dibromopropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene		ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene		ND		ug/l	0.50	1
1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane		ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane		ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropane	e	ND		ug/l	0.50	1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane		ND		ug/l	0.50	1
	Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-02 06/10/09 13:28 Client ID: Date Received: 06/11/09 RIZ-8 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 14:47 Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westh	oorough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

ParameterResultQualifierUnitsRDLDilution PactorVolatile Organics by GC/MS - Westborough Lab1.3-DichlorobenzeneNDug10.5011.4-DichlorobenzeneNDug10.501StyreneNDug10.501CharlesNDug10.5011.1-DichloropropeneNDug10.5011.1.2-TetrachloroethaneNDug10.5011.1.2-TetrachloroethaneNDug10.5011.2-DichlorophaneNDug10.5011.2-DichlorophaneNDug10.5011.3-TrichloroethaneNDug10.501ExportphaneNDug10.501ExportphaneNDug10.501DichorofluoromethaneNDug10.501ExportphaneNDug10.501PispropyltolueneNDug10.501PispropyltolueneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.5011.2-TrinklorobenzeneNDug10.501 <th>Lab ID: Client ID: Sample Location:</th> <th>L0907670-02 RIZ-8 WALPOLE, MA</th> <th></th> <th></th> <th>Date</th> <th>e Collected: e Received: d Prep:</th> <th>06/10/09 13:2 06/11/09 See Narrative</th>	Lab ID: Client ID: Sample Location:	L0907670-02 RIZ-8 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 13:2 06/11/09 See Narrative
ND ug1 0.50 1 1.3-Dicklorobenzene ND ug1 0.50 1 Styrene ND ug1 0.50 1 or/ylene ND ug1 0.50 1 1.1-Dickloropropene ND ug1 0.50 1 1.1-Dickloropropene ND ug1 0.50 1 1.1.2-Zarichloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Propylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 1.2.4-Trichlorobenzene	Parameter		Result	Qualifier	Units	RDL	Dilution Factor
ND ug1 0.50 1 Styrene ND ug1 0.50 1 o-Xylene ND ug1 0.50 1 1.1-Dichloropropene ND ug1 0.50 1 2.2-Dichloropropane ND ug1 0.50 1 1.1.1.2-Tetrachloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 I.2.3-Trichloropropane ND ug1 0.50 1 I.2.3-Trichloropropane ND ug1 0.50 1 Bromochloromethane ND ug1 0.50 1 Isporpylbenzene ND ug1 0.50 1 Isporpylbenzene ND ug1 0.50 1 1.2.4-Trichlorobenzene ND ug1 0.50 1 <	Volatile Organics by 0	GC/MS - Westborough L	ab				
ND ug1 0.50 1 o-Xylene ND ug1 0.50 1 1.1-Dichloropropene ND ug1 0.50 1 2.2-Dichloropropene ND ug1 0.50 1 2.2-Dichloropropane ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 Dichloromethane ND ug1 0.50 1 Dichloromethane ND ug1 0.50 1 Dichlorodifluoromethane ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 n-Propylenzene ND ug1 0.50 1 n-Propylenzene ND ug1 0.50 1 1.2.3-Trichloroberzene ND ug1 0.50 1 1.2.4-Trichloroberzene ND ug1 0.50 1 1.2.4-Trichlor	1,3-Dichlorobenzene		ND		ug/l	0.50	1
o-Xylene ND ug1 0.50 1 1.1-Dichloropropene ND ug1 0.50 1 2.2-Dichloropropane ND ug1 0.50 1 1.1.1,2-Tetrachloropethane ND ug1 0.50 1 1.1,1,2-Tetrachloropethane ND ug1 0.50 1 1.2,3-Trichloropropane ND ug1 0.50 1 Dichlorodifluoromethane ND ug1 0.50 1 Dichlorodifluoromethane ND ug1 0.50 1 Dichlorodifluoromethane ND ug1 0.50 1 Isopropylbenzene ND ug1 0.50 1 polsopropylbenzene ND ug1 0.50 1 n-Propylbenzene ND ug1 0.50 1 1.2,3-Trichlorobenzene ND ug1 0.50 1 1.2,4-Trichlorobenzene ND ug1 0.50 1 1.2,4-Trichlorobenzene ND ug1	1,4-Dichlorobenzene		ND		ug/l	0.50	1
ND Ug1 0.50 1 2.2-Dichloropropane ND Ug1 0.50 1 1.1,12-Tetrachloroethane ND Ug1 0.50 1 1.1,12-Tetrachloroethane ND Ug1 0.50 1 1.2,3-Trichloropropane ND Ug1 0.50 1 Bromochloromethane ND Ug1 0.50 1 Dichlorodiftuoromethane ND Ug1 0.50 1 Bromochloromethane ND Ug1 0.50 1 Dichlorodiftuoromethane ND Ug1 0.50 1 Isopropylbenzene ND Ug1 0.50 1 Isopropylbenzene ND Ug1 0.50 1 n-Propylbenzene ND Ug1 0.50 1 n-Propylbenzene ND Ug1 0.50 1 1.2,4-Trichlorobenzene ND Ug1 0.50 1 1.2,4-Trichlorobenzene ND Ug1 0.50 1	Styrene		ND		ug/l	0.50	1
2.2.Dichloropropane ND ug/l 0.50 1 1.1,1,2.Tetrachloroethane ND ug/l 0.50 1 1.2,3.Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50	o-Xylene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,1,2Trichloropropane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 pisopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2.3-Trichlorobenzene ND ug/l 0.50 1 1,2.4-Trinethylbenzene ND ug/l 0.50 1 1,2.4-Trinethylbenzene ND ug/l 0.50 1 1,3.5-Trinethylbenzene ND ug/l 0.50 1	1,1-Dichloropropene		ND		ug/l	0.50	1
1.2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimetrylbenzene ND ug/l 0.50 1 1,2,4-Trimetrylbenzene ND ug/l 0.50 1 1,2,4-Trimetrylbenzene ND ug/l 0.50	2,2-Dichloropropane		ND		ug/l	0.50	1
Bromochlonomethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Triinethylbenzene ND ug/l	1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2-Diroroblenzene ND ug/l 0.50 1 1,2-Diroroblenzene ND ug/l 0.50 1 <td>1,2,3-Trichloropropane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,2,3-Trichloropropane		ND		ug/l	0.50	1
Dicklorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 retr-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0	Bromochloromethane		ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Libormoethane ND ug/l 0.50	n-Butylbenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1	Dichlorodifluoromethane		ND		ug/l	0.50	1
P-IsoropyItoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-PropyIbenzene ND ug/l 0.50 1 sec-ButyIbenzene ND ug/l 0.50 1 tert-ButyIbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-TrinethyIbenzene ND ug/l 0.50 1 1,3,5-TrimethyIbenzene ND ug/l 0.50 1 1,3,5-TrimethyIbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l	Hexachlorobutadiene		ND		ug/l	0.50	1
Naphtalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l <	Isopropylbenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 jbromomethane ND ug/l 0.50 1 j.2-Dibromo-3-chloropropane ND ug/l 0.50 1 j.3-Dichloropropane ND ug/l 0.50 1 </td <td>p-Isopropyltoluene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	p-Isopropyltoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50	Naphthalene		ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dibloropropane ND ug/l 0.50 1	sec-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene		ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane		ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane		ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropan	e	ND		ug/l	0.50	1
Methyl tert butyl ether ND ug/l 0.50 1	1,3-Dichloropropane		ND		ug/l	0.50	1
	Methyl tert butyl ether		ND			0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-03 06/10/09 13:18 Client ID: Date Received: 06/11/09 RIZ-8S Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 15:24 Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	0.71		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-03 RIZ-8S WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 13:18 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by G	GC/MS - Westborough L	.ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane	•	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-04 06/10/09 13:45 Client ID: MW-9 Date Received: 06/11/09 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 16:01 Analytical Date: Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	0.75		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

ParameterResultQualifierUnitsVolatile Organics by GC/MS - Westborough Lab1,3-DichlorobenzeneNDug/l1,4-DichlorobenzeneNDug/l1,4-DichlorobenzeneNDug/l1,4-DichlorobenzeneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrinchlybenzeneNDug/l1,2,4-TrinchlybenzeneNDug/l1,3,5-TrimetlybenzeneNDug/l1,3,5-TrimetlybenzeneNDug/l1,3,5-TrimetlybenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l	RDL 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Dilution Factor
1,3-DichlorobenzeneNDug/l1,4-DichlorobenzeneNDug/l1,4-DichlorobenzeneNDug/lStyreneNDug/lo-XyleneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/lDichlorodifluoromethaneNDug/lIsopropylbenzeneNDug/lIsopropylbenzeneNDug/lIsopropylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50 0.50 0.50 0.50 0.50	1
1,4-DichlorobenzeneNDug/lStyreneNDug/lo-XyleneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/l1,2,3-TrichloropropaneNDug/lPistylbenzeneNDug/lDichlorodifluoromethaneNDug/ltexachlorobutadieneNDug/lscoropylbenzeneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzene<	0.50 0.50 0.50 0.50 0.50	1
StyreneNDug/lo-XyleneNDug/l1,1-DichloropropeneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/ln-ButylbenzeneNDug/lbichlorodifluoromethaneNDug/llochlorodifluoromethaneNDug/lp-lsopropylbenzeneNDug/lsec-ButylbenzeneNDug/lsec-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneNDug/lBromochenzeneND <td< td=""><td>0.50 0.50 0.50 0.50</td><td>1</td></td<>	0.50 0.50 0.50 0.50	1
o-XyleneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/lDichlorodifluoromethaneNDug/lDichlorodifluoromethaneNDug/lP-IsopropylbenzeneNDug/lIsopropylbenzeneNDug/lsec-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrinethylbenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBronobenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneN	0.50 0.50 0.50	
1,1-DichloropropeneNDug/l1,1-DichloropropeneNDug/l2,2-DichloropropaneNDug/l1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/lDichlorodifluoromethaneNDug/lDichlorodifluoromethaneNDug/lIsopropylbenzeneNDug/lIsopropylbenzeneNDug/lIsopropylbenzeneNDug/ln-PropylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-Trimethylbe	0.50 0.50	1
2,2-DichloropropaneNDug/l1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/ln-ButylbenzeneNDug/lDichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/ln-PropylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lIsomobenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneND </td <td>0.50</td> <td></td>	0.50	
1,1,2-TetrachloroethaneNDug/l1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/ln-ButylbenzeneNDug/lDichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/lI,3,5-TrimethylbenzeneNDug/lIug/lug/l <t< td=""><td></td><td>1</td></t<>		1
1,2,3-TrichloropropaneNDug/lBromochloromethaneNDug/ln-ButylbenzeneNDug/lDichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropylbenzeneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/lsec-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/lIsopropylenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenzeneNDug/lIsomobenze	0.50	1
BromochloromethaneNDug/lBromochloromethaneNDug/ln-ButylbenzeneNDug/lDichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-lsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l <td></td> <td>1</td>		1
n-ButylbenzeneNDug/lDichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/lug/lug/lug/l1,3,5-TrimethylbenzeneNDug/lIterteneNDug/l <td>0.50</td> <td>1</td>	0.50	1
DichlorodifluoromethaneNDug/lHexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/lNDug/lug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l	0.50	1
HexachlorobutadieneNDug/lIsopropylbenzeneNDug/lp-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-Trimethylbenzene </td <td>0.50</td> <td>1</td>	0.50	1
IsopropylbenzeneNDug/lp-lsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l	0.50	1
p-IsopropyltolueneNDug/lNaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l	0.50	1
NaphthaleneNDug/ln-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,2,5-TrimethylbenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l	0.50	1
n-PropylbenzeneNDug/lsec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/l	0.50	1
sec-ButylbenzeneNDug/ltert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
tert-ButylbenzeneNDug/l1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
1,2,3-TrichlorobenzeneNDug/l1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
1,2,4-TrichlorobenzeneNDug/l1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
1,2,4-TrimethylbenzeneNDug/l1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
1,3,5-TrimethylbenzeneNDug/lBromobenzeneNDug/l	0.50	1
Bromobenzene ND ug/I	0.50	1
	0.50	1
a-Chlorotoluene ND us/	0.50	1
	0.50	1
p-Chlorotoluene ND ug/l	0.50	1
Dibromomethane ND ug/l	0.50	1
1,2-Dibromoethane ND ug/l		1
1,2-Dibromo-3-chloropropane ND ug/l	0.50	1
1,3-Dichloropropane ND ug/l		1
Methyl tert butyl ether ND ug/l	0.50	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	106		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Date Collected: Lab ID: L0907670-05 06/10/09 14:05 Client ID: Date Received: 06/11/09 GHC-6 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 16:38 Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

