amec	9

CLIEN	IT: <u>Bak</u> e	- Hushy		L(OCATIO	N:	d Mach	DA	TE: <u>גורגוב</u>
WELL	NO. <u>CR</u>	-mw-12	<u> </u>	EATHER:	Rain	Jenp	in 305	SAMPLE	TIME: 1020
REMA Co	RKS:	o (MS	1250					SAMPLER	(S): <u>MAM</u>
WELL	PURGIN	G: ST		ER LEVEL:	1.2	ft.	WE		21.52 #
LENGT	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	JME OF W/	ATER TO BE): n.
VOLUM	E OF WATE	R TO BE E	VACUATE	D X 3 CASIN	ig volum	ES =	-	gals.	guioi
REMOV	AL METHO	D: <u> </u>	anp_			PUMPING	RATE:	185	ml/min.
WELL	PURGE I	DATA:	2947-5:	test time	10.30	-Eret	flow	draw	
TIME	TEMP (C)	pН	turb. (Ntu)	COND. (mS/cm)	ORP (mV)	DO (ppm)	rate (ml/min)	down (ft)	COMMENTS
<u>1000</u>	9.16	<u>G. 41</u>	5.71	237	204	0.47	185	1.30	
1065	<u>443</u>	6.43	2.96	246	205	0.27	185	1.30	
1010	9,51	GUE	163	245	201	0.36	185	130	
1020- 0	Collout	Sample							
			<u> </u>	·				- <u></u>	
. <u></u>				·					
									<u> </u>
			<u> </u>	- <u> </u>					
SAMPLE		WL METHO	D: 60	OPUND					
LABOR		IALYSIS, S/	AMPLE CO	ONTAINERS I	USED INCI		JMBER, TYP	PE. AND PRES	SERVATIVES:
C	x2-son	HNUZ	ohd 1	fold f	Hered	d see a	LAS	_,	Little LO.
			P - Sil C	Trease I		~~ 350	reario		
SAMPLE NUMBEF DECON METHOD	: ID R(s): <u>ل</u> R D: داري	-Mn-	121						
PURGE \ TO:	WATER DIS	POSED		9		_			
SAMPLE	S DELIVER	ED TO:	Aph	2		TRAN		Cantor	
DATE:	2127					TIME	:		
			C/	ASING CAPA	CITY (gallo	ns/linear fo	ot)	······	
w Flow S	tabilization F	1"= 0.04 Parameters:	, 2" = 0.16 pH(+/-0.1), ($, 4^{"} = 0.65, 6^{"}$	' = 1.47, 8" ORP (+/-10	= 2.6, 10" = nV), D.O. (+/	4.08, 12" = /-10%), Turb le	5.87 dity (+/-10%)	

	-5	LOCATIC	DN: Bind	(Maching	<u> </u>	ATE: <u>2/2</u> -
WELL NO. A CR.ML.	VEATHER	8: <u>Rair</u>	, terp	in 305	SAMPLE	
REMARKS: herl 50	us dry. Sa.	ple rec	hoge	·	SAMPLE	R(S):A
		17		14/21		C. C. C.
LENGTH OF SATURATED ZON	IE: linear	ft. VOL	π. UME OF W		L DEPTH: _	<u>6.67</u>
VOLUME OF WATER TO BE EV	ACUATED X 3 CASI	NG VOLUN	IES =		gals.	
REMOVAL METHOD: 6- 6-	punp		PUMPING	RATE:		ml
TIME TEMP PH	09:36- stert 1 TURB. COND.	ORP	DO (ppm)	flow rate	draw down	COMMENT
(C) $0935 - dogu days d$		(mv)	W F ···· y		(ft)	
0415 - welldry	a pour l'enan		···	- 100	4/10	
1405 - well reharse	d	·				<u> </u>
1405 6.03 7.42 140- Sarply rechard	1000 203	92	11.13			
			8			<u> </u>
<u> </u>	<u> </u>					
	<u> </u>				· - <u></u>	
SAMPLE WITHDRAWL METHOD	: Geopunp					
LABORATORY ANALYSIS, SA	MPLE CONTAINERS	USED INC	LUDING NU	JMBER, TYP	E. AND PRE	SERVATIVES
(1x250ml Hrus p	last field	itee a	1. ssilved	As)		
		, · · · ·				
SAMPLE ID		-		······································	······	
NUMBER(s): <u>CK-mu</u> DECON	1221					
METHOD: clisposte ble	-tubing	96				
TO:		1				
SAMPLES DELIVERED TO:	Alphy		TRAN	SPORTER:		_
DATE:	V (TIME			
	CARINO CAR					

ame GROUND-WATER SAMPLING LOG Page 1 of CLIENT: Baken Hacher DATE: 2/27/12 WELL NO. LR - MW -12 1 WEATHER: Ran, temp in low ros SAMPLE TIME: 1305 REMARKS: Ferrous WELL PURG

Sanpl. Fet	e depth 7.0 20.0 mil			SAMPLER(S):	Ч
ing:	STATIC WATER LEVEL: _	1.4	ft.	WELL DEPTH: 7.75	ft

75 ft.

aals.

LENGTH OF SATURATED ZONE: _____ linear ft. VOLUME OF WATER TO BE EVACUATED: _____ VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = _____ gais.

REMO\	AL METHO	D:	PUMPING RATE:					120	ml/min
WELL	PURGE	DATA:	start t.	me .11, 46					
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1200	5.39	6.64	46.1	103	175	8,33	1 20	1.90	
1210	5.50	6.63	31.2	91	175	7.93	120	1.95	
how	5.30	6.66	25.3	32	148	8.16	ىدر	1.95	
1250	4.73	667	24.7	67	142	10.32	120	1.95	······
1255	<u>4.54</u>	6.70	25.3	66	144	1031	120	155	
1300	4.82	6.70	25.8	67	145	9.94	1 120	1.95	<u> </u>
1305-60	lect Sul	24						— <u>i</u> —	
		s							

SAMPLE WITHDRAWL METHOD:	Geopenp
	•

LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:

(2×401 Hel UNA 8260) Testhit Ferrows Iron 20.0mg/L (1× cocom / NPpladic CI-300, NU-300, SUN-300) SAMPLE ID

NUMBER(s):	
DECON METHOD: dispage + have	
PURGE WATER DISPOSED	
SAMPLES DELIVERED TO:A phc	TRANSPORTER: Courte
DATE: 2/27/1)	TIME:

CASING CAPACITY (gallons/linear foot)

 $1^{"} = 0.04, 2^{"} = 0.16, 4^{"} = 0.65, 6^{"} = 1.47, 8^{"} = 2.6, 10^{"} = 4.08, 12^{"} = 5.87$

Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

an	nec	0	GRO	UND-W/	ATER S	SAMPLI	NG LO	G	Page 1 of
CLIEN	IT: <u>Bull</u>	en Hunk	ی س	L	OCATIC	N:_ <u>B</u> .~	(Machin		TE: 2 barlo
WELL	NO. <u>LR</u>	-Mw-129	W	EATHER:	Ra.r	, tenpi,	1 YJS	SAMPLE	TIME: 1700
REMA	RKS:	Samples	l-pth 2	<i>ul</i>			·····	SAMPLER	(S):A~
WELL	PURGIN	G: s		ER LEVEL:	0.00	ft ft			2532
LENGT	H OF SATU	RATED ZC	DNE:	linear ft	VOL	UME OF W	ATER TO BE		π. D:
VOLUM	E OF WATE	er to be i	EVACUATE	D X 3 CASIN	ig volum	ES =		gals.	
REMOV	AL METHO	D:	Chit 12	<u>ρ</u>		PUMPING	RATE:	120	ml/min.
TIME		pH	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1330	8.37	6.02	5.40	284	149	0.44	120	0.40	
1337	2.24	6.82	4.34	269	145	0.44	nd	0.40	
1340	8.93	6.81	4.62	290	137	0.35	120	0.40	
1350	9.10	6.79	2.53	241	127	6.27	_120 	6.90	
1355	9.17	<u>6.79</u>	1.83	291	125	0.27	120	0.90	
1400-	colled &	supl_							
			<u> </u>						
			<u> </u>						
SAMPLE	E WITHDRA	WL METHO	DD: Grec	punp					
LABO	RATORY AN	NALYSIS, S	SAMPLE CO	NTAINERS	USED INC	LUDING NU	JMBER, TYF	E, AND PRES	SERVATIVES:
_(J-X401	n Hel	VOA	1260) 1	Field K	+ Ferre	us Iron	20.000	
	1 × 1000	mI NP	plast.c	CC1-30	U, NU-	300,50	y-300)	L	
Sample Number	E ID R(s): <u> </u>	12-mi	~- 129			-			
DECON	o: dise	oasple	1.bir				· · · · · · ·		
PURGE	WATER DIS	POSED							
то:	(Count	A ?		<u> </u>		<u></u>		.
SAMPLE	S DELIVER	ED TO:	Apha			TRAN	SPORTER:_	covier	
DATE:	212					TIME			
		- » <i>د</i>	C/	SING CAPA	CITY (gallo	ons/linear fo	ot)		
.ow Flow S	tabilization F	1″= 0.04 Parametere	4, 2" = 0.16	, 4" = 0.65, 6" Cond. (4/-3%)	' = 1.47, 8"	= 2.6, 10" =	4.08, 12 [°] =	5.87	
			P.1.(17 911)) (······ (***),					

amec⁰

GROUND-WATER SAMPLING LOG

Page 1 of _____

CLIENT: Bake-H	uch-s L	OCATION: B.L	Mach.re	DATE: 2 Jac [1]		
WELL NO. MB-MM	- 360 WEATHER	: Sunry	SAI	MPLE TIME:		
REMARKS:	Sample lepth 10		SAN	IPLER(S): Man		
WELL PURGING:	STATIC WATER LEVEL:	<u> 1)み</u> ft.	WELL DE	РТН: <u>110</u> ft.		
LENGTH OF SATURATED Z	ONE: linear f	t. VOLUME OF W	ATER TO BE EVA	CUATED: gals.		
REMOVAL METHOD:	NATER TO BE EVACUATED X 3 CASING VOLUMES = gals.					
WELL PURGE DATA:	1317- stuttin					
TIME TEMP pH (C)	TURB. COND. (NTU) (mS/cm)	ORP DO (mV) (ppm)	flow drav rate down (ml/min) (ft)	n COMMENTS		
1327 7.10 5.87	111 144	117 1.05	<u> 150 L</u>	-1.60		
$\frac{ 340 }{ 340 } = \frac{7.03}{5.3} = \frac{5.3}{5.3}$	$\frac{1}{3}$ $\frac{57,1}{310}$ $\frac{135}{130}$	1.07	150	<u> </u>		
1350 611 5.6 G	<u>IS.7</u> <u>118</u>	13-1 221	150 4	.60		
1405 6.54 5.54 1410 6.50 5.59	9.93 109	156 246 160 251	150 4	.60		
1415 6137 555	4.65 107	162 254	150 0	1.60		
1420 6.36 5.50	4.46 106	167 2.60	0 150 4	.67		
Mars - collect so	-mpy					
SAMPLE WITHDRAWL MET	10D:					
LABORATORY ANALYSIS,	SAMPLE CONTAINERS	USED INCLUDING N	UMBER, TYPE, AN	ND PRESERVATIVES:		
(2×40n) A	UOA 4260)	Testkit = Fe	roy Iron t	o.on.ll		
(XIOWAL A	Relatic NozyC	1,504)				
SAMPLE ID NUMBER(s):3	-360					
DECON METHOD: disposabl						
PURGE WATER DISPOSED			2			
SAMPLES DELIVERED TO:	Alpha	TDAN				
DATE:		TIM	E:			
1"= 0.	<i>CASING CAP</i> 04, 2" = 0.16, 4" = 0.65, 6	ACITY (gallons/linear fo 5" = 1,47, 8" = 2,6, 10"	oot) = 4.08, 12" = 5.87			
Low Flow Stabilization Parameter	s: pH(+/-0.1), Cond. (+/-3%)), ORP (+/-10mV), D.O. (-	⊷-10%), Turbidity (+	-/-10%)		

WELLI	NO. <u>~^B</u>	LMN->4	<u> </u>	/EATHER	OCATIO	N: <u>3.</u> ~	no in 3	SAMPLE	TE: <u>3/4</u>]
REMAR	RKS: <u></u>	anple	Loth	ອາ			- 	SAMPLEF	R(S): <u></u> A_
WELL F	PURGIN	IG: s	TATIC WA	TER LEVEL:	4.45	ft.	WE	LL DEPTH:	24.6
LENGTH	OF SATU	JRATED ZO		linear f	it. VOLI	JME OF W	ATER TO BE	EVACUATE	D:
VOLUME	OF WAT	ER TO BE	EVACUATE	ED X 3 CASII	NG VOLUM	ES =		gals.	
REMOV	AL METHO	DD:C	recour			PUMPING	RATE:	110	ml
	TEMP	pH	Sterrer II. TURB.	COND.	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ff)	COMMENT
11.02	(C) (()	0.91	19.U	123	185	3-36	(10) (10)	551	
12.03	6.51	6.75	123	p-1	52	2.79	110	533	<u></u>
12:07	6.85	6.79	1.5	121	180	2.74	1 110	601	<u></u>
12:12	677	678	6.31	121	178	2.66	FIU	GIY	
17:52	$\frac{662}{0.11}$	6.76	4.11	122	<u>ררו</u> 1-1-	260	10	<u><u><u></u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u>	
12:27	6.75	C. 75	3.73	122	176	2.40	<u> </u>	6.41	
1230-0	ollect	sandle							
<u> </u>									
SAMPLE	WITHDR	AWL METH	od: <u><i>Ge</i>e</u>	pmp					
LABOR	ATORY A	NALYSIS, S	SAMPLE C	ONTAINERS	USED INC		JMBER, TY	PE, AND PRE	SERVATIVES
	2X40 m	-1 thet u	UA)	Jest	kit fe m	vs In	1000		
С	1 x 1000	m N	Pelist	(()-300	Nur-ow	511 -30)		
						Jary Sh	1		
NUMBER	(s): <u>^^B</u>	-Mn -3	61						
DECON		Depuschle	-Jubin						
PURGE V	VATER DI	SPOSED		99996			,		
TO:	2 CA	Q.	our l		<u> </u>				_
SAMPLES	B DELIVER	RED TO:	А	phi		TRAN	SPORTER:	MAN	
D		314/13				ТІМІ	=.		

an	1ec	°	GRO	UND-WA	ATER S	AMPLI	NG LOO	G	Page 1 of
CLIENT	Bake-	-H.n-s		L	OCATIO	N:Bind	Machine	DA	TE: 3/5/13
WELL N	10. <u>MB-</u>	nn-363	W	EATHER:	Clushy	, cold		SAMPLE	TIME: 205-
REMAR	KS: <u>5</u>	anole a	lepth	ט'רו		<u> </u>			(S): 10 4 m
WELLD		<u></u>	U		1.2.0	and the second second			(0)
		STED ZO		ER LEVEL:	1.30	ft.	WE		<u>19.55</u> ft.
VOLUME	OF WATE	R TO BE E		D X 3 CASIN	. Volu Ig volum		ATER TO BE	EVACUATE); gals.
REMOVA	L METHO	D:	gring			PUMPING	RATE:	<u>/Y ()</u>	ml/min.
WELL P	URGE [DATA:	stort 7:	33			<i>4</i> 10		
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	rate (ml/min)	down (ft)	COMMENTS
6743	7.62	6.48,	3.44	275	216	1.55	140	1.35	
0748	812	<u>Ç.S4</u>	2.35	- 245	<u>20 °1</u>	0.58	140	1.35	
<u>0793</u> _	<u> Y.SI</u>	6.54	2.15	242	207	<u> 6,47</u>	<u>NU</u>	1.35	
0703	8.35	<u>C.s-1</u>	1.92	239	201	0.49	140	1.35	
0805-	<u>celler</u> t	Suple							
·			<u> </u>					- <u></u>	<u></u>
·			<u></u>		<u> </u>	<u> </u>			<u> </u>
<u> </u>			<u></u>						
SAMPLE	WITHDRA	WL METHO	D:C	Papung	>	·			
LABORA	TORY AN	IALYSIS, S	AMPLE CO	ONTAINERS	USED INC	LUDING NU	JMBER, TYP	PE, AND PRES	SERVATIVES:
<u>()</u>	KYUMI	Hy V	or sg	60) (2)	XOUNT	Hel von	dissolu	or same.	<u>.</u>
<u>C1:</u>	X160	NNR	plustic	CC1-304	NU3-30	10 50-1-	3α) Te	skit Fer	mitanto an
SAMPLE II		R = m	- 30).	•				
DECON	s). <u> </u>		<u>n - 56</u>						<u> </u>
METHOD:		<u>Spubles</u>	<u>I-br</u>				· · · · · · · · ·		
TO:		- Co	rout						_
SAMPLES	DELIVER	ED TO:	Alph	15		TRAN	SPORTER:	Mam	
DATE:						ТІМІ	=:		
			C	ASING CAPA	CITY (gall	ons/linear fo	pot)		
		1"= 0.04	, 2" = 0.16	6, 4" = 0.65, 6	" = 1.47, 8"	'= 2.6, 10" =	= 4.08, 12" =	5.87	
ow Flow Sta	bilization P	Parameters:	pH(+/-0.1),	Cond. (+/-3%)	, ORP (+/-10)mV), D.O. (+	/-10%), Turbi	dity (+/-10%)	

GROUND-WATER SAMPLING LOG
CLIENT: <u>Bit Hun-s</u> LOCATION: <u>Bit Machin</u> DATE: <u>3111</u> WELLNO. <u>MB mm-36</u> WEATHER: <u>Closely, tenpin305</u> SAMPLE TIME: <u>1316</u> BEMARKS: <u>Sanple Legin 655</u>
WELL PURGING: STATIC WATER EVEL: 1.2 G ft WELL DEPTH: 2.5 C
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: PUMPING RATE: ml/min.
WELL PURGE DATA: Start 12.5 TIME TURB. COND. ORP DO rate down COMMENTS
$\begin{array}{c} \text{INME} & \text{ILMI} & \text{pr} & (\text{NTU}) & (\text{mS/cm}) & (\text{mV}) & (\text{pprin}) & (\text{mI/min}) & (\text{ft}) \\ \hline (C) & $
SAMPLE WITHDRAWL METHOD: <u>GeopenP</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(JXYOAL Helvic 52cc)</u> Testfit = Forms Inclosed (IXIOCAL Mpduster (CI-300, Mus, Sug)) SAMPLE ID MB-M-363 DECON
METHOD: <u><i>A.spushle Lb.r.s</i></u> PURGE WATER DISPOSED TO: <u><i>A.u.l</i></u>
SAMPLES DELIVERED TO: ////////////////////////////////////
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

CLIENT	Bak.	or Hay	ور ا	Ĺ	OCATIC	N:	L Mach	in DAT	re: ۲۲)
WELL	10. <u>~~0</u>	1-MW-3	<u>71</u> V	VEATHER	Rain	Honp	n 305	SAMPLE -	TIME: 9.
REMAR	RKS:	turb d	-, 4" u	erl Sep	te Surgle	dysthr		SAMPLER	(S): MA~
WELL P	URGIN	G:			0.10				
LENGTH	OF SATU	RATED Z		linear f	t. VOL	π. UME OF W/	WEI	LL DEPTH: E EVACUATED	<u> </u>
VOLUME	OF WATE	ER TO BE	EVACUAT	ED X 3 CASI	NG VOLUM	ES =		gals.	
REMOVA	L METHO	D:(recpun	<u>e </u>		PUMPING	RATE:	140	ml/
			Stanty TURB.	COND.	ORP	DO (ppm)	flow rate	draw down	COMMENTS
6205	(C)	6.57	(UTU)	(mS/cm)	(mV)		(ml/min)	(ft)	
6215	5.55	6.49	75.7	- <u>775</u> 92	1982	10,05 10,07	<u>NO</u>	2.54	
0825	5.89	6.54		79	194	9.34	140		
0830	604	6.55	75.)	76	143	9.63	140		
0905	5.48	6.57	77.0	4 68	144	9.12	140		
0910	6.05	6.55	75.3	67	193	9.3~1	140		• <u> </u>
0915	6.08	6.59	73	67	191	9.20	. 140		
0 <u>123</u>	<u> </u>	6.53	<u>۲۲ </u>	66	193	9.30	1-10		
0925-0	ill ret	si-plu							
								<u> </u>	
LABOR			SAMPLE (ONTAINERS					
								L, AND PRES	ERVAIIVES
	1 1 2 0 0	<u>m 1 41</u>	003 41	eldt. 17e	rol di	SSUVer	131		
							<u> </u>		
SAMPLE	(s):	B-MU	1-3-1						
DECON		ion.	Ĵ 1 ⁰				·		
PURGE W		SPOSED	TUPING					<u> </u>	
то:	60	UN					<u> </u>		
SAMPLES		RED TO: _	A plu	<u> </u>		TRAN	SPORTER:_	Cari	
DATE:	212	7/13				ТІМІ	Ξ:	······	
TIME:									

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 2.27.13					
$\frac{MR}{MW} = \frac{MR}{374} = WEATHER: Rain 403 SAMPLETIME / 300$					
REMARKS: Fe 1.0m, /L SAMPLER(S): AR					
WELL PURGING: STATIC WATER LEVEL: 5.65 ft. WELL DEPTH: 2854 ft.					
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gais.					
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.					
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.					
WELL PURGE DATA:					
TIME TEMP pH TURB. COND. ORP DO illow draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (ml/min) (ft)					
$\frac{12^{20}}{200} \frac{8.24}{200} \frac{6.46}{200} \frac{2.12}{200} \frac{0.291}{200} \frac{-231.8}{200} \frac{5.19}{200} \frac{200}{200}$					
1210 8.72 6.40 13.5 0.290 -247.9 0.85 200					
12°° 8.52 6.39 9.85 0.785 -2.50.3 0.42 Zee					
1230 <u>8.32</u> <u>6.36</u> <u>6.69</u> <u>0.780</u> <u>-251.3</u> <u>0.77</u> Zow					
$\frac{1235}{1235} + \frac{8.077}{1200} + \frac{6.36}{1200} + \frac{9.37}{1200} + \frac{0.276}{1250.8} + \frac{0.39}{1200} + \frac{200}{1200} + \frac{1000}{1200} + \frac{1000}{1$					
$\frac{1210}{1246} \frac{8.28}{6.36} \frac{6.36}{6.4} \frac{9.79}{701} \frac{0.273}{251.0} \frac{-251.0}{0.37} \frac{0.37}{200}$					
$\frac{7243}{200} = \frac{8.56}{200} = \frac{2.36}{2.36} = \frac{5.81}{2.00} = \frac{0.2424}{2.00} = \frac{0.37}{200} = \frac{200}{200}$					
1250 8.41 6.36 4.12 0.240 -244.8 0.36 200					
1300 SAMPLE					
SAMPLE WITHDRAWL METHOD:Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: zxv:algz60, zvial methane, ethane, ethane, journey, jourey, jo					
SAMPLE ID					
NUMBER(s): DECON METHOD:Liquinox					
PURGE WATER DISPOSED TO :					
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:					
TRANSPORTER: TIME:					
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1). Cond. (+/-3%). ORP. (+/-10%/). D. 0. (+/-10%/). Turbidity (+/-10%/).					
Low Flow Stabilization Parameters: pri(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)					

an	nec	0	GRO	UND-W/	ATER S	AMPLIN	G LOG	1	Page 1 of
CLIENT	CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE:_२.२८./३_								
WELLN	NO. <u>NP. /</u>	NW-601	W	EATHER	: <u> </u>	Rain	5	<u>S</u> AMPLE T	IME: <u>9:00</u>
REMAF	RKS:E	2= 0.0	ng/L				S.	AMPLER(5): <u>M</u>
WELL P	URGIN	G: ST	ATIC WAT	ER LEVEL:	1305	ft.	WELL	DEPTH: 2	3.4 ft.
LENGTH	OF SATUR	RATED ZO	NE:	linear f	t. VOLU	ME OF WAT	ER TO BE E	EVACUATED:	gals.
VOLUME	OF WATE	R TO BE E	VACUATE	D X 3 CASIN	NG VOLUME	S =	ga	als.	
REMOVA	L METHO	D:	_Peristalti	c Pump	F	UMPING R	ATE:		ml/min.
WELL P	URGE [DATA:							
TIME	TEMP (C)	рН	TURB. (NTU)	COND. (mS/cm)	ORP (mV) (j	DO flo opm) ra	ow dra te do min) (4	aw wn CON	IMENTS
800	9.46	6.06	8.15	0.205	-258.4	2.91	200	13 (8	
810	9.89	5,95	4.21	0.204	-272.2	0.51	200	13 32	
820	9.94	5.93	1.05	0.204	- 764. >	0.50	200	13.46	
825	9.78	5.93	0.79	0.204	-243.9	0.41	200	13.51	
830	10.01	5.93	0.87	0.203	-261.4	0.38	2.00	13.59	
835	10.07	5.96	0.69	0.702	-266.0	0.34	Zme	13.70	
840	7.88	5.93	0.63	0.201	-245.9	0.30	2.00	13.72	
845	9.89	5.93	0.60	0.201	-256.7	0.30	200		
900	SAMI	le							
SAMPLE WITHDRAWL METHOD: Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: z & you m/ v:cl- 8260, 1x7/asi:c cl-300, NO3-300, 504-300 *Dup									
SAMPLE ID NUMBER(s):									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:									
TRANSPO	TRANSPORTER: TIME:								

1

CASING CAPACITY (gallons/linear foot)

1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87

Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

GROUND-WATER SAMPLING LOG Page 1 of					
CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3 · 1 · 13					
WELL NO. <u>NP. MW-602</u> WEATHER: <u>30's</u> Cloudy SAMPLE TIME: 13 20					
REMARKS: Fe = 0.0 m/l # DUP SAMPLER(S): AR					
WELL PURGING: STATIC WATER LEVEL: 7.15 ft. WELL DEPTH: 17.60 ft.					
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.					
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.					
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.					
WELL PURGE DATA:					
TIME TEMP pH TURB. COND. ORP DO TIOW Graw (C) (NTU) (mS/cm) (mV) (ppm) (mI/min) (ft)					
1230 17.59 5.93 4.25 0.060 -114.6 6.23 Zoo 7.20					
1245 6.87 5.52 2.81 0.061 - 115.0 11.63 200 7.28					
1255 6.81 5.46 2.33 0.061 -116.4 10.80 200 -					
1300 6.89 5.43 2.15 0.061 -115.3 10.58 200					
1305 6.88 5.44 2.12 0.062 415.1 10.54 200					
<u>1310</u> <u>6.92</u> <u>5.43</u> <u>7.10</u> <u>0.062</u> <u>-114.9</u> <u>10.71</u> <u>zov</u> <u>-</u>					
<u>13'5 6.94 5.44 2.07 0.062 -115.0 10.75 200</u>					
1300 SAMPLE					
SAMPLE WITHDRAWL METHOD: Peristaltic Pump					
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES					
82/0 * DUP					
SAMPLE ID NUMBER(s):					
DECON METHOD:Liquinox					
PURGE WATER DISPOSED TO :					
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:					
TRANSPORTER: TIME:					
CASING CAPACITY (gallons/linear foot)					
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87					
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)					

GROUND-WATER SAMPLING LOG

Page 1 of _____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3.4.13						
WELL NO. NP. Mrs. 603 WEATHER: 30's, cleur SAMPLE TIME:						
REMARKS: FC 200ms1L SAMPLER(S): AR						
WELL PURGING: STATIC WATER LEVEL: 6.81 ft. WELL DEPTH: 23.02 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min. WELL PURGE DATA:						
1220 Vell being Purged 1245 - Well dry						
SAMPLE WITHDHAWL METHOD: Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: (2x40 ml) 8260 (1x plassic) (1-300, N03-300, S04-300) SAMPLE ID NUMBER(s): DECON METHOD: Liquinox PURGE WATER DISPOSED TO :						
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:						
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)						

amec⁰

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3. 4.13					
WELL NO. My- 700 S WEATHER: 30'S, OVERCAST SAMPLE TIME: 9"					
REMARKS: Fe = 0. Uns IL SAMPLER(S): AR					
WELL PURGING: STATIC WATER LEVEL: $14, 13$ ft. WELL DEPTH: 21.90 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: Peristaltic Pump PUMPING RATE: mi/min. WELL PURGE DATA: Model $draw$ down comments TIME TEMP pH TURB. COND. ORP DO flow draw 13^{30} Purging und drag					
$\frac{1-2}{9^{40}} + \frac{9.35}{5000} + \frac{6.76}{9^{2.1}} + \frac{340}{2.67} + \frac{-125.6}{2.67} + \frac{2.67}{200} + \frac{35.95}{1000} + \frac{1000}{1000} + \frac{1000}$					
SAMPLE WITHDRAWL METHOD:Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: $(z \land y_0) \& z \& o$ $(1 \land Plas_1:c) Cl-3\omega, No_3-300, SO y-300$ SAMPLE ID NUMBER(s): DECON METHOD:Liquinox PURGE WATER DISPOSED TO :					
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:					
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87					
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)					

N.

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3-11-33						
WELL NO. MW- 701 S WEATHER: 30'S, OVERCASH SAMPLE TIME: 925						
REMARKS: Fe co. uns 1 SAMPLER(S): Ar						
WELL PURGING: STATIC WATER LEVEL: 13.55 ft. WELL DEPTH: 27.7. ft.						
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.						
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.						
TIME TEMP (C) pH TURB. (NTU) COND. (mS/cm) ORP (mV) DO (ppm) flow rate (ml/min) draw down (ft)						
Rizso purging welluntil dry						
<u>13'5 well dry</u>						
3.5.13						
$\frac{915}{926} DN = \frac{13.88}{1/6} 195 -212.4 5.64 200 44.46$						
928 SAMPIE						
CALLER IN A REPLECTION TAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:						
$\frac{(c_1 + c_{m_1})}{(1 + c_{m_2})} = \frac{c_{m_2}}{c_{m_2}} = c_{m$						
(1x Plastic) (1-300, NO3.300, 204-300						
SAMPLE ID NUMBER(s):						
DECON METHOD:Liquinox						
PURGE WATER DISPOSED TO :						
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:						
TRANSPORTER: TIME:						
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87						
Low Flow Stablization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)						

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 2.28.12					
WELLNOMV-702 S WEATHER: 30's, claydy SAMPLETIME 12:50					
REMARKS: Fe= 0.0 mg/L SAMPLER(S): R					
WELL PURGING: STATIC WATER LEVEL: 12.07 ft. WELL DEPTH: 21.17 ft.					
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.					
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.					
WELL PURGE DATA:					
TIME TEMP pH TURB. COND. ORP DO now draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (2:05					
<u>10.24</u> <u>5.84</u> <u>4.12</u> <u>0.133</u> <u>-142.8</u> <u>6.62</u> <u>200</u> <u>12.11</u>					
$\frac{7215}{10.43} \frac{10.43}{5.76} \frac{5.76}{5.09} \frac{5.09}{0.129} \frac{-153.2}{5.75} \frac{5.42}{5.42} \frac{700}{12.18} \frac{12.18}{120}$					
$\frac{72^{-1}}{72^{5}} \frac{10.16}{710} = \frac{5.01}{5.01} \frac{0.168}{0.168} = \frac{-156.6}{5.00} = \frac{5.10}{12.30} = \frac{12.30}{12.30}$					
$\frac{10}{10.3^{\circ}} \frac{10.12}{10.24} \frac{5.77}{5.75} \frac{5.06}{12.4} \frac{1.28}{5.02} \frac{-156.7}{5.02} \frac{5.08}{2.6} \frac{12.57}{12.57}$					
$\frac{10}{123^{3}} \frac{10.34}{10.34} \frac{5.74}{5.74} \frac{1.11}{1.11} \frac{0.127}{0.127} \frac{-155.2}{5.51} \frac{5.01}{5.01} \frac{10.34}{1.00} \frac{12.34}{1.11}$					
1240 10.57 5.75 1.09 0.127 -154.5 4.89					
17.45 10.44 5.75 1.03 0.126 -155.5 4.97 200 -					
1250 SAMPLE					
SAMPLE WITHDRAWL METHOD:Peristaltic Pump					
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:					
2×40, 8260					
(1x plassile) cl-300, NU3-300, SOU 308					
SAMPLE ID					
NUMBER(s): DECON METHOD:Liquinox					
PURGE WATER DISPOSED TO :					
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:					
TRANSPORTER: TIME:					
CASING CAPACITY (gallons/linear foot)					
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87					
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)					

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 2 . 2 8 . 1 3						
WELLNO. MW- 702 D WEATHER: 30, clardy SAMPLETIME: 1400						
REMARKS: Fre = 0.0 mg/L SAMPLER(S): AR						
WELL PURGING: STATIC WATER LEVEL: 17.61 ft. WELL DEPTH: 28.97 ft.						
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.						
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.						
REMOVAL METHOD:Peristattic Pump PUMPING RATE:mi/min. WELL PURGE DATA:						
TURE COND ORP DO flow draw						
TIME TEMP pH TOHD. COND. of a te down COMMENTS (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)						
$\frac{1310}{11.81} = \frac{17.81}{5.78} = \frac{5.78}{7.66} = \frac{7.66}{0.191} = \frac{-171.6}{7.6} = \frac{2.69}{200} = \frac{12.69}{12.69}$						
$\frac{1320}{1225} \frac{11.99}{1.99} \frac{5.93}{5.93} \frac{47.21}{1.21} 0.193 -1756 \overline{2.35} \overline{200} 12.73$						
$\frac{13^{-3}}{12.00} \frac{12.00}{5.95} \frac{5.95}{3.86} \frac{0.193}{0.193} \frac{-175.7}{12.26} \frac{2.26}{700} \frac{12.79}{12.79}$						
$\frac{133^{\circ}}{1235} \frac{12.05}{12.26} \frac{5.93}{5.97} \frac{3.61}{2.07} \frac{0.173}{2.07} \frac{-149.9}{2.27} \frac{2.29}{2.27} \frac{200}{2.07} \frac{17.89}{2.07} 17.$						
$\frac{1533}{1340} \xrightarrow{12.26} 5.76 \frac{5.76}{7.97} \frac{0.193}{1.95} \xrightarrow{-175.3} \frac{2.76}{7.95} \xrightarrow{-175.3} \frac{17.95}{7.95}$						
$\frac{13^{45}}{13^{45}} \frac{12.74}{12.74} \frac{5.92}{5.92} \frac{2.15}{7.98} \frac{0.111}{0.111} \frac{0.175}{12.149} \frac{0.125}{7.75} \frac{0.00}{7.75} \frac{13.13}{7.75}$						
13 ⁵⁰ 17.28 6 97 7.83 0.193 -1361 7.75 200 13.73						
1400 MSAMPLE						
SAMPLE WITHDRAWL METHOD: Peristaltic Pump						
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:						
(2×404) 8260						
(1×plastic) Cl-300 NO2-300 SCL-300						
SAMPLE ID						
PURGE WATER DISPOSED TO :						
1"= 0.04, 2"= 0.16, 4"= 0.65, 6"= 1.47, 8"= 2.6, 10"= 4.08, 12"= 5.87						
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)						