ParameterResultQualifierUnitsRDLDilution FactorVolatile Organics by GC/MS - Westborough Lab1.3-DichlorobenzeneNDug'l0.5011.4-DichlorobenzeneNDug'l0.501SyreneNDug'l0.5011.1-DichloropropaneNDug'l0.5011.1.1-DichloropropaneNDug'l0.5011.1.1.2-TetrachloroethaneNDug'l0.5011.1.1.2-TetrachloroethaneNDug'l0.501DichlorophopaneNDug'l0.501DichlorophonethaneNDug'l0.501DichlorophonethaneNDug'l0.501DichlorophonethaneNDug'l0.501DichlorophonethaneNDug'l0.501DichlorophonethaneNDug'l0.501IsoprophylenzeneNDug'l0.501PisoprophylenzeneNDug'l0.5011.2.3-TrichloropenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.2.3-TrichlorobenzaneNDug'l0.5011.	Lab ID: Client ID: Sample Location:	L0907670-05 GHC-6 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 14:0 06/11/09 See Narrative
1.3-Dichlorobenzene ND ug1 0.50 1 1.4-Dichlorobenzene ND ug1 0.50 1 Styrene ND ug1 0.50 1 o-Xylene ND ug1 0.50 1 1.1-Dichloropropene ND ug1 0.50 1 2.2-Dichloropropane ND ug1 0.50 1 1.2.3-Trichlorobenzene ND ug1 0.50 1 1.2.3-Trichloropropane ND ug1 0.50 1 Bromochloromethane ND ug1 0.50 1 Dichlorodifluoromethane ND ug1 0.50 1 Bromochloromethane ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Isopropylenzene ND ug1 0.50 1 Naphthalen ND ug1 0.50 1 1.2.4-Trinethylbenzene ND ug1 0.50 1 1.2.4-Trinethylbenzene ND ug1 0.50 1	Parameter		Result	Qualifier	Units	RDL	Dilution Factor
ND ugl 0.50 1 Slyrene ND ugl 0.50 1 o-Xylene ND ugl 0.50 1 1.1-Dichloropropene ND ugl 0.50 1 2.2-Dichloropropane ND ugl 0.50 1 1.1.2-Tetrachloropropane ND ugl 0.50 1 I.2.3-Trichloropropane ND ugl 0.50 1 In-Butylbenzene ND ugl 0.50 1 p-Isopropylbenzene ND ugl 0.50 1 Naphthalene ND ugl 0.50 1 1.2.3-Trichlorobenzene ND ugl 0.50 1 1.2.4-Trimethylbenzene ND ugl 0.50 1 <	Volatile Organics by	GC/MS - Westborough L	.ab				
ND ugl 0.50 1 o-Xylene ND ugl 0.50 1 1.1-Dichloropropene ND ugl 0.50 1 2.2-Dichloropropene ND ugl 0.50 1 1.1.1.2-Tatrachloropthane ND ugl 0.50 1 1.2.3-Trichloroptopane ND ugl 0.50 1 Dichorodifuoromethane ND ugl 0.50 1 Isopropylbenzene ND ugl 0.50 1 Isopropylbenzene ND ugl 0.50 1 <	1,3-Dichlorobenzene		ND		ug/l	0.50	1
o Xylene ND ug/l 0.50 1 1.1-Dichloropropene ND ug/l 0.50 1 2.2-Dichloropropene ND ug/l 0.50 1 1.1.1.2-Tetrachloroethane ND ug/l 0.50 1 1.2.3-Trichloropropane ND ug/l 0.50 1 1.2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Napthhalene ND ug/l 0.50 1 Napthbalene ND ug/l 0.50 1 1.2.3-Trichlorobenzene ND ug/l 0.50 1 1.2.4-Trimethylbenzene ND ug/l 0.50 <td>1,4-Dichlorobenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	1,4-Dichlorobenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 2.2-Dichloropropane ND ug/l 0.50 1 1.1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2.3-Trichloropropane ND ug/l 0.50 1 1,2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichloroptidiluoromethane ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1	Styrene		ND		ug/l	0.50	1
2.2-Dichlorspropane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,2,3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butytbenzene ND ug/l 0.50 1 Dichlorodtfluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropythenzene ND ug/l 0.50 1 Isopropytholuene ND ug/l 0.50 1 n-Propytenzene ND ug/l 0.50 1 n-Propytenzene ND ug/l 0.50 1 n-Propytenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.5	o-Xylene		ND		ug/l	0.50	1
1,1,2-Tetrachloroethane ND ug/l 0,50 1 1,2,3-Trichloropropane ND ug/l 0,50 1 Bromochloromethane ND ug/l 0,50 1 n-Butylbenzene ND ug/l 0,50 1 Dichlorodifluoromethane ND ug/l 0,50 1 Hexachlorobutadiene ND ug/l 0,50 1 Isopropylbenzene ND ug/l 0,50 1 p-lsopropylbenzene ND ug/l 0,50 1 n-Propylbenzene ND ug/l 0,50 1 n-Propylbenzene ND ug/l 0,50 1 sec-Butylbenzene ND ug/l 0,50 1 1,2,3-Trichlorobenzene ND ug/l 0,50 1 1,2,4-Trinethylbenzene ND ug/l 0,50 1 1,2,4-Trinethylbenzene ND ug/l 0,50 1 1,2,4-Trinethylbenzene ND ug/l	1,1-Dichloropropene		ND		ug/l	0.50	1
1.2.3-Trichloropropane ND ug/l 0.50 1 Bromochloromethane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l	2,2-Dichloropropane		ND		ug/l	0.50	1
Bromochlorenthane ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 Dichlorodiffuoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3-S-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50	1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
n-Butylbenzene ND ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-lsopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.	1,2,3-Trichloropropane		ND		ug/l	0.50	1
Dichlorodifluoromethane ND ug/l 0.50 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 retr-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Libormoethane ND ug/l 0.50	Bromochloromethane		ND		ug/l	0.50	1
Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 N-Propylbenzene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50	n-Butylbenzene		ND		ug/l	0.50	1
Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 </td <td>Dichlorodifluoromethane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Dichlorodifluoromethane		ND		ug/l	0.50	1
P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinchlylbenzene ND ug/l 0.50 1 1,2,4-Trinchlylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 0.bioromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.	Hexachlorobutadiene		ND		ug/l	0.50	1
Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l	Isopropylbenzene		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1	p-Isopropyltoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 <td>Naphthalene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Naphthalene		ND		ug/l	0.50	1
tert-Butylbenzene ND ug/l 0.50 1 1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 0-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	n-Propylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trinethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 jbromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	sec-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene ND ug/l 0.50 1 1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	tert-Butylbenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene ND ug/l 0.50 1 1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
Bromobenzene ND ug/l 0.50 1 o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
o-Chlorotoluene ND ug/l 0.50 1 p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
p-Chlorotoluene ND ug/l 0.50 1 Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Bromobenzene		ND		ug/l	0.50	1
Dibromomethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	o-Chlorotoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,2-Dibromo-3-chloropropane ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	p-Chlorotoluene		ND		ug/l	0.50	1
ND ug/l 0.50 1 1,3-Dichloropropane ND ug/l 0.50 1	Dibromomethane		ND		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 0.50 1	1,2-Dibromoethane		ND		ug/l	0.50	1
	1,2-Dibromo-3-chloropropan	e	ND		ug/l	0.50	1
	1,3-Dichloropropane		ND		ug/l	0.50	1
	Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-06 06/10/09 14:12 Client ID: Date Received: 06/11/09 RIZ-3 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 17:15 Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	ab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-06 RIZ-3 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 14:12 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane		ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	83		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-07 06/10/09 14:26 Client ID: Date Received: 06/11/09 MW-2 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 Analytical Date: 06/12/09 17:52 Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	prough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	1.0		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
rans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-07 MW-2 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 14:2 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by C	GC/MS - Westborough L	_ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane)	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	108		80-120	
4-Bromofluorobenzene	84		80-120	

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 Project Number: Report Date: 12700053 06/17/09 SAMPLE RESULTS Lab ID: Date Collected: L0907670-08 06/10/09 14:41 Client ID: Date Received: 06/11/09 RIZ-9 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/12/09 18:29 Analytical Date: Analyst: TΤ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06170918:25

Project Number: 12700053

06170918:25 Lab Number: L0907670

06/17/09

Report Date:

Lab ID: Client ID: Sample Location:	L0907670-08 RIZ-9 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/10/09 14:4 06/11/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough L	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropane		ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	84		80-120	

Project Number: 12700053

Lab Number: L09 Report Date: 06/

L0907670 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

arameter	Result	Qualifier	Units	RDL	
platile Organics by GC/MS - W	estborough La	b for sample(s):	01-08	Batch:	WG366434-4
Methylene chloride	ND		ug/l	0.50	
1,1-Dichloroethane	ND		ug/l	0.50	
Chloroform	ND		ug/l	0.50	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	0.50	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.50	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	0.50	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
Bromoform	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.50	
Ethylbenzene	ND		ug/l	0.50	
p/m-Xylene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	0.50	
Bromomethane	ND		ug/l	0.50	
Vinyl chloride	ND		ug/l	0.50	
Chloroethane	ND		ug/l	0.50	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.50	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	0.50	
	ND				

Project Number: 12700053

Lab Number: Report Date: L0907670

06/17/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

arameter	Result	Qualifier	Units	RDL	
platile Organics by GC/MS - V	Vestborough Lat	o for sample(s):	01-08	Batch:	WG366434-4
1,4-Dichlorobenzene	ND		ug/l	0.50	
Styrene	ND		ug/l	0.50	
o-Xylene	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	0.50	
2,2-Dichloropropane	ND		ug/l	0.50	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
1,2,3-Trichloropropane	ND		ug/l	0.50	
Bromochloromethane	ND		ug/l	0.50	
n-Butylbenzene	ND		ug/l	0.50	
Dichlorodifluoromethane	ND		ug/l	0.50	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.50	
n-Propylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trichlorobenzene	ND		ug/l	0.50	
1,2,4-Trimethylbenzene	ND		ug/l	0.50	
1,3,5-Trimethylbenzene	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	0.50	
o-Chlorotoluene	ND		ug/l	0.50	
p-Chlorotoluene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	0.50	
1,2-Dibromoethane	ND		ug/l	0.50	
1,2-Dibromo-3-chloropropane	ND		ug/l	0.50	
1,3-Dichloropropane	ND		ug/l	0.50	
Methyl tert butyl ether	ND		ug/l	0.50	

Project Name:	WALPOLE PARK SOUTH	Lab Number:	L0907670
Project Number:	12700053	Report Date:	06/17/09
	Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/12/09 08:00
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - West	borough La	ab for sample(s): 01-08	Batch: WG366434-4	

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	ug/l

Surrogate	%Recovery	Acceptance Qualifier Criteria
1,2-Dichlorobenzene-d4	106	80-120
4-Bromofluorobenzene	87	80-120

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS -	Westborough Lab Associated samp	le(s): 01-08 Batch:	WG366434-3		
Methylene chloride	101	-	70-130	-	
1,1-Dichloroethane	96	-	70-130	-	
Chloroform	99	-	70-130	-	
Carbon tetrachloride	91	-	70-130	-	
1,2-Dichloropropane	97	-	70-130	-	
Dibromochloromethane	91	-	70-130	-	
1,1,2-Trichloroethane	97	-	70-130	-	
Tetrachloroethene	94	-	70-130	-	
Chlorobenzene	97	-	70-130	-	
Trichlorofluoromethane	100	-	70-130	-	
1,2-Dichloroethane	93	-	70-130	-	
1,1,1-Trichloroethane	91	-	70-130	-	
Bromodichloromethane	94	-	70-130	-	
trans-1,3-Dichloropropene	85	-	70-130	-	
cis-1,3-Dichloropropene	85	-	70-130	-	
Bromoform	92	-	70-130	-	
1,1,2,2-Tetrachloroethane	106	-	70-130	-	
Benzene	98	-	70-130	-	
Toluene	91	-	70-130	-	
Ethylbenzene	96	-	70-130	-	
p/m-Xylene	98	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

arameter	LCS %Recovery	LCSD %Recover	%Recovery y Limits	RPD	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated sample(s):	01-08 Ba	atch: WG366434-3		
Chloromethane	112	-	70-130	-	
Bromomethane	114	-	70-130	-	
Vinyl chloride	104	-	70-130	-	
Chloroethane	104	-	70-130	-	
1,1-Dichloroethene	98	-	70-130	-	
trans-1,2-Dichloroethene	95	-	70-130	-	
cis-1,2-Dichloroethene	92	-	70-130	-	
Trichloroethene	86	-	70-130	-	
1,2-Dichlorobenzene	97	-	70-130	-	
1,3-Dichlorobenzene	96	-	70-130	-	
1,4-Dichlorobenzene	95	-	70-130	-	
Styrene	96	-	70-130	-	
o-Xylene	91	-	70-130	-	
1,1-Dichloropropene	92	-	70-130	-	
2,2-Dichloropropane	94	-	70-130	-	
1,1,1,2-Tetrachloroethane	95	-	70-130	-	
1,2,3-Trichloropropane	97	-	70-130	-	
Bromochloromethane	100	-	70-130	-	
n-Butylbenzene	94	-	70-130	-	
Dichlorodifluoromethane	105	-	70-130	-	
Hexachlorobutadiene	100	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

rameter	LCS r %Recovery 9		ery	%Recovery Limits	RPD	RPD Limits	
platile Organics by GC/MS - Westborough La	b Associated sample(s):	01-08	Batch:	WG366434-3			
Isopropylbenzene	96	-		70-130	-		
p-Isopropyltoluene	93	-		70-130	-		
Naphthalene	75	-		70-130	-		
n-Propylbenzene	96	-		70-130	-		
sec-Butylbenzene	96	-		70-130	-		
tert-Butylbenzene	94	-		70-130	-		
1,2,3-Trichlorobenzene	89	-		70-130	-		
1,2,4-Trichlorobenzene	90	-		70-130	-		
1,2,4-Trimethylbenzene	89	-		70-130	-		
1,3,5-Trimethylbenzene	87	-		70-130	-		
Bromobenzene	102	-		70-130	-		
o-Chlorotoluene	98	-		70-130	-		
p-Chlorotoluene	93	-		70-130	-		
Dibromomethane	94	-		70-130	-		
1,2-Dibromoethane	94	-		70-130	-		
1,2-Dibromo-3-chloropropane	103	-		70-130	-		
1,3-Dichloropropane	92	-		70-130	-		
Methyl tert butyl ether	88	-		70-130	-		