GROUND-WATER SAMPLING LOG

Page 1 of _1__

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE:_2.28.13						
WELL NO. MW- 7208 B WEATHER: 30'S, Rgin SAMPLE TIME: 11:00						
DEMARKS, $f = \frac{0.0 \text{ mail}}{100000000000000000000000000000000000$						
SAMPLER(S):SAMPLER(S):						
WELL PURGING: STATIC WATER LEVEL: 17.55 ft. WELL DEPTH: 38, 50 ft.						
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.						
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.						
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.						
WELL PURGE DATA:						
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)						
1000 10.52 6.27 25.0 0.286 - 706.0 3.50 Zoc ~						
<u>1010</u> <u>10.62</u> <u>6.12</u> <u>10.3</u> <u>0.745</u> <u>-204.2</u> <u>1.98</u> <u>200</u> <u>-</u>						
<u>1015 10.55 6.09 7.93 0.238 -205.8 1.93 200 -</u>						
1020 10.84 6.05 5.81 0.237 -209.7 1.55 200 -						
$\frac{10^{23}}{10^{29}} \frac{10.90}{10.90} \frac{10.90}{10.91} \frac{10.90}{10.91} \frac{10.90}{10.218} \frac{10.81}{10.218} \frac{10.90}{10.218} 10$						
$\frac{10^{-4}}{10^{-4}} \frac{10.91}{10.03} \frac{5.12}{5.12} \frac{0.238}{0.238} \frac{-0.239}{10^{-4}} \frac{1.31}{10^{-4}} \frac{200}{10^{-4}} - \frac{1}{10^{-4}}$						
<u>1035 10.89 6.03 3.06 0.238 -213.2 1.30 200 -</u>						
$\frac{10.89}{10.81} \frac{10.81}{10.81} \frac{10.2}{10.81} \frac{10.29}{10.81} \frac{10.29}{10$						
1013 18.88 6.03 2.93 0.038 213 8 1.79 200 -						
2 x V.el - 8260						
1x Plastic- Cl-300, NO3-300, 204-300						
SAMPLE ID NUMBER(a): MW -762B						
PURGE WATER DISPOSED TO :						
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:						
TRANSPORTER:						
CASING CAPACITY (gallons/linear foot)						
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87						
Low Flow Stablilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)						

GROUND-WATER SAMPLING LOG Page 1 of
CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: <u>> 4.13</u> WELL NO. <u>MV-903 S</u> WEATHER: <u>zo's (leg) S</u> AMPLE TIME: <u>815</u>
REMARKS: SAMPLER(S):
WELL PURGING: STATIC WATER LEVEL: 3.67 ft. WELL DEPTH: 17.0 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. (mS/cm) ORP (ppm) Do from down (mV) COMMENTS 845 Purge well for draw down draw down
SAMPLE ID
DECON METHOD:Liquinox
PURGE WATER DISPOSED TO :
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:
TRANSPORTER:TIME:
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87

Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

CLIENT: $B = K - \frac{1}{2} \sqrt{2}$ WELL NO. $Auc - 70 + 3$ WEATHER: $Constructions in the intermediate Sample TIME: \frac{1}{2} + 1/3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$	amec ^o ground-v	VATER SAMPLING LO	G	Page 1 of
WELL NO. Automation WEATHER: Samp with provide Sample Time: 2100000 REMARKS: Merrid corps SAMPLER(S): Merrid VELL PURGING: STATIC WATER LEVEL: 2300 ft. WELL DEPTH: 1000 ft. LENGTH OF SATURATED ZONE: Inear ft. VOLUME OF WATER TO BE EVACUATED X3 CASING VOLUMES = gals. REMOVAL METHOD: Course p PUMPING RATE: mirnin. VELL PURGE DATA: Stature of COND. ORP pD0 frace down comments (D) PH TURE. COND. ORP pD0 frace down comments (D) PH TURE. COND. ORP pD0 frace down comments (D) PH TURE. COND. ORP pD0 frace down comments (D) PH TURE. COND. ORP pD0 frace down comments (D) PH TURE. COND. ORP pD0 frace down comments (D) Sample Sample	CLIENT: Bakar Hoyes	LOCATION: Budmach.	د DAT	E: 3/4/13
REMARKS: heil args SAMPLER(S): mm VELL PURGING: STATIC WATER LEVEL: 3.20 ft. WELL DEPTH: 10.00 ft. LENGTH OF SATURATED ZONE: Inear ft. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: $Crow arg.$ PUMPING RATE: gals. REMOVAL METHOD: $Crow arg.$ PUMPING RATE: ml/min. VELL PURGE DATA: Statury TURE. COND. ORP DO frame down COMMENTS VILL 9 URGE DATA: Statury TURE. COND. ORP DO frame down COMMENTS VILL 9 URGE DATA: Statury TURE. COND. ORP DO frame down COMMENTS VILL 9 URGE DATA: Statury TURE. COND. ORP DO frame down COMMENTS VILL 9 URGE DATA: TURE. COND. ORP DO frame Gown COMMENTS VILL 9 URGE DATA: TURE. Statury Statury Statury Statury Statury Statury Statury	WELLNO. Mu-70-15 WEATHE	R: Sunny windy plenning	SAMPLE -	TIME: JAOUSISI
VELL PURGING: STATIC WATER LEVEL: $\frac{2}{30}$, the WELL DEPTH: $\frac{1000}{1000}$, ft. LENGTH OF SATURATED ZONE: Inear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X3 CASING VOLUMES = gals. gals. REMOVAL METHOD: $C = 000 \mu P$ PUMPING RATE: mi/min. VELL PURGE DATA: $5he^{+1/12k}$ flow draw down TIME TEMP pH TURB. COND. ORP DO mix down COMMENTS (C) (C) (TU) (mix min) (m) (minin) (ft) (D) well dry	REMARKS: heil daps		SAMPLER(S):
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: $Creware var and the construction of the con$	WELL PURGING: STATIC WATER LEVER	_: <u>3.30</u> ft. WE	LL DEPTH:	10.0_ft.
VOLUME OF WATEH TO BE EVACUATED X 3 CASING VOLUMES =gals. REMOVAL METHOD: $Creare p$ PUMPING RATE:	LENGTH OF SATURATED ZONE: linea	r ft. VOLUME OF WATER TO B	E EVACUATED	gals.
VELL PURGE DATA: Shert 1120 Town into torte	REMOVAL METHOD:		gals.	
TIME TEMP pH TURB. COND. ORP DD frate down comments TIME TEMP pH (NTU) (mS/am) (mV) (ppm) (nV) (down down down down (ft) $(1):v - dawn down \sqrt{v} - Sarve charge (ft) (mV) (mV) (ft)(1):v - dawn down \sqrt{v} - Sarve charge (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)$	WELL PURGE DATA: Start 11:20			m/min.
$\frac{112}{120} \text{well dry} \qquad \qquad$	TIME TEMP pH TURB. COND. (C) (NTU) (mS/cm)	flow ORP DO rate (mV) (ppm) (ml/min)	draw down (ft)	COMMENTS
$\frac{1140}{236} \text{well dry}$ $\frac{1140}{236} $	11:20- drun down for sample .	ebbage		
$\frac{2235}{237} \underbrace{5 + 3} \underbrace{5 + 3} \underbrace{3 + 2} \underbrace{2 + 2} \underbrace{4 + 2} 4 +$	2/c/13			
$\frac{1}{2} \frac{1}{2} \frac{1}$	0835 NL= 3.86'			
SAMPLE WITHDRAWL METHOD: $Geographic formula for the formula formula for the formula $	237 5.23 5.92 31.2 338 1840-10 llect Sumple	230 2.20 120	-1, 56	
SAMPLE WITHDRAWL METHOD: $Geographic for the formation of the formation o$				
SAMPLE WITHDRAWL METHOD: $Geop and$ LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: $(3 \times 40 - 1 H + 1 \vee 4 \times 340c)$ Test K.t. Ferms Den = $(0.0m)$ ($1 \times 100 \times 1 H + 91 + 3 + c + (C + 1 - 30) + 40 + 30 + 30 + 30 + 30 + 30 + 30 + 30$				
SAMPLE WITHDRAWL METHOD: $\underline{Geop unp}$ LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: $\underline{(3 \times 40 - 1 Hul Vu4 8340c)}$ Test KH Ferms Dron = $\underline{(0 \ Ump)}$ $\underline{(1 \times 1000 \ NUp \ pl + d + c \ (Cl - 300 \ Mu \ 3 - 300, Say - 300)}$ SAMPLE ID NUMBER(s): $\underline{Mu - 704 S}$ DECON WETHOD: $\underline{Dsputt 44m}$ PURGE WATER DISPOSED TO: \underline{Grant} SAMPLES DELIVERED TO: \underline{Alphy} TRANSPORTER: \underline{MAm} DATE: $\underline{3lg 1/14}$ TIME: $\underline{CASING CAPACITY (gallons/linear foot)}$ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 W Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				
SAMPLE WITHDRAWL METHOD: <u>Grop unp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>($\partial x'40n1$ Hul VuA 3266</u>) Test KAL Fermes Don 2 <u>(0.0m1)</u> <u>($1x 100un1$ NP pl-st-u ($C1 - 30u$ Nus - 30u, say - 200</u>) SAMPLE ID NUMBER(s): <u>Mu-704S</u> DECON METHOD: <u>Diposter 4005</u> PURGE WATER DISPOSED TO: <u>Grand</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>MAM</u> DATE: <u>3/5/14</u> TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 W Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: $ \begin{array}{c} (3 \times 40 - 1 \ H \cup \ 104 \ 8366) & T \circ 81 \ K + Fe \ mus \ D \circ n \ 2 \ 0 \ 0 \ m \ 1 \\ \hline 1 \times 1000 \ nl \ Me \ pl \ sl \ c \ (Cl \ -300 \ Mo \ -300 \ sl \ -300 \ sl$	SAMPLE WITHDRAWL METHOD: Grop J.	P		
$(\underbrace{ 2 \times 40 - 1 \text{ Hul } Vu4 & 3260 } \text{ Test KH} \underbrace{\text{Ferriss}} Den = \underbrace{ 0.0 \text{ m}_{1} \text{ L}} \\ (\underbrace{ 1 \times 1000 - 1 \text{ MP} \text{ pl-st} \text{ L} (C1 - 300 , M03 - 300 , Say - 300 } \\ (\underbrace{ 1 \times 1000 - 1 \text{ MP} \text{ pl-st} \text{ L} (C1 - 300 , M03 - 300 , Say - 300 } \\ \text{NUMBER(s): } \\ \underline{\text{MW-704S}} \\ \text{DECON} \\ \text{METHOD: } \underbrace{ \text{Dsposter } 41 \text{ ms}} \\ \text{DECON} \\ \text{METHOD: } \underbrace{ \text{Dsposter } 41 \text{ ms}} \\ \text{PURGE WATER DISPOSED} \\ \text{TO: } \underbrace{ (\text{crand} \\ \text{SAMPLES DELIVERED TO: } \underbrace{ \text{Alpha} } \\ \text{DATE: } \underbrace{ 3 \text{ JS} 1 \text{ M}} \\ \text{TIME: } \\ \hline \\ CASING CAPACITY (gallons/linear foot) \\ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 \\ \text{w Flow Stabilization Parameters: pH(+-0.1), Cond. (+-3%), ORP (+-10mV), D.O. (+-10%), Turbidity (+-10%) \\ \end{array}$	LABORATORY ANALYSIS, SAMPLE CONTAINER	RS USED INCLUDING NUMBER, TY	PE, AND PRES	ERVATIVES:
$\frac{(1 \times 1000 \times 1 \ MP \ pl \cdot d \cdot c \ (Cl - 300 \ M03 - 300 \ Say - 300 \ Say - 300 \)}{SAMPLE ID}$ SAMPLE ID NUMBER(s):	(2x40-1 HUL VUA 8266) T	est kit Ferrus Dron = 0.	Umil)	h
SAMPLE ID $M - 764.5$ NUMBER(s): $D_{spostcthms}$ DECON $D_{spostcthms}$ PURGE WATER DISPOSED C_{sound} SAMPLES DELIVERED TO: $Alphn$ TRANSPORTER: MAM DATE: $3ls1/14l$ TIME: $CASING CAPACITY (gallons/linear foot)$ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	(IX locunt NP plade (Cl-	300 NO3 - 300, Bay -200)		2 97
DECON Disposition - fulling METHOD: Disposition - fulling PURGE WATER DISPOSED TO: FO: (r_{aven} SAMPLES DELIVERED TO: <u>A lpha</u> TRANSPORTER: <u>Mamman</u> DATE: <u>3 lg l 1 m</u> TIME: TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	SAMPLE ID NUMBER(s): MW-7045			
PURGE WATER DISPOSED TO: $(-\infty)$ SAMPLES DELIVERED TO: $4 lph_1$ TRANSPORTER: Am DATE: $3 lg l m$ TIME: $CASING CAPACITY (gallons/linear foot)$ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	DECON METHOD: Disposite tubra			
IO:	PURGE WATER DISPOSED			
THANSPORTER: TRANSPORTER: THANSPORTER: THANSPORTER: TIME: TIME: TIME: $CASING CAPACITY (gallons/linear foot)$ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)			. 1 . 2	
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	DATE:3/5/14	TRANSPORTER:	Man	
w Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	CASING CA 1"= 0.04, 2" = 0.16, 4" = 0.65	PACITY (gallons/linear foot) , 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" :	= 5.87	
	ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3	%), ORP (+/-10mV), D.O. (+/-10%), Turb	oidity (+/-10%)	

ar	nec	0	GRO	UND-WA	ATER S	AMPLI	NG LOO	G	Page 1 of
CLIEN	NT: Bak	in Hujus		L(OCATIO	N: Bin	nachine	DA	E: 3/4/12
WELL	.NO. <u>^v</u>	N-70-11	<u>)</u> w	EATHER:	Sunny	minty -	(7) 130-	SAMPLE	
REMA	RKS: <u></u>	Sample o	lepth	187				SAMPLER	(S): <u>MM</u>
WELL	PURGIN	G: _{ST}	ATIC WAT	ER LEVEL: _	2.72	ft.	WEI	L DEPTH:	as ft.
LENGT	H OF SATU	RATED ZO	NE:	linear ft.	VOLL		ATER TO BE		: gals.
VOLUM	IE OF WATE	ER TO BE E	VACUATE	D X 3 CASIN	g volum	ES =	~	gals.	
REMO	AL METHO	D:	6-20	punp		PUMPING	RATE:	120	ml/min.
		рн	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
0720	5.76	7.02	24.1	340	200	1.93	120	3.00	
0730	612	7.14	39.3	316	708	OSK	iðu	3.00	
CINU	<u>C.17</u>	7.12	35.2	303	200	0.38	120	3.00	
$\frac{1}{i(0,1)}$	6.00	7.13-	30.1	303	196	073	120	3.00	
1010	6.89	7.14	30.1	2-50	187	0.62	100	3.00	
1020	6.99	7.13	27.3	298	183	0.51	120	3.02	
1030	7.01	7.1	30.1	298	180	0.54	120	3.00	
1090	7.13	2.11	31.2	299	<u>179</u>	050	120	3.06	
1050	7,8	7,15	30.7	299	175	017	120	3.00	
SAMPLE		WL METHO	AMPLE CO	DNTAINERS	USED INCL		IMBER, TYP	PE, AND PRES	ERVATIVES:
_(1 × 1000	nl Np P	lust. ((1-200, A	205-300	Suy -300) Jost K	it Ferrers	Dun to.on, K
SAMPLE NUMBEI	E ID R(s):	L-70Y	<u>a</u>			ίπ.			
DECON METHO	o: disp	uble to	bing						
PURGE	WATER DIS	POSED			())	·····		· · · · · · · · · · · · · · · · · · ·	
SAMPLE	S DELIVERI	ed to:	Al	shc		TRAN	SPORTER:_	MAN	
DATE:	3	14/12	- <u>-</u>			TIME	·		
Low Flow S	stabilization P	1"= 0.04 Parameters:	<i>CA</i> , 2" = 0.16, pH(+/-0.1), (ISING CAPA 4" = 0.65, 6" Cond. (+/-3%).	<i>CITY (gallo</i> = 1.47, 8" ORP (+/-10	ns/linear fo = 2.6, 10" = nV), D.O. (+/	ot) 4.08, 12" = -10%). Turble	5.87 dity (+/-10%)	

GROUND-WATER SAMPLING LOG
CLIENT: <u>Bake-Hopes</u> LOCATION: <u>Bind Machine</u> DATE: <u>311/13</u> WELL NO. <u>MN-7049</u> WEATHER: <u>Simplify</u> SAMPLE TIME: <u>1110</u> REMARKS: <u>Sample depth K</u> SAMPLER(S):
WELL PURGING: STATIC WATER LEVEL: 2,72 ft. WELL DEPTH: 22 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD:
WELL PURGE DATA: TIME TEMP (C) pH TURB. (NTU) COND. (mS/cm) ORP (mV) DO (ppm) flow rate (ml/min) draw down (ft) COMMENTS $1/000$ 6.46 7.11 23.4 20.49 176 0.44 120 3.60 3.60 $1/105$ 6.35 7.01 25.1 300 175 0.44 120 3.60 $1/10$ $-collect$ $5 3.00 175 0.44 120 3.60 1/10 -collect 5 3.00 175 0.44 120 3.60 1/10 -collect 5 1.01 1$
SAMPLE WITHDRAWL METHOD: <u>Gegurp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>SAMPLE ID</u> NUMBER(s): <u>ALAF MW-WYP</u> DECON METHOD: PURGE WATER DISPOSED TO:
SAMPLES DELIVERED TO: TRANSPORTER: DATE: TIME:
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

amec ⁰	

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3.4.13				
WELLNO. M4.7055 WEATHER: 20'S Clear SAMPLETIME 10 15				
NEWARKS: SAMPLER(S): Amr				
WELL PURGING: STATIC WATER LEVEL: 3.31 ft. WELL DEPTH: 17.5 ft.				
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.				
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.				
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.				
WELL PURGE DATA:				
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)				
<u>932</u> 7.08 5.70 4.11 0.215 -155.1 3.08 00150 3.35				
<u>945</u> <u>7.98</u> <u>5.52</u> <u>3.52</u> <u>0.209</u> <u>-161.6</u> <u>1.19</u> <u>-</u> <u>3.35</u>				
<u>950</u> <u>853</u> <u>5.51</u> <u>3.21</u> <u>0.706</u> <u>-163.6</u> <u>0.90</u> <u>-</u> <u>3.73</u>				
$\frac{7^{55}}{6^{20}} = \frac{8.47}{5.55} = \frac{5.55}{3.09} = \frac{0.766}{0.766} = \frac{-160.8}{0.76} = \frac{0.76}{-1.100} = \frac{-3.33}{-1.100}$				
$\frac{10^{-1}}{10^{-5}} = \frac{9.39}{5.55} = \frac{3.01}{2.01} = \frac{0.206}{10^{-5}} = \frac{161.2}{2.01} = \frac{0.10}{-5} = \frac{3.33}{-5}$				
$\frac{-}{10^{10}} \frac{0.37}{8.44} \frac{5.36}{5.66} \frac{0.70}{2.92} \frac{0.605}{-159.7} \frac{0.68}{-159.7} \frac{5.35}{-159.7}$				
10 ¹⁵ Structe				
SAMPLE WITHDRAWL METHOD:Peristaltic Pump				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:				
(1x250ml) HAVO2 dissolved HS Field Filter				
SAMPLE ID				
NUMBER(s): DECON METHOD:Liquinox				
PURGE WATER DISPOSED TO :				
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:				
TRANSPORTER: TIME:				
CASING CAPACITY (gallons/linear foot)				
$1^{"}= 0.04, 2^{"}= 0.16, 4^{"}= 0.65, 6^{"}= 1.47, 8^{"}= 2.6, 10^{"}= 4.08, 12^{"}= 5.87$				
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				

amec GROUND-WATER SAMPLING LOG Page 1 of ____ NUT. Dakar Hugh

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: <u>3 · Y · (}</u>
WELLNO. My - 706 S WEATHER: 30's, cloudy SAMPLE TIME: 910
REMARKS: SAMPLER(S): <u>44</u>
WELL PURGING: STATIC WATER LEVEL: 3.51 ft. WELL DEPTH: 14.08 ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: data
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. (mS/cm) ORP (mV) DO (ppm) flow draw down down down down draw down down draw down (m) COMMENTS 11 ⁵⁰ - Draw: ng down well
SAMPLE WITHDRAWL METHOD:Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
SAMPLE ID NUMBER(s):
DECON METHOD:Liquinox
PURGE WATER DISPOSED TO :
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:
TRANSPORTER:TIME:
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

amec[®]

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE:_3 . 4. ()				
WELL NO. MU- 707 D WEATHER: 30, clear SAMPLETIME 1120				
REMARKS: SAMPLER(S):				
WELL PURGING: STATIC WATER LEVEL: 6.42 ft. WELL DEPTH: 31. 90 ft.				
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.				
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.				
REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.				
WELL PURGE DATA:				
TIME TEMP pH TURB. COND. ORP DO now draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (mI/min) (ft)				
1025 9,10 6.16 50.2 0.747 -158.9 2.38 175 6.50				
1045 10.48 6.18 27.9 0.645 -166.7 0.44 175 6.58				
105- 10.57 6.18 18.8 0.640 -163.5 0.41 175 6.58				
<u>1055</u> 10.72 6.18 15.3 0.591 -160.3 0.58 175 6.58				
$\frac{10.40}{10.40} \frac{6.17}{6.17} \frac{9.32}{9.32} \frac{0.586}{-169.7} \frac{-169.7}{0.54} \frac{0.54}{175} \frac{1.58}{0.58}$				
$\frac{10^{-5}}{10} \frac{10.30}{10} \frac{10.30}{10} \frac{10.30}{10} \frac{10.30}{10} \frac{10.567}{10} \frac{-153.0}{-153.0} \frac{10.49}{10} \frac{175}{10} \frac{10.58}{10} \frac{10.58}{1$				
$\frac{11^{10}}{10.32} \frac{10.32}{10.32} \frac{10.17}{10.11} \frac{10.61}{10.557} \frac{10.61}{10.55} \frac{10.59}{10.59} \frac{10.59}{10.59}$				
$\frac{110}{1120} - 10.34 - 0.17 + 105 - 0.555 - 165.7 - 0.51 - 175 - 0.50 - 0.50 - 0.51 - 0.50 $				
SAMPLE WITHDRAWL METHOD:Peristaltic Pump				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:				
(2×40-1 H=1 8260)				
$\left(\left(\times 1000 \text{ al} \right) \left(1 \text{ Also } 500 \right) \right)$				
SAMPLE ID NUMBER(s):				
DECON METHOD:Liquinox				
PURGE WATER DISPOSED TO :				
CASING CAPACITY (callons/linear foot)				
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87				
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				

GROUND-WATER SAMPLING LOG Page 1 of _1_				
CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 2-26-13 WELL NO. <u>MW-708-D</u> WEATHER: <u>20's, clear</u> SAMPLE TIME: <u>9:20</u> REMARKS: <u>MW 708 Fe: 00m/L</u> SAMPLER(S): <u>AR</u>				
WELL PURGING: STATIC WATER LEVEL: 9.32 ft. WELL DEPTH: 27.37 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: Peristaltic Pump PUMPING RATE: ml/min.				
WELL PURGE DATA: TURB. COND. ORP DO flow rate down draw down COMMENTS 8*1 8.88 6.28 4/.8 0.211 -2327 2.55 200 9.55 8/90 9.71 6.32 28.3 0.204 -256.7 2.54 200 9.55 8/95 9.79 6.32 28.3 0.205 -256.6 2.55 200 9.55 8/95 9.79 6.32 28.3 0.205 -256.6 2.55 200 9.42 8/90 9.472 6.33 27.2 0.206 -256.7 2.57 200 9.42 8/95 9.56 6.32 25.7 0.206 -256.7 2.33 200 - 8/95 9.56 6.32 25.7 0.206 -255.7 2.09 - - 8/90 10.24 6.33 24.1 0.209 -255.5 2.24 200 - 905 10.24 6.33 24.1 0.209 -255.0 2.22 200 - -				
NUMBER(s): MW-703D DECON METHOD: Liquinox PURGE WATER DISPOSED TO :				
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:				
$1^{"}= 0.04, 2^{"}= 0.16, 4^{"}= 0.65, 6^{"}= 1.47, 8^{"}= 2.6, 10^{"}= 4.08, 12^{"}= 5.87$ Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				

GROUND-WATER SAMPLING LOG

Page 1 of _____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: کے کھر رہے				
WELLNO MV- 709 B WEATHER JU'S CLOS SAMPLE TIME 11:00				
REMARKS: TE add my/C SAMPLER(S): #K				
WELL PURGING: STATIC WATER LEVEL: 5.58 ft. WELL DEPTH: 55.21 ft.				
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.				
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.				
REMOVAL METHOD:Peristaltic PumpPUMPING RATE:ml/min.				
WELL PURGE DATA:				
TIME TEMP pH TURB. COND. ORP DO flow draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (ml/min) (ft)				
950 10.01 6.64 10.12 0.367 -267.5 0.87 25050				
1000 10.54 661 6.98 0.372 -270.1 0.58 230				
10-5 10.92 6.57 6.89 0.381 -264.0 0.58 250				
10" 10.92 6.52 6.25 0.382 -275.4 0.53 250				
10 05 11.11 6.51 6.31 0.383 -270.3 0.61 260				
1020 11.20 6.49 5.77 0.383 -279.8 0.91 250				
<u>N²⁵ 11.26 6.49 5.12 0.383 -277.6 1.08 7.50</u>				
<u>030 .21 6.50 5.25 0.883 -2757 2.50</u>				
1033 11.25 6.50 5.17 0.393 -276.2 1.07 250				
SAMPLE WITHDRAWL METHOD: Peristaltic Pump				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES				
(2x 10) 8760 1 2 1 - 300 1 1 - 300 50 - 300				
SAMPLE ID NUMBER(s):				
DECON METHOD:Liquinox				
PURGE WATER DISPOSED TO :				
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:				
TRANSPORTER:				
CASING CAPACITY (gallons/linear foot)				
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87				
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				

GROUND-WATER SAMPLING LOG	-			
CLIENT: Bake-Hoses LOCATION: Butmachure DATE: 2/203/15	3			
WELLNO. Mh- 7095 WEATHER: Cloudy temp in mars SAMPLE TIME: Ogus				
REMARKS: SAMPLER(S):				
WELL PURGING: STATIC WATER LEVEL: 1.69 ft. WELL DEPTH:ft.				
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gal	s.			
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.				
REMOVAL METHOD: PUMPING RATE: ml/min.	··			
TIME TEMP TURB. COND. ORP DO flow draw TIME TEMP pH (UTL) (mS(am)) (m)0 (ppm) (m)(min) COMMENTS				
$(C) \qquad (110) (110$				
0307 8.21 6.07 - 435 2.44 0.67 140 2.00	-			
0320 336 6.08 31.8 422 192 0.43 140 2.00	-			
0835 3.23 0.10 29. 406 190 0.30 140 2.00				
$0^{3}55$ 821 6.12 21.3 393 157 6.27 140 2.00				
0995 Gry G.13 237 352 145 0.24 140 2.0				
0915 916 6.14 19.3 371 133 621 140 26	-			
0125 gill 6.16 18.3 360 120 0.21 140 2.00	•			
0935 8.15 6.18 18.7 352 102 0.14 140 2.00	-			
SAMPLE WITHDRAWL METHOD: GROUND				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:				
SPEPSI (2×40m1 Hel UDAV260) (2×20m1 Hel VOA discharges	25			
(1xcoov ml Np plastic Cl-200, Noz-300, Soy -300) Test Kat - Ferrus Iron (0.0ns/L)			
SAMPLE ID NUMBER(s): MW- 70915				
DECON METHOD: dispersible tobaci				
PURGE WATER DISPOSED TO:	1			
SAMPLES DELIVERED TO:A				
DATE:				
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87				
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)				

GROUND-WATER SAMPLING LOG
CLIENT: Ballon High - S LOCATION: Birt Marching DATE: 2 /20143
WELL NO.
WELL PURGING: STATIC WATER LEVEL:ft. WELL DEPTH:ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: PUMPING RATE: ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. ORP DU rate down COMMENTS C5Y(U Y.15 C.14 3/17 JU3 0.1 MU 2.0
SAMPLE ID NUMBER(s): DECON METHOD: PURGE WATER DISPOSED TO: SAMPLES DELIVERED TO: TRANSPORTER: DATE: TIME:
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%). ORP (+/-10mV), D.O. (+/-10%). Turbletby (+/-10%)

GROUND-WATER SAMPLING LOG Page 1 of
CLIENT: Baker Huber LOCATION: Bin Machine DATE: 2120113 WELL NO. MM-JOHD WEATHER: Close Tempinson SAMPLE TIME: 1050
REMARKS: <u>Collat Dip; malmsp</u> SAMPLER(S): <u>mm</u>
WELL PURGING: STATIC WATER LEVEL: 1.10 ft. WELL DEPTH: 31.4137 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD:
WELL PURGE DATA: State time ICLOC TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS
$\frac{1016}{1026} + \frac{3}{2} $
SAMPLE ID NUMBER(s): <u>MN-7091</u> DECON METHOD: <u>J. Spose J.b.</u> PURGE WATER DISPOSED
SAMPLES DELIVERED TO: Apr TRANSPORTER: Comment
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