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	LCS %Recovery	LCSI %Recov		%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated sample(s):	01-08	Batch:	WG366434-3		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	102		80-120	
4-Bromofluorobenzene	97		80-120	

Matrix Spike Analysis Batch Quality Control

		Batch Qu
Project Name:	WALPOLE PARK SOUTH	

Project Number: 12700053

 Lab Number:
 L0907670

 Report Date:
 06/17/09

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/I Sample	MS - Westborough La	ab Associated	sample(s): 01	-08 QC Batc	h ID: WG36643	34-5 QC San	nple: L0907641	-01 C	lient ID: MS
Methylene chloride	ND	4	4.1	103		-	70-130	-	20
1,1-Dichloroethane	ND	4	4.2	106	-	-	70-130	-	20
Chloroform	ND	4	4.0	101	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.1	102	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.0	100	-	-	70-130	-	20
Dibromochloromethane	ND	4	3.6	90	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	3.8	95	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.0	101	-	-	70-130	-	20
Chlorobenzene	ND	4	4.1	102	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.4	109	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.0	100	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.0	101	-	-	70-130	-	20
Bromodichloromethane	ND	4	3.8	95	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.0	75	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.7	93	-	-	70-130	-	20
Bromoform	ND	4	3.5	88	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.1	103	-	-	70-130	-	20
Benzene	ND	4	4.2	105	-	-	70-130	-	20
Toluene	ND	4	3.8	96	-	-	70-130	-	20
Ethylbenzene	ND	4	4.0	100	-	-	70-130	-	20
p/m-Xylene	ND	8	7.9	99	-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

		Batch Quality Con
Project Name:	WALPOLE PARK SOUTH	•

 Lab Number:
 L0907670

 Report Date:
 06/17/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01	-08 QC Batc	h ID: WG36643	34-5 QC San	nple: L090764	1-01 CI	lient ID: MS
Chloromethane	ND	4	4.2	104	•	-	70-130	-	20
Bromomethane	ND	4	4.7	117	-	-	70-130	-	20
Vinyl chloride	ND	4	5.2	131	-	-	70-130	-	20
Chloroethane	ND	4	4.6	115	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.4	111	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.2	105	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	3.9	99	-	-	70-130	-	20
Trichloroethene	ND	4	3.8	96	-	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.8	95	-	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	3.8	96	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.7	93	-	-	70-130	-	20
Styrene	ND	4	3.8	94	-	-	70-130	-	20
o-Xylene	ND	4	3.7	94	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	3.8	96	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.1	103	-	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	3.7	92	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.8	94	-	-	70-130	-	20
Bromochloromethane	ND	4	4.0	101	-	-	70-130	-	20
n-Butylbenzene	ND	4	3.9	98	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	3.8	96	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1	102	-	-	70-130	-	20

Project Number:

12700053

Matrix Spike Analysis Batch Quality Control

		Batch Quality Con
Project Name:	WALPOLE PARK SOUTH	

 Lab Number:
 L0907670

 Report Date:
 06/17/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS Sample	- Westborough La	b Associated	sample(s): 01-0	08 QC Batcl	n ID: WG36643	4-5 QC Sam	nple: L090764	1-01 CI	lient ID: MS
Isopropylbenzene	ND	4	3.5	88	-	-	70-130	-	20
p-Isopropyltoluene	ND	4	3.7	92	•	-	70-130	-	20
Naphthalene	ND	4	3.0	76	•	-	70-130	-	20
n-Propylbenzene	ND	4	4.0	100	•	-	70-130	-	20
sec-Butylbenzene	ND	4	3.9	98	•	-	70-130	-	20
tert-Butylbenzene	ND	4	3.9	97	•	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.4	86	•	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.6	89	•	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	3.6	91	•	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	3.5	87	•	-	70-130	-	20
Bromobenzene	ND	4	4.0	100	· ·	-	70-130	-	20
o-Chlorotoluene	ND	4	4.0	100	· ·	-	70-130	-	20
p-Chlorotoluene	ND	4	3.7	92	•	-	70-130	-	20
Dibromomethane	ND	4	3.9	98	· ·	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.7	92	•	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.4	86	•	-	70-130	-	20
1,3-Dichloropropane	ND	4	3.6	90	•	-	70-130	-	20
Methyl tert butyl ether	ND	4	3.5	88	•	-	70-130	-	20

Project Number:

12700053

Project Name:WALPOLE PARK SOUTHMatrix Spike Analysis
Batch Quality ControlLab Number:L0907670Project Number:12700053Report Date:06/17/09

				MS		MSD	Recovery		
Parameter	Native Sample	MS Added	MS Found	%Recovery	MSD Found	%Recovery	Limits	RPD	RPD Limits
Volatile Organics by GC/MS Sample	- Westborough La	ab Associated	sample(s): 01	-08 QC Batc	h ID: WG36643	34-5 QC San	nple: L090764 [.]	1-01 C	lient ID: MS

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichlorobenzene-d4	101		80-120
4-Bromofluorobenzene	96		80-120

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01-08	QC Batch ID: WG366434	-6 QC Samp	le: L0907641-0	02 Client ID: DUP
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01-08	QC Batch ID: WG366434	-6 QC Samp	le: L0907641-0	02 Client ID: DUP
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0907670 06/17/09 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab ample	Associated sample(s): 01-08	QC Batch ID: WG366434-	6 QC Sampl	e: L0907641-	02 Client ID: DUP
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name: Project Number:	WALPOLE PARK SOUTH 12700053	La	ab Duplicate Analy Batch Quality Control	Lab Nur Report I	L0907070	
arameter		Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/ ample	/MS - Westborough Lab Assoc	tiated sample(s): 01-08	QC Batch ID: WG36643	4-6 QC Sam	nple: L0907641-0	2 Client ID: DUP
1,2-Dibromo-3-chloropropa	ane	ND	ND	ug/l	NC	20
1,3-Dichloropropane		ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	104		106		80-120	
4-Bromofluorobenzene	85		85		80-120	

METALS

06170918:25 WALPOLE PARK SOUTH Lab Number: L0907670 12700053 **Report Date:** 06/17/09 SAMPLE RESULTS L0907670-01 Date Collected: 06/10/09 13:00 **RIZ-10** Date Received: 06/11/09 WALPOLE, MA Field Prep: See Narrative Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Result Qualifier Units RDL

Parameter	Result	Qualifier	Units	RDL	Factor	Prepared	Analyzed	Method	Method	Analys
MCP Dissolved Me	etals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.148		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND		mg/l	0.004	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND		mg/l	0.01	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND		mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:55	EPA 7470A	64,7470A	EZ
Nickel, Dissolved	ND		mg/l	0.025	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND		mg/l	0.007	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:05	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND		mg/l	0.050	1	06/12/09 11:00	06/15/09 16:18	EPA 3005A	60,6010B	AI

Project Name:

Lab ID:

Matrix:

Client ID:

Project Number:

Sample Location:

06170918:25 **Project Name:** WALPOLE PARK SOUTH Lab Number: L0907670 **Project Number: Report Date:** 12700053 06/17/09 SAMPLE RESULTS Lab ID: L0907670-02 Date Collected: 06/10/09 13:28 Client ID: RIZ-8 Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Dilution Date Date Prep Analytical Factor Prepared Analyzed Method Method Parameter Result Qualifier Units RDL Analyst MCP Dissolved Metals - Westborough Lab 64,6020A Antimony, Dissolved ND mg/l 0.0020 4 06/12/09 11:00 06/17/09 01:34 EPA 3005A ΒM Arsenic, Dissolved ND 0.005 1 06/15/09 16:24 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00 0.026 0.010 1 60,6010B Barium, Dissolved 06/15/09 16:24 EPA 3005A AI mg/l 06/12/09 11:00

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00 06/15/09 16:24

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 17:15

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 16:24

06/15/09 16:24

06/15/09 16:24

06/16/09 10:56

06/15/09 16:24

06/15/09 16:24

06/17/09 01:34

06/15/09 16:24

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

	\sum				
	Δ	L.	PH	i,2	
A	NA	LY	1 1	C A	L

4

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

ΒM

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc. Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

Project Name:	WALPC	LE PARK S	SOUTH			La	b Number:	L0	907670	
Project Number:	127000	53				Re	port Date:	06	/17/09	
			S		RESULT	ſS				
Lab ID:	L090767	70-03				Da	te Collected:	06	/10/09 13:1	8
Client ID:	RIZ-8S					Da	te Received:	06	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
MCP Dissolved Me	tals - Wes	stborough L	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:40	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.051		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:26	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/15/09 17:15 06/16/09 10:58

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/17/09 01:40

06/12/09 11:00 06/15/09 16:26

06/12/09 11:00 06/15/09 16:26

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

Project Name:	WALPO	LE PARK S	SOUTH			La	b Number:	LO	907670	
Project Number:	127000	53				Re	port Date:	06/	/17/09	
			SA	AMPLE	RESULT	S				
Lab ID:	L090767	70-04				Da	te Collected:	06/	/10/09 13:4	5
Client ID:	MW-9					Da	te Received:	06/	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	tborough L	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:46	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.029		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:29	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/15/09 17:15 06/16/09 11:00

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/15/09 16:29

06/12/09 11:00 06/17/09 01:46

06/12/09 11:00 06/15/09 16:29

06/15/09 16:29

06/12/09 11:00

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPC	LE PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	127000	53				Re	port Date:	06/	/17/09	
			S		RESULT	ſS				
Lab ID:	L090767	70-05				Da	te Collected:	06	/10/09 14:0)5
Client ID:	GHC-6					Da	te Received:	06/	/11/09	
Sample Location:	WALPO	LE, MA				Fie	eld Prep:	Se	e Narrative	•
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Wes	stborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:52	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND		mg/l	0.005	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.066		mg/l	0.010	1	06/12/09 11:00	06/15/09 16:32	EPA 3005A	60,6010B	AI

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/15/09 17:15 06/16/09 11:02

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/17/09 01:52

06/12/09 11:00 06/15/09 16:32

06/12/09 11:00 06/15/09 16:32 EPA 3005A

06/12/09 11:00 06/15/09 16:32 EPA 3005A

06/12/09 11:00 06/15/09 16:32 EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

	A
_	ANALYTICAL

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPO	LE PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	1270005	53				Re	port Date:	06	6/17/09	
			SA		RESULT	S				
Lab ID:	L090767	0-06				Da	te Collected:	06	/10/09 14:1	2
Client ID:	RIZ-3					Da	te Received:	06	/11/09	
Sample Location:	WALPO	LE, MA				Fie	ld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
MCP Dissolved Met	als - Wes	tborough La	ab							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 01:57	EPA 3005A	64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/15/09 17:15 06/16/09 11:04

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/17/09 01:57

06/12/09 11:00 06/15/09 16:42

06/12/09 11:00 06/15/09 16:42 EPA 3005A

06/12/09 11:00 06/15/09 16:42 EPA 3005A

06/12/09 11:00 06/15/09 16:42 EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

mg/l

0.005

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

	À	/				
	1		2	ы	A	
A	N	A 1	· Y\1		- A	L

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.013

Project Name: WALPOLE PARK SOUTH Lab Number: L0907670 **Project Number: Report Date:** 12700053 06/17/09 SAMPLE RESULTS Lab ID: L0907670-07 Date Collected: 06/10/09 14:26 Client ID: MW-2 Date Received: 06/11/09 Sample Location: WALPOLE, MA Field Prep: See Narrative Matrix: Water Dilution Date Date Prep Analytical Factor Prepared Analyzed Method Method Parameter Result Qualifier Units RDL Analyst MCP Dissolved Metals - Westborough Lab 64,6020A Antimony, Dissolved ND mg/l 0.0020 4 06/12/09 11:00 06/17/09 02:03 EPA 3005A ΒM Arsenic, Dissolved ND 0.005 1 06/15/09 16:45 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00 0.070 0.010 1 60,6010B Barium, Dissolved 06/15/09 16:45 EPA 3005A AI mg/l 06/12/09 11:00 60,6010B Beryllium, Dissolved ND mg/l 0.004 1 06/12/09 11:00 06/15/09 16:45 EPA 3005A AI Cadmium, Dissolved ND 0.004 1 06/15/09 16:45 EPA 3005A 60,6010B AI mg/l 06/12/09 11:00