amec⁰

WELL NO. Main Price WEATHER: Cloudy, factor 1000 SAMPLE TIME: Bod REMARKS: Sumpt upp 123 SAMPLER(S): Main WELL PURGING: STATIC WATER LEVEL: Hard To Status To BE EVACUATED: gals. UNDE OF WATER TO BE EVACUATED X3 CASING VOLUME OF WATER TO BE EVACUATED: gals. gals. VOLUME OF WATER TO BE EVACUATED X3 CASING VOLUME OF WATER TO BE EVACUATED: gals. REMOVAL METHOD: Company PUMPING RATE: / 4 C) milmin. WELL PURGE DATA: Shartfine : 121XXX flow draw common co	CLIENT: Baken Hust-s LOCATION: Bird Machine DATE: 2/20/13			
REMARKS: Sample dight 1.3 ¹ SAMPLER(S): Mm WELL PURGING: STATIC WATER LEVEL: History R. Well DEPTH: STATIC MATER LEVEL: LENGTH OF SATURATED ZONE: innear ft. VOLUME OF WATER TO BE EVACUATED: gals. REMOVAL METHOD: Grapping PUMPING RATE: / 4 0 ml/min. WELL PURGE DATA: Shart Hind: 12123 Mow drawn comments WELL PURGE DATA: Shart Hind: 12123 Do flow drawn comments WELL PURGE DATA: Shart Hind: 12123 Do flow drawn comments WELL PURGE DATA: Shart Hind: 12123 Do flow drawn comments 1235 51.45 GOV 1.87 O.11 1.42 2.31 Data 236 GAC GAC 1.87 O.147 1.42 2.31 Data 235 51.55 GAC 2.53 7.57 0.47 1.420 2.31 Data 236 GAC 2.54 S32 1.57 0.47 1.420 Data <	WELL NO. Mu-7105 WEATHER: Cloudy Jenp in 305 SAMPLE TIME: BOO			
WELL PURGING: STATIC WATER LEVEL: Image: The static water is the state water is the s	REMARKS: <u>Sumple depty</u> 131 SAMPLER(S): <u>Man</u>			
LENGTH OF SATURATED ZONE: linear fi. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: CALLAND X 3 CASING VOLUMES = gals. REMOVAL METHOD: CALLAND X 3 CASING VOLUMES = gals. REMOVAL METHOD: CALLAND X 3 CASING VOLUMES = gals. TIME TEMP PH TURB. COND. ORP DO frate draw draw draw comments (0) PH TURB. COND. ORP DO frate draw draw comments (1) 235 7.10 G.CZ 10-1 S2C 187 C71 14(1) 2.20 21/0 9.6(, G.G.7 7.22 S2C 187 C71 14(1) 2.31 23.0 7.42 G.CC 3.53 5.2 197 C71 14(1) 2.31 23.0 7.42 G.CC 3.53 5.2 197 C71 14(1) 2.31 23.0 7.42 G.CC 3.53 5.2 197 C71 14(2) 2.31 23.0 7.42 G.CC 3.53 5.2 197 C71 14(2) 2.31 23.0 7.42 G.CC 3.53 5.2 197 C71 14(2) 2.32 23.5 5.44 G.CC 1.54 S.3C 1.54 0.42 14(2) 2.31 23.6 7.42 G.CC 3.53 5.3 197 C714 0.42 2.32 23.6 3.55 5.44 G.CC 1.54 S.3C 1.54 0.42 14(2) 2.31 23.6 7.42 G.CC 3.53 5.3 197 C714 0.42 2.32 23.6 3.55 5.44 G.CC 1.54 S.3C 1.54 0.42 0.42 2.34 23.6 3.55 5.44 G.CC 1.54 S.3C 1.54 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.4	WELL PURGING: STATIC WATER LEVEL: 13 T. 35 ft. WELL DEPTH: 31.75 16.7			
VOLUME OF WATER TO BE EVACUATED X3 CASING VOLUMES =gals. gals. REMOVAL METHOD: Coupling PUMPING RATE: 1400 ml/min. WELL PURGE DATA: Stant + 1/n < 1 2 × 3	LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.			
TIME TEMP PH TURE COND. ORP DO TRUE down COMMENTS TIME TEMP PH TURE COND. ORP (PPM) (TUTININ) (TO COMMENTS (TO TUTINI) (TO SOME CONTAINED SET OF THE STATE SET OF THE S	WELL PURGE DATA: Start t/me: 12:23			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIMETEMP (C)pHTURB. (mS/cm)COND.ORP (mV)DO (ppm)flow rate (ppm)draw rate (mI/min)TIMETEMP (NTU)TURB. (mS/cm)COND.ORP (mV)DO (ppm)flow rate (mI/min)draw (ft)			
$\frac{1240}{125} + \frac{1240}{125} + 12$	1235 9.10 6.02 104 525 187 0-71 140 2.20			
$\frac{1}{250} \frac{7.45}{2.31} \frac{606}{2.51} \frac{53.7}{23} \frac{74.5}{2.51} \frac{0.47}{2.46} \frac{1.46}{2.36}$ $\frac{1}{255} \frac{5.45}{2.45} \frac{606}{6.05} \frac{1.51}{5.51} \frac{5.52}{0.47} \frac{1.46}{2.46} \frac{2.36}{2.36}$ $\frac{1}{220} \frac{1.46}{2.46} \frac{1.51}{5.45} \frac{1.51}{2.51} \frac{0.47}{0.46} \frac{1.46}{2.36}$ $\frac{1}{220} \frac{1.46}{2.51} \frac{1.46}{2.51} \frac{1.51}{2.51} \frac{1.45}{0.46} \frac{1.46}{2.51} \frac{1.47}{2.51} \frac{1.46}{2.51} \frac{1.47}{2.51} \frac{1.46}{2.51} \frac{1.47}{2.51} \frac{1.46}{2.51} \frac{1.47}{2.51} \frac{1.46}{2.51} \frac{1.47}{2.51} $	1240 9.06 6.67 7.22 52C 186 0.47 1610 2.25			
$\frac{D_{SS}}{D_{S}} = \frac{1}{2} \frac$	$\frac{1245}{1250} - \frac{7.29}{9.42} - \frac{606}{600} - \frac{4.11}{2.83} - \frac{531}{533} - \frac{143}{195} - \frac{0.49}{140} - \frac{140}{2.31} - \frac{2.31}{230}$			
SAMPLE WITHDRAWL METHOD: $Geoponp$ LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: Garrie Garrie Ga	1255 9.49 6.0C I.SY S3C ISV 0.4C IVO 2.40			
SAMPLE WITHDRAWL METHOD: <u>Geopunp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>Clx Yon1 Hul von 8260</u> (Clx 2001 Hul von dissubrugesses) <u>Clx(acon1 Cl-300, No-300, Soy - 300</u>) Ferrors Iron <u>to o notio</u> SAMPLE ID NUMBER(s): <u>Mu-7/05</u> DECON METHOD: <u>disposite the</u> PURGE WATER DISPOSED TO: <u>Ound</u> SAMPLES DELIVERED TO: <u>A for</u> DATE: <u>alse13</u> TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"=0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 GW Flow Stabilization Parameters: pH(401) Cond (413%) OBP (4100) D = 0 (4100) D = 0 (4100)	1300 · Collect Str. DIC			
SAMPLE WITHDRAWL METHOD: <u>Geograp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 ALL VOA dissubulgases) <u>CDX YOA1 ALL VOA 8260</u> CDX 2001 Ferrors Trun <u>Loons</u> <u>SAMPLE ID</u> NUMBER(s): <u>MU - 7705</u> <u>DECON</u> <u>METHOD: <u>Dissuble thbi</u>, <u>PURGE WATER DISPOSED</u> TO: <u>DATE</u> <u>DATE</u>: <u>212613</u> <u>TIME</u>: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 <u>COM Flow Stabilization Parameters: pH(201) Cond (2020)</u> CDM (2020) Turbiting (2020)</u>				
SAMPLE WITHDRAWL METHOD: <u>Geograp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as as <u>Cases</u>) <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as <u>Cases</u>) <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as <u>Cases</u>) <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as <u>Cases</u>) <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as <u>Cases</u>) <u>CAX YOAI Halva 8360</u> Cax son 1 Halva dissuring as <u>Cases</u>) <u>CASING CAPACITY (gallons/linear foot)</u> 1°= 0.04, 2° = 0.16, 4° = 0.65, 6° = 1.47, 8° = 2.6, 10° = 4.08, 12° = 5.87 GRAVE Flow Stabilization Parameters: pH/4611 Cond (1/28) OPP (1/1991) D.0 (1/1991) Techlifter (1/1991)				
SAMPLE WITHDRAWL METHOD: <u>Geopunp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(2x 40~1 All van 8260)</u> (2x <u>con1 All van dissulting ases</u>) <u>(1x radian)</u> (21-300, NO-300, Soy - 300) Ferrors True <u>foronal</u> SAMPLE ID NUMBER(s): <u>Mu-7ros</u> DECON METHOD: <u>disposite</u> <u>this</u> PURGE WATER DISPOSED TO: <u>Aba</u> <u>TRANSPORTER</u> : <u>Course</u> DATE: <u>2125</u>]3 TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 GW Flow Stabilization Parameters: pH(x/01) Cond (x/23%) ORB (x/10m) P.0 (x/10m) Turbidity (x/10m)				
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(2x 40~1 All vca 8260)</u> (2x 20~1 Act vca dissolver gases) <u>(1x room 1 Cl-300, NO-300, Soy - 300</u>) Ferrors Iron <u>foronsid</u> SAMPLE ID NUMBER(s): <u>MM - 710 S</u> DECON METHOD: <u>disposite 765</u> PURGE WATER DISPOSED TO: <u>Quid</u> SAMPLES DELIVERED TO: <u>Apha</u> TRANSPORTER: <u>Courie</u> DATE: <u>2126713</u> TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 GW Flow Stabilization Parameters: pH(a(0.1) Cond (a(23%) ORP (a(1000) R = 0.01, 1000))	SAMPLE WITHDRAWL METHOD:			
$\frac{(2 \times 40 \times 1 \text{ Hel VGA 8260}) (2 \times 20 \times 1 \text{ Hel VGA dissubargass})}{(1 \times 1000 \times 1 \text{ Cl-300}, 100 - 300, 504 - 300) \text{ Ferrors True gases})}$ SAMPLE ID NUMBER(s): <u>Martin 2000, 100 - 300, 504 - 300) Ferrors True do 0.0000000000000000000000000000000000</u>	LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES			
$\frac{(1 \times 1000 \text{ n} Cl-300, NO-300, SO_{2}-300) \text{ Ferrors Iron = (0.0 \text{ msl})}{NUMBER(s):$	(2x your Hul van 8260) (2x son Hel van dissilver cases)			
SAMPLE ID NUMBER(s): <u>Mu-7/05</u> DECON METHOD: <u>diposite tub.</u> PURGE WATER DISPOSED TO: <u><u>aud</u> SAMPLES DELIVERED TO: <u>Apha</u> DATE: <u>212613</u> TIME: <u><u>Cubic</u> CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 CW Flow Stabilization Parameters: pH(4(0,1), Cond (4/3%), OPB (4/10m)), D.0. (4/10m), Tubicity (4/10m))</u></u>	(1×10001 C1-300 NU-300 Say - 200) Ferrors Two = 10 0 mil			
NUMBER(s): DECON METHOD: PURGE WATER DISPOSED TO: SAMPLES DELIVERED TO: DATE: DATE: CASING CAPACITY (gallons/linear foot) $1^{9} = 0.04, 2^{n} = 0.16, 4^{n} = 0.65, 6^{n} = 1.47, 8^{n} = 2.6, 10^{n} = 4.08, 12^{n} = 5.87$	SAMPLE ID			
METHOD: $(242)^{\circ}$ solve $(242)^{\circ}$ PURGE WATER DISPOSED $(242)^{\circ}$ $(242)^{\circ}$ TO: $(242)^{\circ}$ $(242)^{\circ}$ SAMPLES DELIVERED TO: $(242)^{\circ}$ $(242)^{\circ}$ DATE: $(242)^{\circ}$ $(242)^{\circ}$ DATE: $(242)^{\circ}$ $(242)^{\circ}$ CASING CAPACITY (gallons/linear foot) $(1^{\circ}=0.04, 2^{\circ}=0.16, 4^{\circ}=0.65, 6^{\circ}=1.47, 8^{\circ}=2.6, 10^{\circ}=4.08, 12^{\circ}=5.87$ ow Flow Stabilization Parameters: pH(4/0.1) Cond (4/3%) OPP (4/10m) D.D. (4/10m)	DECON			
TO: $Ould SAMPLES DELIVERED TO: A foha TRANSPORTER: DATE: 2 las l3 TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 OW Flow Stabilization Parameters: pH(+(-0.1) Cond (+/-3%) OPP (+/-10m)0. D.O. (+/-40%) Turble (+/-40%) $	METHOD: CHISPOSED			
SAMPLES DELIVERED TO: $A fold TRANSPORTER: Current DATE: 2 las l 3 TIME: TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 ow Flow Stabilization Parameters: pH(+(-0.1) Cond (+/-3%) OPP (+/-10m)). $	TO:Quil			
DATE: $2 125/3$ TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 ow Flow Stabilization Parameters: pH(+/-0.1) Cond (+/-3%) OPP (+/-10m)0. D.O. (+/-3%) Turble (+/-0.1)	SAMPLES DELIVERED TO: Apha TRANSPORTER: Counter-			
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 .ow Flow Stabilization Parameters: pH(+/-0.1). Cond. (+/-3%). OPP (+/-10m)0. D.O. (+/-3%). Turble to (+/-3%).	DATE: 2125/3 TIME:			
.ow Flow Stabilization Parameters: pH(+/-0.1). Cond (+/-3%) OPP (+/-10m)/ DO (-/-10%) To bility (-/-10%)	CASING CAPACITY (gallons/linear foot) $1^{*} = 0.04, 2^{*} = 0.16, 4^{*} = 0.05, 6^{*} - 1.47, 8^{*} - 2.6, 10^{*} - 4.09, 10^{*} - 5.87$			

GROUND-WATER SAMPLING LOG Page 1 of
CLIENT: Baking Hachers LOCATION: Bindmachers DATE: 2/25/13
WELL NO. Mu-710 M WEATHER: Clange Jupin 30 SAMPLE TIME: 1400
REMARKS: Sample apple 291 SAMPLER(S): Man
WELL PURGING: STATIC WATER LEVEL: 1.2 ft. WELL DEPTH: 32.26 ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.
REMOVAL METHOD: <u>Group PUMPING RATE:</u> <u>140</u> ml/min.
TIME TEMP pH TURB. COND. ORP DO flow draw (O) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)
Bay 1015 6.86 20.8 14/ 16/ 3.43 140 1.63
1330 1036 C.78 B.6 M3 161 3.38 140 1.63
<u>1355 1050 6.78 12.3 141 160 3.35 140 1.63</u>
<u>BUT 10.61 6.80 11.1 137 157 2.81 140 1.67</u>
$\frac{1350}{1355} \frac{10.73}{10.51} \frac{10.51}{1.75} \frac{141}{1.55} \frac{155}{1.75} \frac{140}{1.45} \frac{162}{1.75}$
Non-collate SanOLT -
SAMPLE WITHDRAWL METHOD:
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
(2xyuni Hel VOA 8260) C2x20n1 Hel VOA dissoling Sesies)
(XIOUUNINP plastic Cl-300, NU-300, Suy-300) Formus In O. Umil
SAMPLE ID NUMBER(s): Mh - 710M
METHOD: dispusable Lb -
PURGE WATER DISPOSED
SAMPLES DELIVERED TO: A phi TRANSPORTER Course
DATE: 26/13 TIME:
<i>CASING CAPACITY (gallons/linear foot)</i> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

an	nec	0	GRO	UND-WA	TER S	AMPLI	NG LOO	G	Page 1 of
CLIENT: Bake-Hyles LOCATION: Butmuchic DATE: 3/1/13 WELL NO. MA-7100 WEATHER: Mostly clary -lepings SAMPLE TIME: 1445									
REMA	RKS:	Sampl	e lop th	YU'				SAMPLER	(S):
WELL PURGING: STATIC WATER LEVEL: /. 43 ft. WELL DEPTH: 43.5 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: PUMPING RATE: ml/min.									
TIME		pH	S-J₂-→ · TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1007 1007 1010 1010 1010 1020 1020 1000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1000	$\frac{3.3}{7.4}$ $\frac{3.67}{7.67}$ $\frac{7.67}{7.67}$ $\frac{7.67}{7.67}$ $\frac{7.67}{7.67}$ $\frac{7.70}{7.70}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.87}$ $\frac{7.70}{7.70}$ $\frac{7.70}{7.70}$ $\frac{7.70}{7.70}$ $\frac{7.70}{7.70}$	7.65 7.67 7.62 7.55 7.55 7.60 7.60 7.60 7.71 7.71 7.71 7.71	22.3 20.1 <u>JS.1</u> <u>JT.2</u> <u>JG.3</u> 21.2 <u>J7.3</u> <u>J8.1</u> <u>J5.3</u> <u>J5.2</u> DD: <u>C</u> AMPLE CC <u>UCL</u> 8 ² <u>NC pL 5</u>	132 130 121 121 125 125 125 125 125 125	73 75 71 74 71 73 67 60 57 60 57 50 50 USED INC Test 1	$\frac{5.\sqrt{3}}{4.74.5\sqrt{4.5\sqrt{4.5\sqrt{4.5\sqrt{4.5\sqrt{4.5\sqrt{4.5\sqrt{4.5$	130 130 130 130 130 130 130 130 130 130	$\frac{2.65}{2.40}$ $\frac{3.2}{3.2}$ $\frac{3.2}{3.61}$ $\frac{3.61}{3.61}$ $\frac{3.71}{3.77}$ $\frac{3.77}{3.83}$ PE, AND PRE	SERVATIVES:
NUMBER(s): <u>MN-7100</u> DECON METHOD: <u>Dispusable</u> PURGE WATER DISPOSED TO: <u>Cound</u>									
SAMPLES DELIVERED TO: TRANSPORTER: DATE: TIME:									
Low Flow St	tabilization F	1"= 0.04 Parameters:	<i>C/</i> I, 2" = 0.16 pH(+/-0.1), (ASING CAPA , 4" = 0.65, 6" Cond. (+/-3%),	<i>CITY (gall</i> ' = 1.47, 8" ORP (+/- 10	ons/linear fo ' = 2.6, 10" : OmV), D.O. (+	<i>pot)</i> = 4.08, 12" = -/-1 0%), Turb	5.87 Idity (+/-10%)	

GROUND-WATER SAMPLING LOG								
CLIENT: <u>Rubo-Hybri</u> LOCATION: <u>Bird Machin</u> DATE: <u>B), 17</u> WELLNO. <u>MW.716</u> WEATHER: <u>Mostly clarity topins</u> SAMPLE TIME: <u>114 I</u> DEMARKS: S. d. d. d. b. u.								
REMARKS: SAMPLER(S): SAMPLER(S):								
WELL PURGING: STATIC WATER LEVEL: 1.15 ft. WELL DEPTH: 13.5 ft. LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: Geographic PUMPING RATE: J3.4 ml/min								
WELL PURGE DATA: TURB, COND, ORP DO rate down COMMENTO								
TIME TEMP pH (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft) (1)								
SAMPLE ID NUMBER(s):								
SAMPLES DELIVERED TO: APh_ TRANSPORTER: COURSE DATE: 3/1/13 TIME:								
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

amec ^o ground-water s	AMPLING LOG Page 1 of						
CLIENT: Bake How S LOCATIO WELL NO. MN-7108 WEATHER: Sum	N: Binnahin DATE: 21,113 1, Jennin 303 SAMPLE TIME: 0910						
REMARKS: Sunplace But Qy	SAMPLER(S):						
WELL PURGING: STATIC WATER LEVEL: 1. 1 LENGTH OF SATURATED ZONE:	ft. WELL DEPTH:ft. JME OF WATER TO BE EVACUATED:gals. ES =gals. PUMPING RATE:30ml/min.						
WELL PURGE DATA: Start Start TIME TEMP pH TURB. COND. ORP (NTLI) (mS/cm) (mV)	flow draw DO rate down COMMENTS (ppm) (ml/min) (ft)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{S.7}{2.27} \frac{130}{130} \frac{235}{235}$ $\frac{1.32}{1.32} \frac{130}{130} \frac{235}{2.71}$ $\frac{0.50}{0.66} \frac{130}{130} \frac{2.57}{2.57}$ $\frac{0.51}{130} \frac{130}{2.67}$ $\frac{0.51}{130} \frac{130}{2.67}$ $\frac{0.51}{130} \frac{130}{2.67}$ $\frac{0.51}{130} \frac{130}{2.67}$ $\frac{0.51}{130} \frac{130}{2.67}$						
SAMPLE ID NUMBER(s): <u>MW-710</u> DECON METHOD: <u>d.sparse</u> t.b. PURGE WATER DISPOSED TO: <u>Stand</u>							
SAMPLES DELIVERED TO:A lph	TRANSPORTER:						
CASING CAPACITY (gallo 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10	TIME:						