1

1

1

1

1

1

4

1

1

06/12/09 11:00

06/12/09 11:00

06/15/09 17:15

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/12/09 11:00

06/15/09 16:45

06/15/09 16:45

06/16/09 11:05

06/15/09 16:45

06/15/09 16:45

06/15/09 16:45

06/17/09 02:03

06/15/09 16:45

06/12/09 11:00 06/15/09 16:45

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

ΕZ

AI

AI

AI

ΒM

AI

AI

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

06170918:25

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc. Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

ND

ND

ND

ND

ND

ND

ND

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

60,6010B

64,7470A

60,6010B

60,6010B

60,6010B

64,6020A

60,6010B

60,6010B

AI

AI

AI

AI

AI

AI

ΕZ

AI

AI

AI

BМ

AI

AI

Project Name:	WALPOI	_E PARK S	OUTH			La	b Number:	LO	907670	
Project Number:	1270005	3				Re	port Date:	06	/17/09	
			SA		RESULT	S				
Lab ID:	L090767	0-08				Da	te Collected:	06	/10/09 14:4	1
Client ID:	RIZ-9					Da	te Received:	06	/11/09	
Sample Location:	WALPOL	E, MA				Fie	ld Prep:	Se	e Narrative	
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Met	als - West	borough La	ıb							
Antimony, Dissolved	ND		mg/l	0.0020	4	06/12/09 11:00	06/17/09 02:09	EPA 3005A	64,6020A	BM

1

1

1

1

1

1

1

1

1

1

4

1

1

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/15/09 17:15 06/16/09 11:11

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/17/09 02:09

06/12/09 11:00 06/15/09 16:48

06/12/09 11:00 06/15/09 16:48

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 7470A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

EPA 3005A

mg/l

0.005

0.010

0.004

0.004

0.01

0.010

0.0002

0.025

0.010

0.007

0.0020

0.010

0.050

	$\langle \rangle$			
		P	Hi.	A
/	-	Y/T		

Arsenic, Dissolved

Barium, Dissolved

Beryllium, Dissolved

Cadmium, Dissolved

Chromium, Dissolved

Lead, Dissolved

Mercury, Dissolved

Nickel, Dissolved

Silver, Dissolved

Zinc, Dissolved

Selenium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

ND

0.015

Project Name: WALPOLE PARK SOUTH Project Number: 12700053 Lab Number: L0907670 Report Date: 06/17/09

Method Blank Analysis Batch Quality Control

Analytical Dilution Date Date Method Analyst Factor Prepared Analyzed Parameter **Result Qualifier** Units RDL MCP Dissolved Metals - Westborough Lab for sample(s): 01-08 Batch: WG366599-1 ND 0.005 Arsenic, Dissolved mg/l 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI ND 0.010 Barium, Dissolved mg/l 1 06/15/09 16:07 60,6010B AI 06/12/09 11:00 Beryllium, Dissolved ND 0.004 1 60,6010B mg/l 06/12/09 11:00 06/15/09 16:07 AI Cadmium, Dissolved ND mg/l 0.004 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI Chromium, Dissolved ND mg/l 0.01 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI Lead, Dissolved ND 0.010 1 mg/l 06/12/09 11:00 06/15/09 16:07 60,6010B AI Nickel, Dissolved ND mg/l 0.025 1 06/12/09 11:00 06/15/09 16:07 60,6010B AI ND 0.010 1 AI Selenium, Dissolved mg/l 06/15/09 16:07 60,6010B 06/12/09 11:00 ND 1 0.007 60,6010B AI Silver, Dissolved mg/l 06/12/09 11:00 06/15/09 16:07 ND 1 AI Vanadium, Dissolved mg/l 0.010 06/12/09 11:00 06/15/09 16:07 60,6010B Zinc, Dissolved ND 0.050 1 60,6010B AI mg/l 06/12/09 11:00 06/15/09 16:07

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Westborough Lab fo	or sample	(s): 01-0	08 Batch:	WG366913-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	06/15/09 17:15	06/16/09 10:49	64,7470A	EZ

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab fo	r sample	e(s): 01-	08 Batch:	WG367081-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	2 64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	06/12/09 11:00	06/17/09 00:42	2 64,6020A	BM

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: Report Date: L0907670 06/17/09

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	%	LCSD Recovery	%Recovery Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch:	WG366599-2 WG366599-3		
Arsenic, Dissolved	113		114	80-120	1	20
Barium, Dissolved	106		106	80-120	0	20
Beryllium, Dissolved	107		106	80-120	1	20
Cadmium, Dissolved	116		115	80-120	1	20
Chromium, Dissolved	105		105	80-120	0	20
Lead, Dissolved	110		111	80-120	1	20
Nickel, Dissolved	105		105	80-120	0	20
Selenium, Dissolved	113		117	80-120	3	20
Silver, Dissolved	110		109	80-120	1	20
Vanadium, Dissolved	106		105	80-120	1	20
Zinc, Dissolved	110		111	80-120	1	20
MCP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch:	WG366913-2 WG366913-3		
Mercury, Dissolved	98		93	80-120	5	20
MCP Dissolved Metals - Westborough Lab	Associated sample(s):	01-08	Batch:	WG367081-2 WG367081-3		
Antimony, Dissolved	106		106	80-120	2	20
Thallium, Dissolved	96		96	80-120	1	20

Project Name: WALPOLE PARK SOUTH Project Number: 12700053

Lab Number: L0907670 Report Date: 06/17/09

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Container Information

Cooler	Custody Seal
А	Absent

Container ID **Container Type** Cooler pН Temp Pres Seal Analysis L0907670-01A Vial Ascorbic Acid/HCI preserved A N/A 3 Υ Absent 524.2(14) L0907670-01B Vial Ascorbic Acid/HCI preserved A N/A 3 Y Absent 524.2(14) L0907670-01C Plastic 500ml HNO3 preserved 3 MCP-AG-6010S(180), MCP-BA-A <2 Υ Absent 6010S(180), MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180), MCP-NI-6010S(180), MCP-CD-6010S(180),MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180), MCP-V-6010S(180) L0907670-02A Vial Ascorbic Acid/HCl preserved А N/A 3 Absent 524.2(14) Υ L0907670-02B Vial Ascorbic Acid/HCI preserved A N/A 3 Υ Absent 524.2(14) L0907670-02C Plastic 500ml HNO3 preserved A <2 3 Absent MCP-AG-6010S(180), MCP-BA-Y 6010S(180),MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180), MCP-NI-6010S(180), MCP-CD-6010S(180),MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180), MCP-V-6010S(180) L0907670-03A Vial Ascorbic Acid/HCl preserved N/A A 3 Υ Absent 524.2(14) L0907670-03B Vial Ascorbic Acid/HCl preserved А N/A 3 Υ Absent 524.2(14) L0907670-03C Plastic 500ml HNO3 preserved A <2 3 Absent MCP-AG-6010S(180), MCP-BA-Υ 6010S(180),MCP-SB-6020S(180), MCP-SE-6010S(180), MCP-BE-6010S(180),MCP-NI-6010S(180), MCP-CD-6010S(180), MCP-TL-6020S(180), MCP-7470S(28), MCP-CR-6010S(180),MCP-PB-6010S(180), MCP-ZN-6010S(180), MCP-AS-6010S(180),MCP-V-6010S(180) L0907670-04A Vial Ascorbic Acid/HCl preserved А N/A 3 Absent 524.2(14) Υ L0907670-04B Vial Ascorbic Acid/HCl preserved А N/A 3 Y Absent 524.2(14)

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

Container Information

Contoiner ID	Containar Trans	Cooler		T a	Dree	Cool	Analysia
Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0907670-04C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-TL- 6020S(180),MCP-PB- 6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-05A	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-05B	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-05C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-CD- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-06A	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-06B	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-06C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-CD- 6010S(180),MCP-CD- 6010S(180),MCP-TL- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-07A	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-07B	Vial Ascorbic Acid/HCl preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-07C	Plastic 500ml HNO3 preserved	A	<2	3	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)
L0907670-08A	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)
L0907670-08B	Vial Ascorbic Acid/HCI preserved	А	N/A	3	Y	Absent	524.2(14)

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0907670 Report Date: 06/17/09

Container Information

Container ID	Container Type	Cooler	рΗ	Temp	Pres	Seal	Analysis
L0907670-08C	Plastic 500ml HNO3 preserved	A	<2	3	Υ	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI- 6010S(180),MCP-CD- 6010S(180),MCP-CD- 6020S(180),MCP-7470S(28),MCP- CR-6010S(180),MCP-PB- 6010S(180),MCP-ZN- 6010S(180),MCP-AS- 6010S(180),MCP-V-6010S(180)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0907670 **Report Date:**

06/17/09

GLOSSARY

Acronyms

- · Environmental Protection Agency. EPA
- LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS · Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND · Not detected at the reported detection limit for the sample.
- NI · Not Ignitable.
- RDL · Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * - The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- Spectra identified as "Aldol Condensation Product". A
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- Ν - The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 Lab Number:
 L0907670

 Report Date:
 06/17/09

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 17, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).)

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) *Solid Waste/Soil* (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Currosivity, TCI P, Leach (1311) Peartivity, Organic Parameters: PCBs

Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil **Massachusetts Department of Environmental Protection** <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

<u>Microbiology Parameters</u>: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited. Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.) *Solid & Chemical Materials* (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 2005A, 4005A, 6010B, 7196A, 5030B, 9010B, 4005A, 4005

9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited. Non-Potable Water* (Organic Parameters: EPA 3510C, 625, 608, 8081A, 8082, 8151A, 8270C, 8330) *Solid & Hazardous Waste* (Inorganic Parameters: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. Organic Parameters: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

					Ł	-			.		,					(rev. 29-APR-09)	
	11.70	tahi	te t		\Rightarrow	~			$\frac{1}{2}$	6-11-07		+ Brady	1404			FORMNO: 01-01(I-NJ)	
submitted are subject to		0-11-07	20	rady	R	N N			þ	6-11-09			2				
tumaround time clock will rot start until any ambiguities are	S)			×	Received By:	Rec		\$	Date/Time			Relinquished By:	Bellix				
and completely. Samples can not be logged in and		Ľ	·	ŀ	\vdash		Ŀ		Υ.	Ż	Preservative						
Please print clearly, legibly	-	'		.	+-	 - 	 -	' .	Ż	ſ	Container Type	Co					
											_		,				
<u> </u>									Ŀ		<	V	Inditant	V	R12-9	1 2	
										$\mathbf{\nabla}$		×	1426/1423		MW-2	4	
									X	¥					. \	6	
										Ę			405/1424		64C-6	S	
										Γ			145/13.40			Ċ.	
						╢└─ ┧┌─ ┨┌─				ΗZ			318/1320		R12- 825		
									ß	Ē	 	-	319/1340		R12-8	2	
									R	Ø	Jel .	6W	6-10.09 Bus / 302	6-10.	R12-10		
2]]]	1 1	ן]]								
Sample Specific Comments									VO	Mc	Initials	Matrix	Time	Date		(Lab Use Only)	
									Ĺş	P	Sampler's	Sample	Collection		Sample ID	ALPHA Lab ID	≥∣
									5	14							
(Please specify below)									21	N				L KLE (Ì	Kuno data delivero	بر
A Lab to do										1eta			mits		/Comme	her Project Specif	0
										<i>.</i> [,			Due Date: $\varphi//8/04$ Time:	Due Date: 4	These samples have been Previously analyzed by Alpha	These samples have been	ln
>														40 / 01	Ian cannan & telestel. con	Email: Jan. Can	<u>ا</u> ت
Filtration matels											-APPROVED)	Rush (ONLY IF PRE-APPROVED)		X Standard	2001		Fax:
									ANALYSIS	ANA			nd Time	Turn-Around Time	2057	Phone: 508 905	₽
								_+					e #:	ALPHA Quote #:	shar wh	Famingham	
												Jon	Project Manager: Nuy Jurson	Project Mana	Sal St	s:	۶.
	-	6	KL				Q	·	MA				12700053	Project #:	Kan-	Client Tetra Tech Rin-	<u>C</u>
			Criteria					1 1	State/Fed Program	State/i		mt	tion: Wilper, MA	Project Location:		Client Information	<u>റ</u>
				imits	eport	uirements/Report Limits	irem	v Requ	Regulatory Req	Regu			Windpole Vick Journ	Winpole	FAX: 508-822-3288		FA
				bles	Deliveral	Add'I Deliverables	יס י		DEx				» » /	Project Name:	Mansfield, MA TEL: 508-822-9300	Westborough, MA Manst TEL: 508-898-9220 TEL: 5	TEI
PO #		ne as Cl	ÌX Sa	5, 2			к		٩X	D FAX							20a.
	Billing Information	g Infor	Billin	oles	liveral	Data Deliverables	íon D		Report Informat	Repo			rmation	Project Information			
-Engt dea	Ľ	ALPHA Job #:	ALPH		24		ŝ	Lab	Date Rec'd in Lab	Date F		PAGE 1 OF 1	YOY	CUSTC	CHAIN OF CUSTODY		
0967670	1																

ANALYTICAL REPORT

Lab Number:	L0908197
Client:	Tetra Tech Rizzo 1 Grant Street Framingham, MA 01701-9005
ATTN:	Ian Cannan
Project Name:	WALPOLE PARK SOUTH
Project Number:	12700053
Report Date:	06/25/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:WALPOLE PARK SOUTHProject Number:12700053

 Lab Number:
 L0908197

 Report Date:
 06/25/09

Alpha	
Sample	ID

L0908197-01

Client ID MW-3 Sample Location WALPOLE, MA

Collection Date/Time

06/08/09 18:46

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0908197 Report Date: 06/25/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A res	sponse to questions E and F is required for "Presumptive Certainty" status	
Е	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0908197 Report Date: 06/25/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives Sample Receipt The samples were Field Filtered for Dissolved Metals only. Metals L0908197-01 has elevated detection limits for Antimony and T

L0908197-01 has elevated detection limits for Antimony and Thallium, due to the dilutions required by the high concentrations of non-target analytes. The requested reporting limits were achieved.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Elepheth & Simmers

Title: Technical Director/Representative

Date: 06/25/09

ORGANICS

VOLATILES

Project Name: WALPOLE PARK SOUTH Lab Number: L0908197 Project Number: Report Date: 12700053 06/25/09 SAMPLE RESULTS Lab ID: Date Collected: L0908197-01 06/08/09 18:46 Client ID: MW-3 Date Received: 06/09/09 Field Prep: Sample Location: WALPOLE, MA See Narrative Matrix: Water Analytical Method: 16,524.2 06/10/09 11:24 Analytical Date: Analyst: ΤТ

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab				
Methylene chloride	ND		ug/l	0.50	1
1,1-Dichloroethane	ND		ug/l	0.50	1
Chloroform	ND		ug/l	0.50	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	0.50	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.50	1
Tetrachloroethene	ND		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
Trichlorofluoromethane	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Benzene	ND		ug/l	0.50	1
Toluene	ND		ug/l	0.50	1
Ethylbenzene	ND		ug/l	0.50	1
p/m-Xylene	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	0.50	1
Bromomethane	ND		ug/l	0.50	1
Vinyl chloride	ND		ug/l	0.50	1
Chloroethane	ND		ug/l	0.50	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.50	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Trichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	0.50	1

06250916:54

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

06250916:54 CO908197

Lab Number:

Report Date:

SAMPLE RESULTS

06/25/09

Lab ID: Client ID: Sample Location:	L0908197-01 MW-3 WALPOLE, MA			Date	e Collected: e Received: d Prep:	06/08/09 18:4 06/09/09 See Narrative
Parameter		Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough La	ab				
1,3-Dichlorobenzene		ND		ug/l	0.50	1
1,4-Dichlorobenzene		ND		ug/l	0.50	1
Styrene		ND		ug/l	0.50	1
o-Xylene		ND		ug/l	0.50	1
1,1-Dichloropropene		ND		ug/l	0.50	1
2,2-Dichloropropane		ND		ug/l	0.50	1
1,1,1,2-Tetrachloroethane		ND		ug/l	0.50	1
1,2,3-Trichloropropane		ND		ug/l	0.50	1
Bromochloromethane		ND		ug/l	0.50	1
n-Butylbenzene		ND		ug/l	0.50	1
Dichlorodifluoromethane		ND		ug/l	0.50	1
Hexachlorobutadiene		ND		ug/l	0.50	1
Isopropylbenzene		ND		ug/l	0.50	1
p-Isopropyltoluene		ND		ug/l	0.50	1
Naphthalene		ND		ug/l	0.50	1
n-Propylbenzene		ND		ug/l	0.50	1
sec-Butylbenzene		ND		ug/l	0.50	1
tert-Butylbenzene		ND		ug/l	0.50	1
1,2,3-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trichlorobenzene		ND		ug/l	0.50	1
1,2,4-Trimethylbenzene		ND		ug/l	0.50	1
1,3,5-Trimethylbenzene		ND		ug/l	0.50	1
Bromobenzene		ND		ug/l	0.50	1
o-Chlorotoluene		ND		ug/l	0.50	1
p-Chlorotoluene		ND		ug/l	0.50	1
Dibromomethane		ND		ug/l	0.50	1
1,2-Dibromoethane		ND		ug/l	0.50	1
1,2-Dibromo-3-chloropropan	e	ND		ug/l	0.50	1
1,3-Dichloropropane		ND		ug/l	0.50	1
Methyl tert butyl ether		ND		ug/l	0.50	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	103		80-120	
4-Bromofluorobenzene	89		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

00050

Report Date:

Lab Number:

L0908197

06/25/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/10/09 09:33
Analyst:	TT

arameter	Result		Units		DL
olatile Organics by GC/MS -	· Westborough La	b for sample(s):	01	Batch:	WG36575
Methylene chloride	ND		ug/l	0.	50
1,1-Dichloroethane	ND		ug/l	0.	50
Chloroform	ND		ug/l	0.	50
Carbon tetrachloride	ND		ug/l	0.	50
1,2-Dichloropropane	ND		ug/l	0.	50
Dibromochloromethane	ND		ug/l	0.	50
1,1,2-Trichloroethane	ND		ug/l	0.	50
Tetrachloroethene	ND		ug/l	0.	50
Chlorobenzene	ND		ug/l	0.	50
Trichlorofluoromethane	ND		ug/l	0.	50
1,2-Dichloroethane	ND		ug/l	0.	50
1,1,1-Trichloroethane	ND		ug/l	0.	50
Bromodichloromethane	ND		ug/l	0.	50
trans-1,3-Dichloropropene	ND		ug/l	0.	50
cis-1,3-Dichloropropene	ND		ug/l	0.	50
Bromoform	ND		ug/l	0.	50
1,1,2,2-Tetrachloroethane	ND		ug/l	0.	50
Benzene	ND		ug/l	0.	50
Toluene	ND		ug/l	0.	50
Ethylbenzene	ND		ug/l	0.	50
p/m-Xylene	ND		ug/l	0.	50
Chloromethane	ND		ug/l	0.	50
Bromomethane	ND		ug/l	0.	50
Vinyl chloride	ND		ug/l	0.	50
Chloroethane	ND		ug/l	0.	50
1,1-Dichloroethene	ND		ug/l	0.	50
trans-1,2-Dichloroethene	ND		ug/l	0.	50
cis-1,2-Dichloroethene	ND		ug/l	0.	50
Trichloroethene	ND		ug/l	0.	50
1,2-Dichlorobenzene	ND		ug/l	0.	50
1,3-Dichlorobenzene	ND		ug/l	0.	50

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Report Date:

Lab Number:

L0908197

06/25/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/10/09 09:33
Analyst:	TT

arameter	Result		Units		DL
blatile Organics by GC/MS -	Westborough Lat	o for sample(s):	01	Batch:	WG36575
1,4-Dichlorobenzene	ND		ug/l	0.	50
Styrene	ND		ug/l	0.	50
o-Xylene	ND		ug/l	0.	50
1,1-Dichloropropene	ND		ug/l	0.	50
2,2-Dichloropropane	ND		ug/l	0.	50
1,1,1,2-Tetrachloroethane	ND		ug/l	0.	50
1,2,3-Trichloropropane	ND		ug/l	0.	50
Bromochloromethane	ND		ug/l	0.	50
n-Butylbenzene	ND		ug/l	0.	50
Dichlorodifluoromethane	ND		ug/l	0.	.50
Hexachlorobutadiene	ND		ug/l	0.	.50
Isopropylbenzene	ND		ug/l	0.	50
p-Isopropyltoluene	ND		ug/l	0.	50
Naphthalene	ND		ug/l	0.	.50
n-Propylbenzene	ND		ug/l	0.	.50
sec-Butylbenzene	ND		ug/l	0.	50
tert-Butylbenzene	ND		ug/l	0.	50
1,2,3-Trichlorobenzene	ND		ug/l	0.	.50
1,2,4-Trichlorobenzene	ND		ug/l	0.	50
1,2,4-Trimethylbenzene	ND		ug/l	0.	50
1,3,5-Trimethylbenzene	ND		ug/l	0.	50
Bromobenzene	ND		ug/l	0.	50
o-Chlorotoluene	ND		ug/l	0.	50
p-Chlorotoluene	ND		ug/l	0.	50
Dibromomethane	ND		ug/l	0.	50
1,2-Dibromoethane	ND		ug/l	0.	50
1,2-Dibromo-3-chloropropane	ND		ug/l	0.	50
1,3-Dichloropropane	ND		ug/l	0.	50
Methyl tert butyl ether	ND		ug/l	0.	50

 Project Name:
 WALPOLE PARK SOUTH
 Lab Number:
 L0908197

 Project Number:
 12700053
 Report Date:
 06/25/09

Method Blank Analysis Batch Quality Control

Analytical Method:	16,524.2
Analytical Date:	06/10/09 09:33
Analyst:	TT

Parameter	Result	Qualifier	Units	RDL	
Volatile Organics by GC/MS - V	Vestborough Lal	b for sample(s):	01	Batch: WG365758-8	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	107		80-120	
4-Bromofluorobenzene	88		80-120	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS - Westb	orough Lab Associated sample	(s): 01 Batch: WG	365758-7		
Methylene chloride	90	-	70-130	-	
1,1-Dichloroethane	91	-	70-130	-	
Chloroform	91	-	70-130	-	
Carbon tetrachloride	85	-	70-130	-	
1,2-Dichloropropane	88	-	70-130	-	
Dibromochloromethane	78	-	70-130	-	
1,1,2-Trichloroethane	82	-	70-130	-	
Tetrachloroethene	92	-	70-130	-	
Chlorobenzene	86	-	70-130	-	
Trichlorofluoromethane	93	-	70-130	-	
1,2-Dichloroethane	88	-	70-130	-	
1,1,1-Trichloroethane	86	-	70-130	-	
Bromodichloromethane	81	-	70-130	-	
trans-1,3-Dichloropropene	77	-	70-130	-	
cis-1,3-Dichloropropene	75	-	70-130	-	
Bromoform	80	-	70-130	-	
1,1,2,2-Tetrachloroethane	90	-	70-130	-	
Benzene	92	-	70-130	-	
Toluene	89	-	70-130	-	
Ethylbenzene	86	-	70-130	-	
p/m-Xylene	87	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated sample	e(s): 01 Batch: WG	365758-7		
Chloromethane	100	-	70-130	-	
Bromomethane	105	-	70-130	-	
Vinyl chloride	99	-	70-130	-	
Chloroethane	101	-	70-130	-	
1,1-Dichloroethene	96	-	70-130	-	
trans-1,2-Dichloroethene	89	-	70-130	-	
cis-1,2-Dichloroethene	86	-	70-130	-	
Trichloroethene	82	-	70-130	-	
1,2-Dichlorobenzene	84	-	70-130	-	
1,3-Dichlorobenzene	85	-	70-130	-	
1,4-Dichlorobenzene	85	-	70-130	-	
Styrene	83	-	70-130	-	
o-Xylene	81	-	70-130	-	
1,1-Dichloropropene	85	-	70-130	-	
2,2-Dichloropropane	88	-	70-130	-	
1,1,1,2-Tetrachloroethane	82	-	70-130	-	
1,2,3-Trichloropropane	83	-	70-130	-	
Bromochloromethane	91	-	70-130	-	
n-Butylbenzene	84	-	70-130	-	
Dichlorodifluoromethane	82	-	70-130	-	
Hexachlorobutadiene	92	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

rameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
latile Organics by GC/MS - Westbo	rough Lab Associated sampl	le(s): 01 Batch: WG	365758-7		
Isopropylbenzene	85	-	70-130	-	
p-Isopropyltoluene	80	-	70-130	-	
Naphthalene	70	-	70-130	-	
n-Propylbenzene	82	-	70-130	-	
sec-Butylbenzene	83	-	70-130	-	
tert-Butylbenzene	82	-	70-130	-	
1,2,3-Trichlorobenzene	78	-	70-130	-	
1,2,4-Trichlorobenzene	81	-	70-130	-	
1,2,4-Trimethylbenzene	76	-	70-130	-	
1,3,5-Trimethylbenzene	73	-	70-130	-	
Bromobenzene	89	-	70-130	-	
o-Chlorotoluene	83	-	70-130	-	
p-Chlorotoluene	79	-	70-130	-	
Dibromomethane	85	-	70-130	-	
1,2-Dibromoethane	77	-	70-130	-	
1,2-Dibromo-3-chloropropane	78	-	70-130	-	
1,3-Dichloropropane	80	-	70-130	-	
Methyl tert butyl ether	73	-	70-130	-	

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

 Lab Number:
 L0908197

 Report Date:
 06/25/09

Parameter	LCS %Recovery	_	CSD covery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated sample(s):	01	Batch:	WG365758-7		

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,2-Dichlorobenzene-d4	105		80-120	
4-Bromofluorobenzene	97		80-120	