CLIENT:_Baker Hughes LOCATION: Walpole MA DATE: 2.26. 13								
WELLNO MV-711S WEATHER 40'S (100 C CANDLE THE (10)								
WELL NO WEATHER: CLERY SAMPLE TIME: /9:00								
REMARKS: eeelongh SAMPLER(S): Ht								
WELL PURGING: STATIC WATER LEVEL: 3.48 ft. WELL DEPTH: 19.75 ft.								
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.								
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.								
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.								
WELL PURGE DATA:								
TIME TEMP pH TURB. COND. ORP DO flow draw (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)								
1315 6.02 6.45 19.8 0.123 -253.1 0.55 200								
1320 6.01 6.47 17.3 0.113 -262.2 0.25 200								
1325 604 6.46 12.1 0.111 -263.0 0.23 Zw								
<u>1330 6.03 6.48 9.81 0.110 -263.2 0.22 Zoo</u>								
$\frac{1335}{6.08} \underline{6.57} \underline{5.45} \underline{0.108} \underline{-767.2} \underline{0.71} \underline{7.60} \underline{-767.2} \underline{-767.2} \underline{0.71} \underline{7.60} \underline{-767.2} \underline$								
$\frac{/340}{1240} \underline{6.01} \underline{6.51} \underline{5.31} \underline{0.108} \underline{-487.5} \underline{0.144} \underline{200} \underline{-140} -14$								
<u>/343 3.70 6.52 5.50 0.108 -258.5 0.19</u>								
TY								
The second and the second and sec								
2 V.61 8260, Plastic (1-200, Noz-200, 504-300								
SAMPLE ID								
NUMBER(s): DECON METHOD: Liquinox								
PURGE WATER DISPOSED TO :								
SAMPLES DELIVERED TO: <u>Alpha Labs</u>								
TRANSPORTER:								
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87								
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

GROUND-WATER SAMPLING LOG Page 1 of _____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE:									
WELL NO. MV-7 (LD WEATHER: Jo's (/a SAMPLE TIME & /3:00									
BEMARKS: FE = 1.5 m/									
$MEWIAHNS: = C = [1.5 \text{ mg/C}] \qquad SAMPLER(S): \underline{HR}$									
WELL PURGING: STATIC WATER LEVEL:ft. WELL DEPTH:ft.									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.									
WELL PURGE DATA:									
TIME TEMP pH TURB. COND. ORP DO flow draw (NTL) (mS(m)) (nom) rate down COMMENTS									
(C) (NTO) (INS/CIII) (INV) (PPIII) (IN/Min) (II) 1/45 9.65 6.78 75.8 0.375 ~287.2 1.65 200									
1155 9.94 6.56 17.3 0.383 -2818 1.08 200									
1200 10.59 6.43 15.9 0.403 -250.5 2.37 200									
1210 10.65 6.26 16.3 0.408 -268.2 3.15 200									
1220 10.90 6.22 10.1 0.410 -2703 2.86 200									
V225 10.65 6.23 10.0 0.411 -269.7 2.47 200									
12. 10. 8/ 6.71 7.88 0.40 -767.9 7.46 200									
$\frac{1735}{11.16} \frac{11.21}{1.21} 0.412 \frac{-767.5}{-769} \frac{2.43}{200} \frac{200}{100} \frac{11.21}{100} 1$									
1240 11.17 6.19 9.95 0.412 267.6 2.93 200									
SAMPLE WITHDRAWL METHOD: Peristaltic Pump									
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:									
2 x yo mb is 2260, 1 Plastic (1.300, Non - 300, Say - 300)									
SAMPLE ID									
NUMBER(s):									
DECON METHOD:Liquinox									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:									
TRANSPORTER: TIME:									
CASING CAPACITY (gallons/linear foot)									
$1^{"}=0.04, 2^{"}=0.16, 4^{"}=0.65, 6^{"}=1.47, 8^{"}=2.6, 10^{"}=4.08, 12^{"}=5.87$									
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

amec⁰

GROUND-WATER SAMPLING LOG

Page 1 of _____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: Z >7./3								
WELL NO. <u>Mw - 7/2 S</u> WEATHER: <u>40</u> Rain SAMPLE TIME: <u>400</u>								
REMARKS: Fr = 0.5 m/K								
SAIVIPLER(5):								
WELL PURGING: STATIC WATER LEVEL: 3. 85 ft. WELL DEPTH: 19. 20 ft.								
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.								
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.								
WELL PURGE DATA:								
TIME TEMP pH TURB. COND. ORP DO flow draw (C) (NTU) (mS/cm) (mV) (ppm) (mV/min) (fill)								
1310 <u>5.91</u> 6.21 63.9 0 5 -187.1 6.32 200								
1320 5.55 6.09 31.6 0.082 -196.3 4.16 Ton								
1330 5.56 611 21.3 0.087 -199,1 3.21 200								
1340 5.22 6.17 12.9 0.095 -209.4 2.59 200								
<u>1343</u> <u>5.27</u> <u>6.19</u> <u>10.1</u> <u>0.97</u> <u>-210.1</u> <u>2.43</u> <u>200</u>								
1346 5.28 6.19 9.87 0.97 -210.4 2.41 200								
1349 5.28 6.20 9.79 0.97 -2.10.5 2.41 200								
1352 5.21 6.20 9.68 0.98 - 210.9 2.39 200								
1355 5.25 6.20 9.70 0.98 -211.2 2.40 200								
SAMPLE WITHDRAWL METHOD:Peristaltic Pump								
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:								
22 40 -14 3260								
1 x plastic cl-300, Noz-300, Soy-300								
SAMPLE ID								
NUMBER(s):								
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:								
TRANSPORTER:TIME:								
CASING CAPACITY (gallons/linear foot)								
1"= 0.04, 2"= 0.16, 4"= 0.65, 6"= 1.47, 8"= 2.6, 10"= 4.08, 12"= 5.87								
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

amec[®]

GROUND-WATER SAMPLING LOG Page 1 of _2_

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 2								
WELL NO. MW-7/3-5 WEATHER JO'S char SAMPLE TIME								
WEATHER: 303, COV SAMPLE TIME:								
REMARKS: Fe=0.0 ml								
WELL PURGING: STATIC WATER LEVEL: 3.44 ft. WELL DEPTH: 20.10 ft.								
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.								
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.								
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.								
WELL PURGE DATA:								
TIME TEMP pH TURB. COND. ORP DO flow draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (ml/min) (ft)								
<u>8 7.73 5.67 Max 0.456 -252.4 2.22 200</u>								
840 8.37 5.68 155 0.449 -207.8 2.20 200 6.10								
$\frac{030}{0}$ $\frac{0.81}{0.21}$ $\frac{5.66}{0.448}$ $\frac{0.448}{0.29}$ $\frac{0.29}{200}$								
<u>900</u> <u>8.76</u> <u>5.66</u> <u>188</u> <u>0.450</u> <u>-251.1</u> <u>0.30</u> <u>200</u> <u>6.31</u>								
$\frac{9'^{5}}{0.75} = \frac{8.73}{5.65} = \frac{9.19}{0.74} = -229.3 = 0.24 = 200$								
$\frac{9^{-5}}{100}$ $\frac{7.03}{5.66}$ $\frac{5.05}{50.5}$ $\frac{0.498}{0.498}$ $\frac{-283.8}{50.47}$ $\frac{0.47}{200}$ $-\frac{100}{100}$								
$\frac{9^{-33}}{9^{-3}} \frac{9.00}{0.351} \frac{5.63}{-245.7} \frac{0.24}{0.24} \frac{200}{-200} \frac{1}{200} \frac$								
$\frac{7.7}{9.61} \frac{9.61}{5.65} \frac{95.3}{45.3} \frac{0.450}{2573} \frac{-2573}{0.20} \frac{0.20}{200} -$								
<u>713 9.08 5.66 0.451 -252.5 0.19 zec -</u>								
SAMPLE WITHDRAWL METHOD: Peristaltic Pump								
SAMPLE ID NUMBER(s):								
DECON METHOD:Liquinox								
PURGE WATER DISPOSED TO :								
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87								
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

GROUND-WATER SAMPLING LOG Page 2 of _2_

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: <u>3.// /3</u>									
WELL NO. MW-713-5 WEATHER: 30'S, clear SAMPLE TIME: 1010									
REMARKS: $Fe= 0.0 \text{ mg/c}$ SAMPLER(S): H_{fc}									
WELL PURGING: STATIC WATER LEVEL: 3.44 ft. WELL DEPTH. 20.10 4									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.									
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.									
WELL PURGE DATA:									
TIME TEMP pH TURB. COND. ORP DO now draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (ml/min) (ft)									
<u>950</u> <u>9.11</u> <u>5.66</u> <u>a.450</u> <u>-256.5</u> <u>0.20</u> <u>-</u>									
<u>955</u> <u>8.92</u> <u>5.66</u> <u>30.0</u> <u>0.451</u> <u>-257.1</u> <u>0.23</u> <u>200</u> <u>-</u>									
<u>1000 8.96 5.66 21.7 0.451 -258.2 0.24 700 -</u>									
$\frac{1005}{1005} \frac{8.97}{7} \frac{5.65}{7} \frac{75.8}{75.8} \frac{0.452}{758.4} \frac{758.4}{75} \frac{0.73}{756} \frac{766}{7} \frac{1}{7} \frac{1}{7$									
10 ¹⁰ 8.79 6.66 78.6 0.152 -258.3 0.29 -200									
SAMPLE WITHDRAWL METHOD:Peristaltic Pump									
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:									
(zxv:al) 8260									
(1x7las+:c) Cl-300, NO2-300, SO4-300									
NUMBER(s):									
DECON METHOD:Liquinox									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:									
TRANSPORTER:TIME:									
CASING CAPACITY (gallons/linear foot)									
$1 = 0.04, 2 = 0.10, 4 = 0.00, 0 = 1.47, 8 = 2.0, 10^{\circ} = 4.08, 12^{\circ} = 5.87$									
Low Flow Stabilization Parameters: pri(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

GROUND-WATER SAMPLING LOG

Page 1 of ____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: 3-1-13									
WELL NO. Mu. 713-D WEATHER: 30's, clouden SAMPLE TIME: 11'									
REMARKS: Fe = 0.0 Mg/L SAMPLER(S): AR									
WELL PURGING: STATIC WATER LEVEL: 2.19 ft. WELL DEPTH: 3.60 ft.									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.									
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.									
WELL PURGE DATA:									
TIME TEMP pH TURB. COND. ORP DO now down IO IS (C) (NTU) (mS/cm) (mV) (ppm) (mI/min) (ft)									
$\frac{100}{100} - \frac{100}{100} - \frac{100}{100} - \frac{100}{100} - \frac{1000}{100} - \frac{1000}{$									
$\frac{0.25}{0.25} - \frac{9.55}{0.69} - \frac{0.69}{0.298} - \frac{0.298}{0.298} - \frac{0.34}{0.34} - \frac{0.34}{0$									
$\frac{1030}{1025} \frac{7.57}{9.10} \frac{6.69}{7.57} \frac{9.53}{7.57} \frac{0.298}{0.298} \frac{0.298}{0.298} \frac{0.90}{0.90} \frac{0.90}{0.90} \frac{0.70}{0.90}$									
$\frac{1038}{1040} = \frac{7.47}{9} = \frac{0.57}{100} = \frac{3.73}{1000} = \frac{0.304}{1000} = \frac{237.7}{1000} = \frac{0.39}{1000} = \frac{200}{1000} = \frac{0.39}{1000} =$									
$\frac{1610}{1.48} \frac{1.76}{9.90} \frac{1.53}{53} \frac{2.78}{7.43} \frac{0.307}{7.304} \frac{-2407}{7.30} \frac{0.33}{7.30} \frac{2.35}{7.43} \frac{1.68}{7.43} \frac{1.68}{7.43} \frac{1.76}{7.30} \frac{1.76}{7.3$									
$\frac{7017}{1.00} = \frac{7.00}{0.033} = \frac{0.00}{0.001} = 0.0$									
$\frac{707}{1055} \frac{1.00}{997} \frac{1.00}{57} \frac{1.00}{2.31} \frac{1.00}{2.312} \frac{1.00}{2.31$									
$\frac{1000}{1000} = \frac{1112}{100} = \frac{0.90}{2.00} = \frac{0.313}{0.313} = \frac{0.00}{0.313} = \frac{0.00}{0.00} = \frac{0.71}{2.00} = \frac{0.71}{0.00}$									
SAMPLE WITHDRAWL METHOD:Peristaltic Pump LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: (7 x v:al) 8760									
(1x plustic) Cl-300 NU3-300 SO4-300									
SAMPLE ID									
DECON METHOD:Liquinox									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:									
TRANSPORTER: TIME:									
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87									
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

GROUND-WATER SAMPLING LOG Page 1 of _____

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE:_2-27-13									
WELLNO. MU-7145 WEATHER: 40, Gin SAMPLE TIME: 9:15									
REMARKS: $Fe = 1.0 \text{ mg/L}$ SAMPLER(S): AR									
WELL PURGING: STATIC WATER LEVEL: 6.48 ft. WELL DEPTH: 17.75 ft.									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.									
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.									
WELL PURGE DATA:									
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)									
<u>8</u> <u>96.23</u> <u>6.41</u> <u>65.7</u> <u>0.148</u> <u>-167.6</u> <u>5.22</u> <u>zue</u>									
<u>81° 7.02 6.54 30.7 0.184 -210.3 1.57 200</u>									
<u>820</u> <u>7.23</u> <u>6.56</u> <u>24.189</u> <u>0.205</u> <u>-214.2</u> <u>1.26</u> <u>200</u>									
<u>8.3</u> <u>+17</u> <u>6.57</u> <u>12.6</u> <u>C.210</u> <u>-214.5</u> <u>1.30</u> <u>200</u>									
$\frac{8^{37}}{9^{40}} \frac{1.69}{727} \frac{1.3}{1.50} \frac{0.211}{727} \frac{-215.5}{1.31} \frac{1.31}{200} \frac{200}{100}$									
$\frac{0.5}{848} + \frac{1}{723} + \frac{1}{19} + \frac{1}{$									
$\frac{217}{850} \frac{7.23}{6.57} \frac{6.57}{6.57} \frac{0.17}{0.313} \frac{0.313}{2144} \frac{1.39}{1.39} \frac{200}{200} $									
853 7.26 6.57 6.09 0.712 -2165 1.34 200									
SAMPLE WITHDRAWL METHOD:Peristaltic Pump									
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:									
2 x v. cl 8260									
1 plassic cl-300, NOz-300, SOy-300									
SAMPLE ID AN A TAU S									
NUMBER(s): 770 - 779 S DECON METHOD: Liquinox									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: Alpha Labs DATE:									
TRANSPORTER:									
CASING CAPACITY (gallons/linear foot)									
1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87									
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