Matrix Spike Analysis Batch Quality Control

Project Name:	WALPOLE PARK SOUTH
---------------	--------------------

Project Number: 12700053

Lab Number: L0908197

Report Date: 06/25/09

irameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
olatile Organics by GC/MS	- Westborough La	b Associated	sample(s): 01	QC Batch ID	: WG365758-3	QC Sample	: L0907367-02	Clien	t ID: MS Sample
Methylene chloride	ND	4	4.0	100	-	-	70-130	-	20
1,1-Dichloroethane	ND	4	4.2	106	-	-	70-130	-	20
Chloroform	ND	4	4.0	101	-	-	70-130	-	20
Carbon tetrachloride	ND	4	4.2	104	-	-	70-130	-	20
1,2-Dichloropropane	ND	4	4.0	99	-	-	70-130	-	20
Dibromochloromethane	ND	4	3.7	94	-	-	70-130	-	20
1,1,2-Trichloroethane	ND	4	4.0	100	-	-	70-130	-	20
Tetrachloroethene	ND	4	4.2	105	-	-	70-130	-	20
Chlorobenzene	ND	4	4.0	99	-	-	70-130	-	20
Trichlorofluoromethane	ND	4	4.3	107	-	-	70-130	-	20
1,2-Dichloroethane	ND	4	4.3	107	-	-	70-130	-	20
1,1,1-Trichloroethane	ND	4	4.2	104	-	-	70-130	-	20
Bromodichloromethane	ND	4	3.8	96	-	-	70-130	-	20
trans-1,3-Dichloropropene	ND	4	3.2	81	-	-	70-130	-	20
cis-1,3-Dichloropropene	ND	4	3.9	97	-	-	70-130	-	20
Bromoform	ND	4	3.5	87	-	-	70-130	-	20
1,1,2,2-Tetrachloroethane	ND	4	4.0	100	-	-	70-130	-	20
Benzene	ND	4	4.2	104	-	-	70-130	-	20
Toluene	ND	4	4.0	99	-	-	70-130	-	20
Ethylbenzene	ND	4	3.9	99	-	-	70-130	-	20
p/m-Xylene	ND	8	8.0	100	-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

WALFOLL FARR 500 H	Project Name:	WALPOLE PARK SOUTH
--------------------	---------------	--------------------

Project Number: 12700053

Lab Number: L0908197

Report Date: 06/25/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS	- Westborough La	ab Associated	sample(s): 01	QC Batch ID	: WG365758-3	QC Sample	e: L0907367-02	Clien	t ID: MS Sample
Chloromethane	ND	4	4.0	100		-	70-130	-	20
Bromomethane	ND	4	4.7	119	-	-	70-130	-	20
Vinyl chloride	ND	4	5.1	128	-	-	70-130	-	20
Chloroethane	ND	4	4.6	114	-	-	70-130	-	20
1,1-Dichloroethene	ND	4	4.4	110	-	-	70-130	-	20
trans-1,2-Dichloroethene	ND	4	4.1	102	-	-	70-130	-	20
cis-1,2-Dichloroethene	ND	4	3.9	96	-	-	70-130	-	20
Trichloroethene	ND	4	3.9	97	· ·	-	70-130	-	20
1,2-Dichlorobenzene	ND	4	3.8	95	· ·	-	70-130	-	20
1,3-Dichlorobenzene	ND	4	3.8	95	-	-	70-130	-	20
1,4-Dichlorobenzene	ND	4	3.7	93	· ·	-	70-130	-	20
Styrene	ND	4	3.7	92	· ·	-	70-130	-	20
o-Xylene	ND	4	3.7	92	-	-	70-130	-	20
1,1-Dichloropropene	ND	4	3.9	97	-	-	70-130	-	20
2,2-Dichloropropane	ND	4	4.2	106	· ·	-	70-130	-	20
1,1,1,2-Tetrachloroethane	ND	4	3.7	92	-	-	70-130	-	20
1,2,3-Trichloropropane	ND	4	3.8	94	-	-	70-130	-	20
Bromochloromethane	ND	4	4.0	101	-	-	70-130	-	20
n-Butylbenzene	ND	4	3.9	98	-	-	70-130	-	20
Dichlorodifluoromethane	ND	4	3.9	97	-	-	70-130	-	20
Hexachlorobutadiene	ND	4	4.1	102	· ·	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: WA	ALPOLE PARK SOUTH
------------------	-------------------

Project Number: 12700053 Lab Number: L0908197

Report Date: 06/25/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
/olatile Organics by GC/MS	- Westborough La	ab Associated	sample(s): 01	QC Batch ID): WG365758-3	QC Sample	: L0907367-02	Clien	t ID: MS Sample
Isopropylbenzene	ND	4	3.5	87	· ·	-	70-130	-	20
p-Isopropyltoluene	ND	4	3.6	91	•	-	70-130	-	20
Naphthalene	ND	4	3.2	80	•	-	70-130	-	20
n-Propylbenzene	ND	4	3.9	98	•	-	70-130	-	20
sec-Butylbenzene	ND	4	3.9	98	•	-	70-130	-	20
tert-Butylbenzene	ND	4	3.8	95	•	-	70-130	-	20
1,2,3-Trichlorobenzene	ND	4	3.6	90	•	-	70-130	-	20
1,2,4-Trichlorobenzene	ND	4	3.6	91	•	-	70-130	-	20
1,2,4-Trimethylbenzene	ND	4	3.5	88	•	-	70-130	-	20
1,3,5-Trimethylbenzene	ND	4	3.4	85	•	-	70-130	-	20
Bromobenzene	ND	4	4.0	100	•	-	70-130	-	20
o-Chlorotoluene	ND	4	3.9	98	•	-	70-130	-	20
p-Chlorotoluene	ND	4	3.6	90	•	-	70-130	-	20
Dibromomethane	ND	4	3.8	96	•	-	70-130	-	20
1,2-Dibromoethane	ND	4	3.8	95	•	-	70-130	-	20
1,2-Dibromo-3-chloropropane	ND	4	3.7	93	•	-	70-130	-	20
1,3-Dichloropropane	ND	4	3.8	95	•	-	70-130	-	20
Methyl tert butyl ether	ND	4	3.6	91	•	-	70-130	-	20

		Matrix Spike Analysis Batch Quality Control		
Project Name:	WALPOLE PARK SOUTH		Lab Number:	L0908197
Project Number:	12700053		Report Date:	06/25/09
Parameter	Native Sample MS Added	MS MSD MS Found %Recovery MSD Found %Recovery	Recovery Limits RPD	RPD Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 QC Batch ID: WG365758-3 QC Sample: L0907367-02 Client ID: MS Sample

	MS	5	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	100				80-120	
4-Bromofluorobenzene	99				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0908197 Report Date: 06/25/09

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG365758-4	QC Sample:	L0907367-03	Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	20
1,1-Dichloroethane	ND	ND	ug/l	NC	20
Chloroform	ND	ND	ug/l	NC	20
Carbon tetrachloride	ND	ND	ug/l	NC	20
1,2-Dichloropropane	ND	ND	ug/l	NC	20
Dibromochloromethane	ND	ND	ug/l	NC	20
1,1,2-Trichloroethane	ND	ND	ug/l	NC	20
Tetrachloroethene	ND	ND	ug/l	NC	20
Chlorobenzene	ND	ND	ug/l	NC	20
Trichlorofluoromethane	ND	ND	ug/l	NC	20
1,2-Dichloroethane	ND	ND	ug/l	NC	20
1,1,1-Trichloroethane	ND	ND	ug/l	NC	20
Bromodichloromethane	ND	ND	ug/l	NC	20
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	20
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	20
Bromoform	ND	ND	ug/l	NC	20
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	20
Benzene	ND	ND	ug/l	NC	20
Toluene	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0908197 06/25/09 Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG365758-4	QC Sample:	L0907367-03	Client ID: DUP Sample
Ethylbenzene	ND	ND	ug/l	NC	20
p/m-Xylene	ND	ND	ug/l	NC	20
Chloromethane	ND	ND	ug/l	NC	20
Bromomethane	ND	ND	ug/l	NC	20
Vinyl chloride	ND	ND	ug/l	NC	20
Chloroethane	ND	ND	ug/l	NC	20
1,1-Dichloroethene	ND	ND	ug/l	NC	20
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	20
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	20
Trichloroethene	ND	ND	ug/l	NC	20
1,2-Dichlorobenzene	ND	ND	ug/l	NC	20
1,3-Dichlorobenzene	ND	ND	ug/l	NC	20
1,4-Dichlorobenzene	ND	ND	ug/l	NC	20
Styrene	ND	ND	ug/l	NC	20
o-Xylene	ND	ND	ug/l	NC	20
1,1-Dichloropropene	ND	ND	ug/l	NC	20
2,2-Dichloropropane	ND	ND	ug/l	NC	20
1,1,1,2-Tetrachloroethane	ND	ND	ug/l	NC	20
1,2,3-Trichloropropane	ND	ND	ug/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number:

L0908197 Report Date: 06/25/09

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG365758-4	QC Sample:	L0907367-03	Client ID: DUP Sample
Bromochloromethane	ND	ND	ug/l	NC	20
n-Butylbenzene	ND	ND	ug/l	NC	20
Dichlorodifluoromethane	ND	ND	ug/l	NC	20
Hexachlorobutadiene	ND	ND	ug/l	NC	20
Isopropylbenzene	ND	ND	ug/l	NC	20
p-Isopropyltoluene	ND	ND	ug/l	NC	20
Naphthalene	ND	ND	ug/l	NC	20
n-Propylbenzene	ND	ND	ug/l	NC	20
sec-Butylbenzene	ND	ND	ug/l	NC	20
tert-Butylbenzene	ND	ND	ug/l	NC	20
1,2,3-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trichlorobenzene	ND	ND	ug/l	NC	20
1,2,4-Trimethylbenzene	ND	ND	ug/l	NC	20
1,3,5-Trimethylbenzene	ND	ND	ug/l	NC	20
Bromobenzene	ND	ND	ug/l	NC	20
o-Chlorotoluene	ND	ND	ug/l	NC	20
p-Chlorotoluene	ND	ND	ug/l	NC	20
Dibromomethane	ND	ND	ug/l	NC	20
1,2-Dibromoethane	ND	ND	ug/l	NC	20

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L0908197

 Report Date:
 06/25/09

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westbo	prough Lab Associated sample(s): 01	QC Batch ID: WG365758-4	QC Sample:	L0907367-03	Client ID: DUP Sample
1,2-Dibromo-3-chloropropane	ND	ND	ug/l	NC	20
1,3-Dichloropropane	ND	ND	ug/l	NC	20
Methyl tert butyl ether	ND	ND	ug/l	NC	20

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	
1,2-Dichlorobenzene-d4	103		104		80-120	
4-Bromofluorobenzene	86		89		80-120	

METALS

06250916:54 Project Name: WALPOLE PARK SOUTH Lab Number: L0908197 **Project Number:** 12700053 **Report Date:** 06/25/09 SAMPLE RESULTS L0908197-01 Date Collected: 06/08/09 18:46 Date Received: MW-3 06/09/09 Sample Location: WALPOLE, MA Field Prep: See Narrative Water Analytical Method Dilution Date Date Prep Factor Prepared Analyzed Method Result Qualifier Units RDL

MCP Dissolved Me	etals - Westbord	ough Lab							
Antimony, Dissolved	ND	mg/l	0.0020	4	06/24/09 13:20	06/24/09 21:29	EPA 3005A	64,6020A	BM
Arsenic, Dissolved	ND	mg/l	0.005	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Barium, Dissolved	0.021	mg/l	0.010	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Beryllium, Dissolved	ND	mg/l	0.004	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Cadmium, Dissolved	ND	mg/l	0.004	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Chromium, Dissolved	ND	mg/l	0.01	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Lead, Dissolved	ND	mg/l	0.010	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Mercury, Dissolved	ND	mg/l	0.0002	1	06/12/09 18:30	06/14/09 13:38	EPA 7470A	64,7470A	DM
Nickel, Dissolved	ND	mg/l	0.025	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Selenium, Dissolved	ND	mg/l	0.010	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Silver, Dissolved	ND	mg/l	0.007	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Thallium, Dissolved	ND	mg/l	0.0020	4	06/24/09 13:20	06/24/09 21:29	EPA 3005A	64,6020A	BM
Vanadium, Dissolved	ND	mg/l	0.010	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI
Zinc, Dissolved	ND	mg/l	0.050	1	06/10/09 10:10	06/12/09 11:17	EPA 3005A	60,6010B	AI

Analyst

Lab ID:

Matrix:

Parameter

Client ID:

Project Name: WALPOLE PARK SOUTH Project Number: 12700053 Lab Number: L0908197 Report Date: 06/25/09

Method Blank Analysis Batch Quality Control

Analytical Dilution Date Date Method Analyst Factor Prepared Analyzed Parameter **Result Qualifier** Units RDL MCP Dissolved Metals - Westborough Lab for sample(s): 01 Batch: WG366161-1 ND 0.005 Arsenic, Dissolved mg/l 1 06/10/09 10:10 06/12/09 11:01 60,6010B AI ND 0.010 Barium, Dissolved mg/l 1 06/12/09 11:01 60,6010B AI 06/10/09 10:10 Beryllium, Dissolved ND 0.004 1 60,6010B mg/l 06/10/09 10:10 06/12/09 11:01 AI Cadmium, Dissolved ND mg/l 0.004 1 06/10/09 10:10 06/12/09 11:01 60,6010B AI Chromium, Dissolved ND mg/l 0.01 1 06/10/09 10:10 06/12/09 11:01 60,6010B AI Lead, Dissolved ND 0.010 1 06/10/09 10:10 mg/l 06/12/09 11:01 60,6010B AI Nickel, Dissolved ND mg/l 0.025 1 06/10/09 10:10 06/12/09 11:01 60,6010B AI ND 0.010 1 AI Selenium, Dissolved mg/l 06/12/09 11:01 60,6010B 06/10/09 10:10 ND 1 0.007 06/10/09 10:10 AI Silver, Dissolved mg/l 06/12/09 11:01 60,6010B ND 1 AI Vanadium, Dissolved mg/l 0.010 06/10/09 10:10 06/12/09 11:01 60,6010B Zinc, Dissolved ND 0.050 1 06/12/09 11:01 60,6010B AI mg/l 06/10/09 10:10

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01	Batch: V	VG368174-1			
Mercury, Dissolved	ND	mg/l	0.0002	1	06/12/09 18:30	06/14/09 13:14	64,7470A	DM

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01	Batch: W	/G368197-1			
Antimony, Dissolved	ND	mg/l	0.0005	1	06/24/09 13:20	06/24/09 20:48	64,6020A	BM
Thallium, Dissolved	ND	mg/l	0.0005	1	06/24/09 13:20	06/24/09 20:48	64,6020A	BM

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: Report Date: L0908197 06/25/09

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Parameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough Lab	Associated sample(s	s): 01	Batch: WG3	66161-2 WG366161-3		
Arsenic, Dissolved	114		114	80-120	0	20
Barium, Dissolved	103		102	80-120	1	20
Beryllium, Dissolved	98		96	80-120	2	20
Cadmium, Dissolved	111		111	80-120	0	20
Chromium, Dissolved	95		95	80-120	0	20
Lead, Dissolved	107		107	80-120	0	20
Nickel, Dissolved	101		102	80-120	1	20
Selenium, Dissolved	112		113	80-120	1	20
Silver, Dissolved	103		101	80-120	2	20
Vanadium, Dissolved	96		95	80-120	1	20
Zinc, Dissolved	105		106	80-120	1	20
MCP Dissolved Metals - Westborough Lab	Associated sample(s	s): 01	Batch: WG3	68174-2 WG368174-3		
Mercury, Dissolved	97		98	80-120	1	20
MCP Dissolved Metals - Westborough Lab	Associated sample(s): 01	Batch: WG3	68197-2 WG368197-3		
Antimony, Dissolved	89		94	80-120	5	20
Thallium, Dissolved	92		94	80-120	2	20

Project Name:WALPOLE PARK SOUTHProject Number:12700053

Lab Number: L0908197 Report Date: 06/25/09

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
В	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0908197-01A	Plastic 500ml HNO3 preserved	В	<2	5	Y	Absent	MCP-AG-6010S(180),MCP-BA- 6010S(180),MCP-SB- 6020S(180),MCP-SE- 6010S(180),MCP-BE- 6010S(180),MCP-NI-

6010S(180),MCP-SE-6010S(180),MCP-SE-6010S(180),MCP-NI-6010S(180),MCP-NI-6010S(180),MCP-CD-6010S(180),MCP-TL-6020S(180),MCP-TL-6010S(180),MCP-7470S(28),MCP-CR-6010S(180),MCP-PB-6010S(180),MCP-ZN-6010S(180),MCP-AS-6010S(180),MCP-V-6010S(180)

Project Name: WALPOLE PARK SOUTH

Project Number: 12700053

Lab Number: L0908197 **Report Date:**

06/25/09

GLOSSARY

Acronyms

- · Environmental Protection Agency. EPA
- LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MS · Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC · Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND · Not detected at the reported detection limit for the sample.
- NI · Not Ignitable.
- RDL · Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- * - The batch duplicate RPD exceeds the acceptance criteria. This flag is not applicable when the sample concentrations are less than 5x the RDL. (Metals only.)
- Spectra identified as "Aldol Condensation Product". A
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- Ν - The matrix spike recovery exceeds the acceptance criteria. This flag is not applicable when the sample concentration is greater than 4x the spike added. (Metals only.)
- Р - The RPD between the results for the two columns exceeds the method-specified criteria.
- R - Analytical results are from sample re-analysis.
- RE - Analytical results are from sample re-extraction.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

 Lab Number:
 L0908197

 Report Date:
 06/25/09

REFERENCES

- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.
- 64 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). August 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 24, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters:</u> Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) *Wastewater/Non-Potable Water* (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total

Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) *Solid Waste/Soil* (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc,

Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil **Massachusetts Department of Environmental Protection** <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

<u>Microbiology Parameters</u>: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. NELAP Accredited. Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. Organic Parameters: 504.1, 524.2, SM6251B.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7.) *Solid & Chemical Materials* (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 10005A, 10005A,

9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 1312, 3540C, 3545, 3550B, 3580A, 5035L, 5035H, NJ OQA-QAM-025 Rev.7.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Pennsylvania Department of Environmental Protection Certificate/Lab ID : 68-03671. NELAP Accredited.

Non-Potable Water (<u>Organic Parameters</u>: EPA 3510C, 625, 608, 8081A, 8082, 8151A, 8270C, 8330) *Solid & Hazardous Waste* (<u>Inorganic Parameters</u>: EPA 1010, 1030, 1311, 3050B, 3051, 6010B, EPA 7.3.3.2, EPA 7.3.4.2, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065. <u>Organic Parameters</u>: 3540C, 3545, 3580A, 5035, 8021B, 8081A, 8082, 8151A, 8260B, 8270C, 8330) Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NY-DOH.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Utah Department of Health <u>Certificate/Lab ID</u>: AAMA. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: Chloride EPA 300.0)

All samples submitted are subject to Alpha's Terms and Conditions. See reverse side	60/16/10	MM CUDANT			
start until any ambiguities are resolved	, Daţe/Time	1/ Received By:	Date/Time	Relinquished By:	MA MCP or CT RCP2
pletely. Samples can not be logged			Preservative		IS YOUR PROJECT
Please print clearly legibly and com-			Container Type		PLEASE ANSWER QUESTIONS ABOVE!
				VISI &	S1971 MW-3
Sample Specific Comments		1.1 2.1	Matrix Initiats	ime	(Lab Use Only) Sample ID
Please specify below)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mes	Collection	ALIPHA Lab ID
Preservation		24		U	Lung of who THT 202
ł		ANAL / KE		Detection Limits:	Other Project Specific Requirements/Comments/Detection Limits
SAMPLE HANDLING		YSIS	Time:	2	These samples have been previously analyzed by Alpha Date
1 / / /				Idard CRUSH (crity confirmed if pre-approved)	Email:
Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence P	GAZVes □ No Are MCP Analy □ Yes □ No Are CT RCP (F		Turn-Around Time	Fax:
CT REASONABLE CONFIDENCE PROTO-	TAINTY CT REA	MA MCP PRESUMPTIVE CERTAINTY		ALPHA Quote #:	
	Criteria	state /Fed_Program		Project Manager:	
	oort Limits	Regulatory Requirements/Report Limits		Project #: 1270053	Client: 0,7270 Project
		ADEx Add'l Deliverables	Ma	t Location: N/N/M/o	
CI Same as Client info PO #:	<u></u>	O FAX O EMAIL		Project Name: (X) A O (art) o	TEL: 508-822-9300
Billing Information		Report Information - Data Deliverables		Project Information	A MANSSIFID MA
C DIS V BUT :: 4 TO AV SID		Date Rec'd In Lab: $(n q)(0)$	0F	JSTODY MORE	CHAIN OF CUSTODY

FORM NO: 01-01 (rev. 14-00T-07)	5		22-	1'&tht	ALPHA Lab ID (Lab Use Only)	A These samples have b Other Project Spe DL 5	1 m	Address: Cine (Client Information		AHIA
DJECT CT RCP?	<u>Mw-1</u>	//w///		MW-4	Sample ID	These samples have been previously analyzed by Alpha These samples have been previously analyzed by Alpha ther Project Specific Requirements/Common OL 5 2 k 6 W - 1	1002	crant St	Tech Rizzo	MANSFIELD, MA TEL: 508-822-9300 FAX: 508-822-3289	CHAIN
Relipedisted ey:		1 589 1 A 1 A 1 A 1 B 80		1 8.8.9	Collection Date T	31			Project Location: 1/	Project Information Project Name: WA pole	OF CUSTODY
Container Type Preservative Date/Tipre	1710	1846 1850 1857	1281 4281	71 mg 9161	on Sample Sampler's Time Matrix Initials	Time:	Karn-Around Time	lay Johnso / Ion Cana	Jalpale, MA	ale Part Sall	Y PAGE
Beceived By	× × × ×			<u>+</u>		ium total		MA MCP PRESUMPTI	Regulatory Requir	Informat	
		× × ×		-	0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	4.2 (JX) y.2 (JX) y.2 (JX) (Phung) (Phung) ABN al (alling)	Are MCP Analytical Methods Required? Are CT RCP (Reasonable Confidence P	PTIVE CERTAINTY	Regulatory Requirements/Report Limits	ion - Data Deliverables	619109
Date/Time Start until any and In and turnaround Date/Time Start until any and Iq/0 Y / C All samples subm Alpha's Terms and See reverse side.					Sample Sp		CP Analytical Methods Required? T RCP (Reasonable Confidence Protocols) Required?	VE CERTAINTY CT REASONABLE CONFIDENCE PROTO-		Billing Information	ALPHA Job #: /
Please print clearly, legibly and com- pletely. Samples can not be logged in and turnaround time clock will not start until any ambiguites are resolved All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.					ents	Eltration Ves Eltration Ves Conne - Metals Actione - Metals Conno - Metals Conno - Oliver Databoo do Preservation Preservation Preservation		VFIDENCE PROTO-		PO #	stht9607

Appendix D

Copies of Public Notification Letters

July 28, 2009

Ms. Robin Chapell, Health Agent Town of Walpole Board of Health 135 School Street Walpole, MA 02081

Re: Notice of Phase III Remedial Action Plan Submittal Walpole Park South Walpole, Massachusetts RTNs 4-3021915 and 4-19976

Dear Ms. Chapell:

On behalf of Walpole Park South, Rizzo Associates, Inc. is providing this notification that a Phase IV Completion Statement and Remedy Operation Status Submittal will be filed with the Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about August 2, 2009.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The selected remedial action involves monitored natural attenuation (MNA) to allow for ongoing evaluation and characterization of groundwater conditions over time, and will include additional monitoring wells to evaluate whether a portion or all of the metals of VOCs detected in on-site monitoring wells originate from off-site source(s) and/or if they are naturally occurring. Deleterious impacts are not anticipated since the planned remedial action is limited to installation of additional monitoring wells and collection of groundwater samples. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library.

Please contact the undersigned if you have any questions.

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

TETRATECH RIZZO

Very truly yours,

Reguera C Johnson

Raymond C. Johnson, P.G., L.S.P. Senior Vice President

Attachment

P:\Pre-FY2008\12700000\12700058\Rpts\Phase II report documents\Letter_public-notice_BOH_PhaseIV Completion_ROS_July2009.doc

2

July 28, 2009

Mr. Christopher G. Timson, Chairman Board of Selectmen Town of Walpole 135 School Street Walpole, MA 02081

Re: Notice of Phase IV – Remedy Implementation Plan Submittal Walpole Park South Walpole, Massachusetts RTNs 4-3021915 and 4-19976

Dear Mr. Timson:

On behalf of Walpole Park South, Rizzo Associates, Inc. is providing this notification that a Phase IV Completion Statement and Remedy Operation Status Submittal will be filed with the Department of Environmental Protection (DEP) for the above referenced Disposal Site on or about August 2, 2009.

This notification is being made pursuant to the requirements of the Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The selected remedial action involves monitored natural attenuation (MNA) to allow for ongoing evaluation and characterization of groundwater conditions over time, and will include additional monitoring wells to evaluate whether a portion or all of the metals of VOCs detected in on-site monitoring wells originate from off-site source(s) and/or if they are naturally occurring. Deleterious impacts are not anticipated since the planned remedial action is limited to installation of additional monitoring wells and collection of groundwater samples. The report will be available for review at the DEP Southeast Regional Office located at 20 Riverside Drive in Lakeville, Massachusetts by appointment. A copy of the report will also be available in the Public Information Repository at the Walpole Public Library.

Please contact the undersigned if you have any questions.

One Grant Street Framingham, MA 01701 Tel 508.903.2000 Fax 508.903.2001

TETRATECH RIZZO Æ

Very truly yours,

Raymond C. Johnson, P.G., L.S.P.