GROUND-WATER SAMPLING LOG

Page 1 of _/___

CLIENT:_Baker Hughes LOCATION:_Walpole MA DATE: ۲۰۲۰									
WELL NO. 714-D WEATHER: 40's, Rain SAMPLE TIME: 1030									
$REMARKS: \underline{I-e} = [0.0 mg/(] SAMPLER(S): \underline{4R}$									
WELL PURGING: STATIC WATER LEVEL: 6.58 ft. WELL DEPTH: 22 70 ft.									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.									
REMOVAL METHOD:Peristaltic Pump PUMPING RATE:ml/min.									
WELL PURGE DATA:									
TIME TEMP pH TURB. COND. ORP DO flow draw (C) (NTU) (mS/cm) (mV) (ppm) rate down COMMENTS (C) (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)									
940 9.02 6.60 20.2 0.262 -2028 1.11 200									
950 9.16 6.58 7.98 0.265 - ZOB.Z 1.04 Zoo									
955 8.98 6.55 5.33 U. 268 -211.3 0.96 Zou									
10 cm 9.34 6.52 4.39 0.766 -217.6 1.03 200									
<u>10°5 9.48 6.52 4.12 0.268 -216.4 1.05 200</u>									
1010 <u>9.54</u> <u>6.52</u> <u>3.99</u> <u>0.269</u> <u>-216.9</u> <u>1.06</u> <u>zoo</u>									
10's <u>4.93</u> <u>6.51</u> <u>3.71</u> <u>0.770</u> <u>-7/23</u> <u>1.04</u> 200									
1020 9.99 6.57 3.75 2.771 - ZIB.6 1.09 Zow									
10 ³⁰ SAMPLE									
SAMPLE WITHDRAWL METHOD: Peristaltic Pump									
The second secon									
1 × Plastic Cl-300, NC3 - 300, SOy-300									
SAMPLE ID NUMBER(s):									
DECON METHOD:Liquinox									
PURGE WATER DISPOSED TO :									
SAMPLES DELIVERED TO: <u>Alpha Labs</u> DATE:									
TRANSPORTER: TIME:									
CASING CAPACITY (gallons/linear foot)									
1"= 0.04, 2"= 0.16, 4"= 0.65, 6"= 1.47, 8"= 2.6, 10"= 4.08, 12"= 5.87									
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

an	nec	0	GRO	UND-WA	TER S	AMPLI	NG LO	G	Page 1 of
CLIEN	T: But	~ +luj /	1= 5	L(OCATIO	N: <u><u> </u></u>	(Macl	1.1 <u>2</u> D/	ATE: 2126/13
WELLNO. MW-7155 WEATHER: Sund SAMPLE TIME: 10:5									
REMARKS: SAMPLER(S):									
WELL PURGING: STATIC WATER LEVEL: 4.64 ft. WELL DEPTH: 16.75 ft.									
LENGTH	I OF SATU	RATED ZC	NE:	linear ft.	VOLU	ME OF WA	TER TO B		ED: gals.
VOLUME	E OF WATE	ER TO BE E		D X 3 CASIN	ig volumi	ES =	-	gals.	~
REMOV	AL METHO	D:	Creap.	And Purch.		PUMPING I	RATE:	[0]	Sml/min.
TIME		pH	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
0340	6.06	563	741	38)	205	2.13	165	5.00	fly inde
orsu	6.69	5.61	56.4	345	SU	1.12	105	- 5.05-	100 110 1210
0900	6.20	567	40 9	323	49	0.85	1 105	- 510	· · · · · · · · · · · · · · · · · · ·
0910	727	5.72	21.0	$\frac{317}{313}$	<u>72</u>	0.50	105	5.15	
0920	7.5-1	5.75	14.9	311	83	0.46	105	5.18	
0925	7.72	5,20	14.0	311	79	0.43	105	5.10	
0930	7.55	5.82	17.3	311	27	0.42	105	41.2 -	
0135	7.03	5.55	, 14.1		96	0.39	105	- 5.12	
6940 6945	7.52	5.81	$\frac{11.1}{11.6}$	- 310	24	0.35	105	- 5.12	
SAMPLE LABOF		WL METHO	OD:C	-eoρumy ONTAINERS			JMBER, TY	PE, AND PRI	ESERVATIVES:
(~ ~ ~ ~ ~	-1 Hel	VJA-	526c)	Test	it fer	nis In	n 20.00	Lol
_(1×100	Unlly	plastic	-Cl - 3c	× Noz	-300,5	<u>δα,-3α</u>	(
SAMPLE	ID R(s):	nw-	715-5		9				
METHOD	: <u> </u>	Sopuble	<u> </u>	bing					
PURGE WATER DISPOSED									
SAMPLE	S DELIVER	ed to:	Ap	a		TRAN	SPORTER		
DATE:						TIME	·		
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 .ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

an	nec	0	GRO	UND-WA	TER S		IG LOO	2	Page 1 of
CLIENT: Batter Haches LOCATION: Binnachine DATE: 2/26/23 WELL NO. MW-7155 WEATHER: SAMPLE TIME: 1015 REMARKS: SAMPLER(S):									
WELL PURGING: STATIC WATER LEVEL: # MELL DEDTIN									
LENGT	H OF SATU	BATED ZO	NE:	linear ft.	VOLL				π.
VOLUM	E OF WATE	R TO BE E		D X 3 CASIN		ES =			gais.
REMOV	AL METHO	D:				PUMPING R	ATE:		ml/min.
WELL	PURGE I	DATA:							
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (mS/cm)	ORP (mV)	DO (ppm) (r	flow rate nl/min)	draw down (ft)	COMMENTS
0950	7.50	5.87	8.10	309	20	0.35	105-	5.10	
0155	7.42	5 2 2	7.21	310	PG	0.33	105	5.12	
1000	7.42	5.29	4.31	310	23	0,34	105	5.14	
1000	<u>7.47</u>	500	4.42	310	23	0.72	105	<u>S.12</u>	
1015	-collect	5.02	4.15		r-3	0-32	105	5.15	
	<u></u>			·					
								·	
								- <u> </u>	
Sample Laboi	E WITHDRA RATORY AN	WL METHO	AMPLE CO	ONTAINERS I		LUDING NUI	MBER, TYF	E, AND PRES	SERVATIVES:
Sample Number Decon Methou	E ID R(s): D:								
PURGE	WATER DIS	SPOSED							-
SAMPLE	S DELIVER	ED TO:				TRANS	PORTER:_		
DATE:						TIME:			
Low Flow S	DATE: TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 .ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

an	nec	0	GROL	JND-WA	TER S	AMPLI	NG LOO	ì	Page 1 of
CLIEN	IT: <u>Ba</u> l	1e-Hu	h-s	L(OCATIO	N: <u> </u>	Mach	inc DA	TE: 2/26/13
WELL	NO	W-7151	<u> </u>	EATHER:	Sun	~ <u>/</u>		SAMPLE	TIME: 1215
REMA	RKS:					/	\$	SAMPLER	(S):
WELL	PURGIN	G: ST		R LEVEL: _	4.80	ft.	WEL	L DEPTH:	29.7 ft.
LENGTI	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	JME OF WA	TER TO BE	EVACUATE): gals.
VOLUM		R TO BE E	VACUATED	X 3 CASIN	g volumi	ES =		jals. / <	
REMOV			1021- St-	-Loval		PUMPING F	RATE:		ml/min.
TIME	TEMP (C)	pH	TURB. (NTU) (COND. mS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1031	7-28	6.47	38.5	260	46	368	150	5400	
1036	7.56	6.50	37, 3	259	60	3.49	150	SYP	
1001	7.82	648	34.1	259	<u>1</u>	336	150	SYR	
1101	8.53	$\frac{(.5)}{(.5)}$	313	261	- 27	3.15	150	550	
111	833	6.49	21.3	26-1	57	2.85	150	5.50	
1121	3.11	646	19.4	269	99	2.51	ISU	550	
1131	21	<u>C 43</u>	14.2	276	104	2.22	150	550	
<u>1141</u>	215	6.45	10.6	284	107	2.0-1	150	5.50	
<u> \$]</u>	2.12	6.51	9.60	72.1	10-	1.90	150	5.56	·
SAMPLE	E WITHDRA	WL METHO)D: 6	-Ccpnf	0		<u> </u>		
LABO	RATORY AN	IALYSIS, S		NTAINERS	USED INC	LUDING NU	MBER, TYP	E. AND PRES	SERVATIVES:
((2x4	onl He	(USA	8260)	-	est fit	- Ferrer	Forla	2 Omil
	C1xa	ocen l	Npplo	dic (2(-300	Nos-	300, 50	4-30x)	
SAMPLE	E ID B(c):								
DECON	((3)							· · · · · · · · · · · · · · · · · · ·	
PURGE	D: WATER DIS	POSED							
SAMPLE	S DELIVER	ED TO:				TRANS	SPORTER:		-
DATE:			- <u></u>			TIME	·		
Low Flow S	itabilization F	1"= 0.04 Parameters:	<i>CA</i> , 2" = 0.16, p H(+/-0.1), C	SING CAPA 4" = 0.65, 6' ond. (+/-3%).	CITY (gallo " = 1.47, 8" , ORP (+/-10	ons/linear for = 2.6, 10" = 0mV), D.O. (+/	ot) 4.08, 12" = - 10%). Turb ic	5.87 lity (+/-1 0%)	

GROUND-WATER SAMPLING LOG									
CLIENT: Butto-Huch-5 LOCATION: Bin Machine DATE:									
WELL NO. MEATHER: SAMPLE TIME: 12/5									
REMARKS: SAMPLER(S):									
WELL PURGING: STATIC WATER LEVEL:ft. WELL DEPTH:ft.									
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.									
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.									
WELL PURGE DATA:									
TIME TEMP pH (NTU) (mS/cm) (mV) (ppm) (ml/min) (ft)									
1201 815 639 879 252 112 1.20 150 5.50									
1206 3.55 6.37 2.35 294 113 1.85 150 5.50									
<u>211 8.71 6.37 8.31 296 115 1.81 160 5.50</u>									
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:									
See PS.									
SAMPLE ID NUMBER(s):									
DECON METHOD:									
PURGE WATER DISPOSED									
SAMPLES DELIVERED TO: TRANSPORTER:									
DATE: TIME:									
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

an	nec	0	GROU	NDWAT	TER SA	MPLIN	g log		Page 1 of
CLIEN	T: Ball	i~ 14.	1+5	LC	OCATION	1: Bird	Machine	DAT	E: 5/29/13
WELL NO. CR-MW-121 WEATHER: Cloudy terpines SAMPLE TIME: 1010									
REMARKS: <u>culled populasing</u> SAMPLER(S): <u>Man</u>									
WELL PURGING: STATIC WATER LEVEL: 1.85 ft. WELL DEPTH: 21.98 ft.									
LENGTI	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE	EVACUATED	: gals.
VOLUM	E OF WATE	R TO BE E	VACUATED	X 3 CASING	g volume	S =		als.	
REMOV	AL METHO	D:	upunp		P	UMPING R	ATE:	150	ml/min.
		pH	نج ع (- ی) TURB.	COND.	ORP (mV)	DO (ppm)	flow rate	draw down	COMMENTS
0946	14.65	6.33	7.97	241-	200	211	(mvmin) VSCI	(π) 2 / ()	
6951	1437	630	4.27	245	210	0.17	150	2.10	
0556	119.25	G.35	1.89	244	195-	0.15	Isu	2.10	
100)	14.30	6.38	1.94	243	195	0.17	150	2.10	
1006	14,20	6.38	1-79	244	193	0.18	150	2.10	
1010 -	allest.	Supr					·	<u></u>	
								<u></u>	
SAMPLE WITHDRAWL METHOD: <u>Geopunp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(IX2SUAL ANU)</u> plastic field fillend dissolved As) No Test K. +									
SAMPLE NUMBER DECON METHOL	EID R(s): <u>とれ</u>	- MI	<u>1-121</u>						
TO:		oused				·			
SAMPLE	S DELIVER	ED TO:	Alph	<u> </u>		TRANS	PORTER:_	Cour.s	
DATE:	5)2	Ĵ				TIME:			
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 .ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)									

CLIENT: Sale Machine DATE: Sladistic WELL NO. CR-MU-192 WEATHER: Sample recharge SAMPLE TIME: ////////////////////////////////////	amec ^o groundwater	SAMPLING LOG Page 1 of
WELL PURGING: STATIC WATER LEVEL: 3.15	CLIENT: Baken Huches LOCAT WELL NO. <u>LR-MW.122</u> WEATHER: <u>Son</u> REMARKS: <u>Well goes dry Sample</u>	TION: Bird Machine DATE: 5/22/13 my, warm <u>S</u> AMPLE TIME: 102500 recharge SAMPLER(S): MAM
LENGTH OF SATURATED ZONE:	WELL PURGING: STATIC WATER LEVEL: 3,1	ft. WELL DEPTH:ft.
VOLUME OF WATER TO BE EXACUATED X 3 CASING VOLUMES =	LENGTH OF SATURATED ZONE: linear ft. VC	OLUME OF WATER TO BE EVACUATED: gais.
HEMOVAL ME (HOD: Cecepular (Minimum) PUMPING RATE: m/min. WELL PURGE DATA: $151:16:51a=740:5$ flow down rete down for (Minimum) comments $151:16:5a=20:00.000.0000 000 flow down rete down for (Minimum) flow down rete down for (Minimum) comments 151:16:5a=20:00.000.0000 000 flow down rete down for (Minimum) flow down rete down for (Minimum) comments 151:16:5a=20:000.0000 1:3:5 0:2:5 0:0:0000 0:0:0000 0:0:0000 10:2:5:5a=20:000.0000 1:3:5 0:0:0:0:0000 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:$	VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLU	UMES = gals.
TIME TEMP PH TURB COND. ORP DO tow down down comments TIME TEMP PH TURB COND. ORP DO tow down down down down down and the recharge interval of t	WELL DUDGE DATA. 1416 - Start Purc	PUMPING RATE:ml/min.
$\frac{1}{12} = \frac{1}{12} $	TIME TEMP pH TURB. COND. ORI (C) pH TURB. COND. (mV	IP DO flow draw NP DO rate down COMMENTS V) (ppm) (ml/min) (ft)
$\frac{s_{12}s_{13}^{12} - 157m + 3 \cdot 15'}{2023} \frac{1}{1235} \frac{1}{355} \frac{1}{35} \frac{1}{355} \frac{1}{35} \frac$	14:21- hell day	
$\frac{10:20}{10:25} \cdot \frac{6.26}{collect sample Rective} = \frac{276}{-35} \cdot \frac{1.35}{1.35} \cdot \frac{200}{3.15} = \frac{3.15}{10:25} \cdot \frac{10:25}{collect sample Rective} = \frac{10.25}{collect sample Rective} = 10.$	5/22/13 - 12TW - 3.15'	
SAMPLE WITHDRAWL METHOD: <u>Geopump LEPDE</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(1x350-1 Hws plust.c field f.He.d d.isselve As)</u> <u>Mo Test fit</u> SAMPLE ID NUMBER(s): <u>LR-MW-122</u> DECON METHOD: <u>MA</u> PURGE WATER DISPOSED TO: <u>Grant</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>Curre</u> DATE: <u>5/55/W</u> TIME: CASING CAPACITY (gallons/linear foot) 1°=0.04, 2° = 0.16, 4° = 0.65, 6° = 1.47, 8° = 2.6, 10° = 4.08, 12° = 5.87 Low Flow Stabilization Parameters: pH(s/0.1), Cond (u/324) OBP (u/1000), Turbitize (u/1000)	10:20 16:35 6.26 276 -3. 10:25 - collect Sumple Rechark	5 1.35 200 3.15
SAMPLE WITHDRAWL METHOD: <u>Ceopump Lebs</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(1x3suni Huus pluste field filed disselue As)</u> <u>No Test filt</u> SAMPLE ID NUMBER(s): <u>LB-MW-122</u> DECON METHOD: <u>MA</u> PURGE WATER DISPOSED TO: <u>Grant</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>Cusim</u> DATE: <u>Slas //3</u> TIME: CASING CAPACITY (gallons/linear foot) 1°= 0.04, 2° = 0.16, 4° = 0.65, 6° = 1.47, 8° = 2.6, 10° = 4.08, 12° = 5.87 Low Flow Stabilization Parameters: pH(s/2011, Cond. (s/25%) OBP (s/10m/), D.0. (s/10m/), Turbitation (s/10m/)		
SAMPLE WITHDRAWL METHOD: <u>Beopumps LPDE</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(1x2sun1 Hws plust field filed disseled As)</u> <u>Mo Test field</u> SAMPLE ID NUMBER(s): <u>LR-MW-122</u> DECON METHOD: <u>NA</u> PURGE WATER DISPOSED TO: <u>Gram</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>Cwine</u> DATE: <u>Sb5/w</u> TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(s/d); Cond. (s/3%) OBP (s/10my) D.0. (s/10%) Turbiting (s/10my)		
SAMPLE WITHDRAWL METHOD: <u>Geopunp</u> , <u>LEDE</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(1x2su-1 Hws plust.c field filterd disselve As)</u> <u>Mo Test fit</u> SAMPLE ID NUMBER(s): <u>2R-MW-122</u> DECON METHOD: <u>M</u> PURGE WATER DISPOSED TO: <u>Gram</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>Course</u> DATE: <u>Sis 5 //</u> TIME: <u>CASING CAPACITY (gallons/linear foot)</u> 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: ph(s/60). Cond. (al-3%) OBP (al-10m): D O (a		
$\underline{NG \text{ Test h.t}}$ SAMPLE ID NUMBER(s): <u>LR-MW-122</u> DECON METHOD: <u>MA</u> PURGE WATER DISPOSED TO: <u>Grant</u> SAMPLES DELIVERED TO: <u>Alpha</u> TRANSPORTER: <u>CW.inc</u> DATE: <u>Slo 5 /12</u> $\underline{CASING CAPACITY (gallons/linear foot)}$ 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(4/0.1). Cond. (a/3%). ORP. (a/10mV) D.O. (a/10%). Turbulary (//4.0%).	SAMPLE WITHDRAWL METHOD: <u>Geopump</u> , LPE LABORATORY ANALYSIS, SAMPLE CONTAINERS USED II (/X250-1 HMU3 plustic field file	DE INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
SAMPLE ID $2R - MW - 122$ DECON $METHOD:$ METHOD: ME PURGE WATER DISPOSED $Grand$ SAMPLES DELIVERED TO: $Alpha$ TRANSPORTER: $Guint DATE: Slos lis TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: ph(+/0,1). Cond. (+/3%). OBP (+/10mV) D. D. (+/10%). Turbulation (+/10mV) D. D. (+/10%). $	No Test tut	
SAMPLES DELIVERED TO: $A / p h q$ TRANSPORTER: $COURCE DATE: S / S / I S TIME: TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%) OBP (+/-10mV), D.O. (+/-10mV), D.O. (+/-10mV) $	SAMPLE ID NUMBER(s): 2R-MW-122 DECON METHOD: MA PURGE WATER DISPOSED TO: Grand	
DATE: $5/5 5/3$ TIME: CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), OBP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	SAMPLES DELIVERED TO:Aloha	TRANSPORTER: COULT
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)	DATE: 5/25/12	TIME:
	CASING CAPACITY (g 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%) OBP (=	gallons/linear foot) 7, 8" = 2.6, 10" = 4.08, 12" = 5.87 (-10mV), D.O. ($+(-10%)$ Turbicity ($+(-10%)$)