Senior Vice President

Attachment

Mr. Michael E. Boynton, Town Administrator C:

P:\Pre-FY2008\12700000\12700058\Rpts\Phase II report documents\Letter_public-notice_Town_PhaseIV Completion_ROS_July2009.doc

Appendix E

BWSC-108 – Phase IV Transmittal Form

Ď		A	Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup	BWSC108			
R		X	COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT	Release Tracking Number 4 - 3021915			
			Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)				
			DN: DUTE 1 AND PINE ST				
1. 8	Site N	lame:					
2. 5	Stree	t Address	15 WALPOLE PARK S				
3. 0	City/T	own: W/	ALPOLE 4. ZIP Code: 02081-0000				
\Box	5.	Check he	re if a Tier Classification Submittal has been provided to DEP for this disposal site.				
		a. Tier l	IA 🖌 b. Tier IB 🗌 c. Tier IC 🗌 d. Tier II				
6 If	annl	licable pr	ovide the Permit Number: W051766				
0. "	appi	icable, pi					
В. Т	HISI	FORM IS	BEING USED (check all that apply)				
	1. 3	Submit a	Phase I Completion Statement, pursuant to 310 CMR 40.0484.				
	2.	Submit a	Revised Phase I Completion Statement, pursuant to 310 CMR 40.0484.				
	3. 3	Submit a	Phase II Scope of Work, pursuant to 310 CMR 40.0834.				
		Submit ar) CMR 40	n interim Phase II Report . This report does not satisfy the response action deadline .0500.	e requirements in			
	5. 5	Submit a f	inal Phase II Report and Completion Statement, pursuant to 310 CMR 40.0836.				
	6. 5	Submit a I	Revised Phase II Report and Completion Statement, pursuant to 310 CMR 40.08	36.			
	7. Submit a Phase III Remedial Action Plan and Completion Statement, pursuant to 310 CMR 40.0862.						
	8.	Submit a	Revised Phase III Remedial Action Plan and Completion Statement, pursuant to	310 CMR 40.0862.			
	9.	Submit a	Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874.				
	10.	Submit a	a Modified Phase IV Remedy Implementation Plan, pursuant to 310 CMR 40.0874	I .			
	11.	Submit a	an As-Built Construction Report, pursuant to 310 CMR 40.0875.				
	12.	Submit a	a Phase IV Status Report, pursuant to 310 CMR 40.0877.				
\mathbf{Z}	13.	Submit a	a Phase IV Completion Statement, pursuant to 310 CMR 40.0878 and 40.0879.				
		Specify	the outcome of Phase IV activities: (check one)				
	\checkmark		se V Operation, Maintenance or Monitoring of the Comprehensive Remedial Action is se Action Outcome.	s necessary to achieve a			
		Monitori	requirements of a Class A Response Action Outcome have been met. No additiona ing is necessary to ensure the integrity of the Response Action Outcome. A comple ent and Report (BWSC104) will be submitted to DEP.	l Operation, Maintenance or ied Response Action Outcome			
		Monitor	requirements of a Class C Response Action Outcome have been met. No additiona ing is necessary to ensure the integrity of the Response Action Outcome. A comple ent and Report (BWSC104) has been or will be submitted to DEP.	l Operation, Maintenance or ted Response Action Outcome			
		Monitor toward	requirements of a Class C Response Action Outcome have been met. Further Ope ing of the remedial action is necessary to ensure that conditions are maintained and a Permanent Solution. A completed Response Action Outcome Statement and Rep submitted to DEP.	that further progress is made			

Ĩ	5	A	Massachusetts Departm Bureau of Waste Site Cle		ental Protection	n BV	VSC108
		N.	COMPREHENSIVE RES FORM & PHASE I COMF Pursuant to 310 CMR 40.0484 (S	LETION STATEM	IENT	Release	Tracking Number 3021915
В. Т	HIS F	ORM IS	EING USED TO (cont.):(check al	that apply)		·	
	14.	Submit a	Revised Phase IV Completion S	tatement , pursuant to 3	10 CMR 40.0878 and	40.0879.	
	15.	Submit a	Phase V Status Report, pursuan	to 310 CMR 40.0892.			
	16.	Submit a	Remedial Monitoring Report. (Th	is report can only be su	bmitted through eDE	P.)	
	a. T	ype of Re	oort: (check one) 🦳 i. In	itial Report 📃 ii. Inte	erim Report	iii. Final Rep	ort
	b. F	requency	of Submittal: (check all that apply)				
		🗌 i. A	Remedial Monitoring Report(s) sub	mitted monthly to addre	ss an Imminent Haza	rd.	
		🗌 ii. A	Remedial Monitoring Report(s) sul	omitted monthly to addre	ess a Condition of Sul	ostantial Rele	ase Migration.
		🗌 iii. /	Remedial Monitoring Report(s) su	bmitted concurrent with	a Status Report.		
	c. S	tatus of S	e: (check one) 📄 i. Phase IV	ii. Phase V	iii. Remedy Opera	tion Status	iv. Class C RAO
	d. N	lumber o	Remedial Systems and/or Monito	ing Programs:			
			VSC108A, CRA Remedial Monito essed by this transmittal form.	ing Report, must be fille	d out for each Reme	dial System a	nd/or Monitoring
\mathbf{Z}	17.	Submit a	Remedy Operation Status, pursu	ant to 310 CMR 40.089	3.		
	18.	Submit a	Status Report to maintain a Ren	edy Operation Status,	pursuant to 310 CM	R 40.0893(2).	
	19. CMI	Submit a R 40.0893	Fransfer and/or a Modification o (5) (check one, or both, if applicab	f Persons Maintaining e).	a Remedy Operatio	n Status (RC	9S) , pursuant to 310
			it a Transfer of Persons Maintainii ing Response Actions").	ng an ROS (the transfer	ee should be the pers	on listed in S	ection D, "Person
			it a Modification of Persons Mainta on Undertaking Response Actions		ary representative sh	ould be the p	erson listed in Section
	c.	Number	Persons Maintaining an ROS not	including the primary re	presentative:		
	20.	Submit a	Fermination of a Remedy Opera	t ion Status , pursuant to	310 CMR 40.0893(6).(check one))
			it a notice indicating ROS perform 6)(b) for resuming the ROS are at		ot been met. A plan a	nd timetable	pursuant to 310 CMR
		b. Subr	it a notice of Termination of ROS.				
	21.	Submit a	Phase V Completion Statement	, pursuant to 310 CMR	40.0894.		
	Spe	cify the o	come of Phase V activities: (cheo	k one)			
		Monitor	equirements of a Class A Respons g is necessary to ensure the integ it (BWSC104) will be submitted to	rity of the Response Ac	been met. No additi tion Outcome. A con	onal Operatic pleted Respo	on, Maintenance or onse Action Outcome
		Monitor	equirements of a Class C Respons g is necessary to ensure the integ t and Report (BWSC104) will be s	rity of the Response Ac	been met. No addit tion Outcome. A con	onal Operation National Operation	on, Maintenance or onse Action Outcome
		Monitor made to	equirements of a Class C Respons g of the remedial action is necess vard a Permanent Solution. A cor d to DEP.	ary to ensure that condi	tions are maintained	and/or that fu	rther progress is
	22.	Submit a	Revised Phase V Completion St	atement, pursuant to 3 ⁻	10 CMR 40.0894.		
	23.	Submit a	Post-Class C Response Action	Dutcome Status Repo	rt, pursuant to 310 Cl	VIR 40.0898.	

Revised:	4/1/2009
	5

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BWSC108

COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Release Tracking Number

- 3021915

Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)

C. LSP SIGNATURE AND STAMP:

I attest under the pains and penalties of perjury that I have personally examined and am familiar with this transmittal form, including any and all documents accompanying this submittal. In my professional opinion and judgment based upon application of (i) the standard of care in 309 CMR 4.02(1), (ii) the applicable provisions of 309 CMR 4.02(2) and (3), and 309 CMR 4.03(2), and (iii) the provisions of 309 CMR 4.03(3), to the best of my knowledge, information and belief,

if Section B indicates that a Phase I, Phase II, Phase III, Phase IV or Phase V Completion Statement and/or a Termination of a Remedy Operation Status is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed and implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

if Section B indicates that a Phase II Scope of Work or a Phase IV Remedy Implementation Plan is being submitted, the response action(s) that is (are) the subject of this submittal (i) has (have) been developed in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal;

if Section B indicates that an As-Built Construction Report, a Remedy Operation Status, a Phase IV, Phase V or Post-Class C RAO Status Report, a Status Report to Maintain a Remedy Operation Status, a Transfer or Modification of Persons Maintaining a Remedy Operation Status and/or a Remedial Monitoring Report is being submitted, the response action(s) that is (are) the subject of this submittal (i) is (are) being implemented in accordance with the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, (ii) is (are) appropriate and reasonable to accomplish the purposes of such response action(s) as set forth in the applicable provisions of M.G.L. c. 21E and 310 CMR 40.0000, and (iii) comply(ies) with the identified provisions of all orders, permits, and approvals identified in this submittal.

I am aware that significant penalties may result, including, but not limited to, possible fines and imprisonment, if I submit information which I know to be false, inaccurate or materially incomplete.

1.	LSP #: 61	18			
2.	First Name:	RAYMOND C		3. Last Name: JOHNSON	
4.	Telephone:	5089032000	5. Ext.:	6. FAX:	
7.	Signature:				
8.	Date:	(mm/dd/yyyy)		9. LSP Stamp:	

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup BWSC108
COMPREHENSIVE RESPONSE ACTION TRANSMITTAL FORM & PHASE I COMPLETION STATEMENT Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (Subpart H)
D. PERSON UNDERTAKING RESPONSE ACTIONS:
1. Check all that apply: a. change in contact name b. change of address c. change in the person undertaking response actions
2. Name of Organization: WALPOLE PARK SOUTH TRUST
3. Contact First Name: DONNELL 4. Last Name: MURPHY
5. Street: PO BOX 123 6. Title: TRUSTEE
7. City/Town: WALPOLE 8. State: MA 9. ZIP Code: 02081-0000
10. Telephone: 5086681200 11. Ext.: 12. FAX:
E. RELATIONSHIP TO SITE OF PERSON UNDERTAKING RESPONSE ACTIONS: Check here to change relationship
✓ 1. RP or PRP ✓ a. Owner b. Operator c. Generator d. Transporter
e. Other RP or PRP Specify:
2. Fiduciary, Secured Lender or Municipality with Exempt Status (as defined by M.G.L. c. 21E, s. 2)
3. Agency or Public Utility on a Right of Way (as defined by M.G.L. c. 21E, s. 5(j))
4. Any Other Person Undertaking Response Actions Specify Relationship:
F. REQUIRED ATTACHMENT AND SUBMITTALS:
1. Check here if the Response Action(s) on which this opinion is based, if any, are (were) subject to any order(s), permit(s) and/or approval(s) issued by DEP or EPA. If the box is checked, you MUST attach a statement identifying the applicable provisions thereof.
2. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the submittal of any Phase Reports to DEP.
3. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase III Remedial Action Plan.
4. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of the availability of a Phase IV Remedy Implementation Plan.
5. Check here to certify that the Chief Municipal Officer and the Local Board of Health have been notified of any field work involving the implementation of a Phase IV Remedial Action.
6. If submitting a Transfer of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for the person making this submittal (transferee) is attached.
7. If submitting a Modification of a Remedy Operation Status (as per 310 CMR 40.0893(5)), check here to certify that a statement detailing the compliance history for each new person making this submittal is attached.
8. Check here if any non-updatable information provided on this form is incorrect, e.g. Site Name. Send corrections to: BWSC.eDEP@state.ma.us.
9. Check here to certify that the LSP Opinion containing the material facts, data, and other information is attached.

Massachusetts Department of Environme Bureau of Waste Site Cleanup	ntal Protection	WSC108
COMPREHENSIVE RESPONSE ACTION T	RANSMITTAL	• Tracking Number - 3021915
Pursuant to 310 CMR 40.0484 (Subpart D) and 40.0800 (S	ubpart H)	
G. CERTIFICATION OF PERSON UNDERTAKING RESPONSE ACTIONS:		
1. I,, attest under the personally examined and am familiar with the information contained in this sub accompanying this transmittal form, (ii) that, based on my inquiry of those indivinformation, the material information contained in this submittal is, to the best of complete, and (iii) that I am fully authorized to make this attestation on behalf of person or entity on whose behalf this submittal is made am/is aware that there possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete.	iduals immediately responsible for of my knowledge and belief, true, of the entity legally responsible for are significant penalties, includin	ments or obtaining the accurate and r this submittal. I/the
>if Section B indicates that this is a Modification of a Remedy Operation Sta perjury that I am fully authorized to act on behalf of all persons performing resp 40.0893(5)(d) to receive oral and written correspondence from MassDEP with ROS, and to receive a statement of fee amount as per 4.03(3).	onse actions under the ROS as s respect to performance of respon	stated in 310 CMR se actions under the
I understand that any material received by the Primary Representative from Ma perform ing response actions under the ROS, and I am aware that there are signified and imprisonment, for willfully submitting false, inaccurate or incomplete i	gnificant penalties, including, but	d by all the persons not limited to, possible
2. Ву:	3. Title: TRUSTEE	•
Signature		
4. For: WALPOLE PARK SOUTH TRUST	5. Date:	
(Name of person or entity recorded in Section D)	(n	nm/dd/yyyy)
6. Check here if the address of the person providing certification is different	ent from address recorded in Sec	tion D.
7. Street:		
8. City/Town: 9. Stat	e: 10. ZIP Code:	
11. Telephone: 12. Ext.: 1	3. FAX:	· · · · · · · · · · · · · · · · · · ·
YOU ARE SUBJECT TO AN ANNUAL COMPLIANCE ASS BILLABLE YEAR FOR THIS DISPOSAL SITE. YOU MUST SECTIONS OF THIS FORM OR DEP MAY RETURN THE D SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED	LEGIBLY COMPLETE ALL REL OCUMENT AS INCOMPLETE.	EVANT IF YOU
Date Stamp (DEP USE ONLY:)		

0

BWSC-108 Supplemental Information

Walpole Park South RTN 4-3021915

F.1 – The response action was conducted under a Tier IB that was presumptively approved by DEP on August 7, 2004, 45 days after DEP acknowledgement of receipt of the Tier I Permit Application.