an	nec	Q	GROU	NDWAT	TER SA	MPLIN	G LOG		Page 1 of
CLIEN	T: <u>Bak</u>	- Au	h- <u>s</u>	LC		: Bird	Machik	<u> </u>	E: 5/24/13
WELL	NO. <u>CR-</u>	MW-12	<u>⊬</u> we	ATHER:	Cloud	1 tenp	605	SAMPLE 1	IME: //://>
REMA	RKS:	Sanpie Fe =	depth 0.0 n	<u>7.0</u>)		S.	AMPLER(S):A
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL: _	2.91	ft.	WELL	DEPTH:	7.75 ft.
LENGT	H OF SATU	RATED ZO	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE E		gais.
VOLUM		ER TO BE E	VACUATED	X 3 CASING	g volume	S =	ga	als.	
			Start 10	<u> </u>	P	UMPING RA	ATE:	120	ml/min.
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
10:46	16.18	6.67	15.7	159	-72	0.75	120	4,03	
<u>/0:5</u> /	15.5 S	6.80	14.4	165	-85	0.14	120	4.03	
<u>10:50</u>	15.50	<u>688</u>	13.3	168	-90	0.12	120	403	
11:0)	15.45	6.92	13.7	167	- 95-	0.11	120	4.03	
<u>11.06</u>	<u>75. 48</u>	<u>6.93</u>	14.1	821	-95	O.(U)	120	4.03	
/ <u></u>	<u>15.37</u>	6.77	<u> </u>	167		0.12	120	4.0	
<u></u>	Correc	T Se Mp	د				<u> </u>		
,									
SAMPLE		WL METHO	D: Ge	gruad					
		NALYSIS, S	AMPLE CON	TAINERS (၃၂၀၂)	JSED INCL $J_est K_i$	UDING NUN + Form	1BER, TYPE s エ〜ハ	$z \left(\circ \cdot \circ \right)$	ERVATIVES:
(1x 250	on Np	plastic	CI-300	NU-30	0 50, -3	iα)		
SAMPLE NUMBER DECON METHOL	: ID R(s): D:		124						
TO:									
SAMPLE	S DELIVER	RED TO:	Aphy			TRANS	PORTER:	Caulte	
DATE:	5/2	9/17		<u></u>		TIME:			
Low Flow S	tabilization	1"= 0.04 Parameters:	CA: 4, 2" = 0.16, pH(+/-0.1), C	SING CAPA 4" = 0.65, 6" ond. (+/-3%),	<i>CITY (gallo</i> ' = 1.47, 8" : ORP (+/-10 r	ns/linear foor = 2.6, 10" = 4 nV), D.O. (+/-1	t) 1.08, 12" = 5 1 0%), Turb idi	i.87 ity (+/-10%)	

ar	nec	0	GROU	INDWAT	ER SA	MPLIN	G LOG		Page 1 of
CLIEN	IT: Bak	o-Hust	1-5	LC	CATIO	N:_Bird	Machi		E: 8/29/13
WELL	NO. LR-	-mn -12	<u> </u>	ATHER:	clark	it enpin	605	SAMPLE .	TIME: Ja: 25
REMA	RKS: <u>5</u>	Te =	0.0	ay'			S	AMPLER	(S):
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL:	1.7	ft.	WELL	DEPTH:	25.32 ft.
LENGT	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE E		: gals.
			VACUATED	X 3 CASING	à Volume	S =	ga	uls.	
WFII			tunt 11:	55			ATE:	120	ml/min.
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1205	1472	6.73	3.22	317	51	2.15	120	1.00	
1210	14.63	6.72	2.90	315	94	0.18	120	1.00	
1215	14.68	6.72	225	314	45	0.13	120	1.80	
1220	-celled	<u>6.72</u> - <u>Sur</u>	<u>1.42</u> 4	314	42	0,11	120	1.20	
									<u> </u>
· · · · · · · · · · · · · · · · · · ·						<u></u>			
SAMPLI		WL METHO	D: <u>C</u> e	opnp					
LABO	RATORY AN	IALYSIS, SA	AMPLE CON	TAINERS U	SED INCL	UDING NUN	IBER, TYPE	, AND PRES	ERVATIVES:
_(3X40n	Hel (JUA 5260	13) Fiel	AKIL	Fæmis	Iruy =	0.0ms	IL
	(1x250	NINP	plastic	C1-300	QAD-300	, Soy - 30)		
SAMPLE	EID R(s):R	-Mh	- 12 5						
DECON METHO	D:								
PURGE TO:	WATER DIS	POSED							
SAMPLE	ES DELIVER	ED TO:	Alphu			TRANS	PORTER:	Courte	-
DATE:	5/20	n/13				TIME:			
Low Flow 9	Stabilization 5	1"= 0.04	CAS , 2" = 0.16, 4	SING CAPAC 4" = 0.65, 6" :	CITY (gallo = 1.47, 8" :	ns/linear foor = 2.6, 10° = 4	t) 1.08, 12" = 5	.87	

GROUNDWATER SAMPLING LOG Page 1	of					
CLIENT: Baker Hughes LOCATION: Walpole MA DATE: 61	4/13					
WELL NO. MB-MW-360 WEATHER: SUN 75"F SAMPLE TIME:	1325					
REMARKS: [Fe = 0.0 m. 12] SAMPLER(S):_~	10					
WELL PURGING: STATIC WATER LEVEL: 4.68 ft. WELL DEPTH: 11.8 ft. LENGTH OF SATURATED ZONE: 7.12 linear ft. VOLUME OF WATER TO BE EVACUATED: $\sim A$ gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\sim A$ gals. REMOVAL METHOD: $PE Gista Ibic PE mag PE mag$						
WELL PURGE DATA:						
TIME TEMP pH TURB. COND. ORP DO rate down COM (C) pH (NTU) (µS/cm) (mV) (ppm) (ml/min) (ft)	MENTS					
1230 12.01 6.43 400 174 20.8 1.46 200 4.81'						
1245 12.96 6.29 145 145 37.2 0.97						
1300 13.65 5.99 15.1 98 100.3 1.63						
1310 13.40 6.00 10.0 89 101.1 1.64						
1315 13.25 6.01 5.0 87 102.9 1.65						
1320 13.41 6.01 4.62 88 104.0 1.66						
Jample 13 00 00 88 105.7 1.66						
1325 13.44 6.01 4.00 88 109.6 1.66						
Sample 1325						
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIN <u>voc 8260 (3x 40 ml von 14cl); 504, cl, NO3 (1x 250 ml plastic</u>	/ES: ~P)					
SAMPLE ID NUMBER(s): <u>MB-MW-360</u> DECON METHOD: <u>liquinox</u> <u>disposable tubing</u> PURGE WATER DISPOSED TO: <u><u>q</u> cound</u>						
SAMPLES DELIVERED TO: Alpha TRANSPORTER:M						
DATE: 614/13 TIME:PM						
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)						

an	nec	O	GROU	INDWAT	TER SA	MPLING	G LOG		Page 1 of
CLIEN	T: B.K.	- Hu, h	. <	LC	OCATION	:_B.re	Mach. ~		re: 614/13
WELL	NO. <u>MB</u>	-Mn 361	WE	ATHER:	Sunn	y Jenp	1733	SAMPLE	TIME: 1310
REMA	RKS:	e= 0.0	denth proll	720'	Two has 1	int he	<u> </u>	AMPLER	(S): <u>MAY</u>
WELL	PURGIN	G: ST/	ATIC WATE	R LEVEL: _	5.05	ft.	WELL	DEPTH:	24.5_ft.
LENGTI	H OF SATU	RATED ZON	NE:	linear ft.	VOLUI	E OF WAT	ER TO BE E): gals.
VOLUM	E OF WATE		ACUATED	X 3 CASING	g volume	S =	ga	als.	
REMOV	AL METHO	D: <u>(}</u>	upurf		P	UMPING RA	ATE:	120	ml/min.
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1130	11.12	6.57	56.1	172	146	0.19	120	7.82	Tu-b.cl.ty
1145	11.25	6.84	75.3	159	173	0,24	120	2.92	(an up?
1155	11.20	6.87	89.1	162	168	0.25	120	7. 11	
RUS	11.35	$\frac{6.82}{6.82}$	102	1582	153	0,21	120	8.05	
1225	10.75	6.82	125	157	139	$\frac{O}{D}$	120	8.41	
1255	10,86	$\frac{6\cdot 7}{7}$	130	<u>13 -7</u> <u>tssa</u>	127	$\frac{O_1 \cdot S_1}{O_1 \cdot S_1}$	Jac	0.01	
1300	1073	6.77	131	153	127	0.31	120	863	
1305	70:77	6.76	99	152	125	0.32	12	8.17	
SAMPLE	E WITHDRA RATORY AN	WL METHO NALYSIS, SA	D: Ge AMPLE COP	NTAINERS (JSED INCL		IBER, TYPE	E, AND PRES	SERVATIVES:
(IXLS	URLN	P plast.	L ((, 50%	NUS)			
Sample Number Decon Methor Purge	E ID // R(s): D: WATER DIS	13 - M	~ - 36)					
TO:		C.	ung						
SAMPLE	S DELIVER	RED TO:	Ma	η		TRANS	Porter:		
DATE:						TIME:			
Low Flow S	Itabilization	1"= 0.04 Parameters:	<i>CA</i> , 2" = 0.16, pH(+/-0.1), C	SING CAPA 4" = 0.65, 6" ond. (+/-3%),	<i>CITY (gallo</i> ' = 1.47, 8" : ORP (+/-10 r	ns/linear foo = 2.6, 10" = 4 nV), D.O. (+/-	t) 4.08, 12" = 5 1 0%), Turbid i	.87 ity (+/-10%)	· · · · · · ·

an	nec		GROU	INDWAT	'ER SA	MPLING	G LOG	F	Page 1 of
CLIEN	T: Bat	e- Hyhi	<u>.</u>	LC	OCATION	: Bira	Mach.	DATE	5/30
WELL	NO. <u>MI3</u>	-mn -31	WE	ATHER:	Sunni	, no-1		SAMPLE T	ME: 1415
REMA	rks:<u>S</u> F	e-rous -	- path 17 Inun 2	10.0m	sic]	S	AMPLER(S	s): <u>MAM</u>
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL:	2.70	ft.	WELL	DEPTH: /	7-55 #
LENGT	I OF SATU	RATED ZON	NE:	linear ft.	VOLUI		ER TO BE E		cals.
VOLUMI	E OF WATE	R TO BE E	VACUATED	X 3 CASING	A VOLUME	S =	ga	als.	30.101
REMOV	AL METHO	D:(Fedany	<u>s</u>	P	UMPING RA	TE:	150	ml/min.
WELL I	PURGE [DATA:	Start til	ne 13:2.	<u>Σ</u>				
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
<u>_225</u>	18.96	6.51	7.75	245		1.200	150	2.70	
1337	<u>K.29</u>	6.54	3.88	245	102	0.86	150	2.70	
1342	15.98	6253	9.74	244	pg	0.48	150	2.70	
1347	15.60	6-54	4.25	246	76	0.35	1SC	2.70	
1352	15.97	6.55	4.55	241	70	0.42	150	270	
1387	16014	6.03	4-61	245	63	0.24	150	2.76	
1402	12.15	6.54	3.11	245		8,21	150	220	
120)	16.0L	634	3.85	245	57	0.21	150	2.70	
1412	12,47	6-0-1	3.91	244	-18	6.50	150	2.20	
SAMPLE LABOF		WL METHO NALYSIS, SA	D: <u>Gee</u>	NTAINERS L	JSED INCL		IBER, TYPE	E, AND PRESE	RVATIVES:
<u> </u>	x250 ~	~1 Nep	lost.	C1-300,	Say-30	of sources	-300)	Sesi	
SAMPLE NUMBER DECON METHOE PURGE	ID R(s): <u>MB</u> D: WATER DIS	SPOSED	.362						
			Alone			TDANO		(873. h	
DATE:		IV	- price	1. I 1.2		TIME:			
Low Flow S	tabilization I	1"≈ 0.04 Param eters :	<i>CA</i> , 2" = 0.16, pH(+/-0.1), C	SING CAPA(4" = 0.65, 6" ond. (+/-3%),	<i>CITY (gallo</i> = 1.47, 8" : ORP (+/ -10r	ns/linear foor = 2.6, 10" = 4 nV), D.O. (+/-1	t) 4.08, 12" = 5 1 0%), Turbid	5.87 ity (+/-1 0%)	

GROUNDWATER SAMPLING LOG Page 1 of
CLIENT: BakerHushes LOCATION: Bindmachin DATE: 5/3 1 WELL NO. MB-MW 363 WEATHER: Summy SAMPLE TIME: 1215
REMARKS: [Fe = 0.0 ms 1] SAMPLER(S): Mm
WELL PURGING: STATIC WATER LEVEL: 1.07 ft. WELL DEPTH: 1.50 ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gais. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES ≈ gais.
WELL PURGE DATA:
TIME TEMP (C) pH TURB. (NTU) COND. (µS/cm) ORP (mV) DO (ppm) flow rate (mI/min) draw down (mI/min) // ५५ // ५५ 5.23 // 3 98 2.1 1.3 1.3
1154 19.63 6.70 5.30 112 94 1.98 120 1.30
1204 19.57 6.69 4.95 111 91 1.87 1.0 1.31
1214 14.64 6.68 4.00 111 91 1.78 120 1.31
1215-cullent Sa-ph
SAMPLE WITHDRAWL METHOD: DEORIA
LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
(3X-10 MI Hel WA PX60) Test Kit = Ferrors Iron (0.0m, 10)
(1x ascul NPPluduc CI, Sci, Nos)
SAMPLE ID NUMBER(s): MB - MN - 363
METHOD:
TO:
SAMPLES DELIVERED TO: MA Alpha TRANSPORTER: MA
DATE: TIME:
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

an	neo	0	GROU	NDWA	TER SA	MPLIN	g log		Page 1 of
CLIEN WELL	CLIENT: Baken Huches LOCATION: Bind Machine DATE: 5/22/13 WELL NO. MB-MW-37/ WEATHER: Showers, Jenp in 603 SAMPLE TIME: 0928								
REMA	RKS:	rbid, 4	"well.	Sangled.	epth 8		S	SAMPLER(S): <u>MAM</u>
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL: _	2.80	ft.	WELI	L DEPTH:	9.92 ft.
LENGT	H OF SATU	RATED ZO	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE	EVACUATED	gais.
	E OF WATE		VACUATED	X 3 CASIN	G VOLUME	S =	g	als.	
			OT YG	1. 1000	P	UMPING R/	ATE:		ml/min.
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate	draw down	COMMENTS
0803	16.40	6.23	77.5	145	210	6.13	160	2.85	
6818	16.22	6.29	76.0	105	200	4.79	140	2.85	
0828	16.12	G.31	72.2	92	203	3.78	160	2.85	
6938	16.07	6.32	70.9	85	203	3.22	160	2.95	
0245	16.01	6.32	64.3	89	202	3.51	160	2.85	
0855	16.10	6.33	57.1	95	204	2.82	160	2.85	
0905	16.03	6.34	<u>56.7</u>	103	202	2.47	160	285	
0915	16.03	6.36	51.3	1cs	197	2.46	160	2.85	
0920	1601	6.33	51.4	109	196	2-47	160	2.85	
SAMPLI LABO SAMPLE	SAMPLE WITHDRAWL METHOD: <u>Geopenp</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>(1x2som1 HNoz Fielu f. Herch dissolven Az</u>)							ERVATIVES:	
NUMBE DECON METHO PURGE	R(s): D: WATER DIS	M I3 - A	<u> </u>	1					
TO:	<u> </u>								
SAMPLE	ES DELIVER	RED TO:	Alph	د		TRANS	PORTER:_	Could	-
DATE:	2)	29/13	· · · · · · · · · · · · · · · · · · ·			TIME:			
Low Flow S	Stabilization	1"= 0.04 Parameters:	CA: , 2" = 0.16, 4 pH(+/-0.1), C	SING CAPA 4" = 0.65, 6 pnd. (+/-3%),	ACITY (gallo " = 1.47, 8" : , ORP (+/-10m	ns/linear foo = 2.6, 10" = 4 nV), D.O. (+/-	t) 4.08, 12" = { 1 0%), Turb ld	5.87 lity (+/-10%)	

ě.

GROUNDWATER SAMPLING LOG Page 1 of
CLIENT: Baker Hugher LOCATION: Walpole, MA DATE: 6/3/13
WELL NO. <u>MB-MW-374</u> WEATHER: <u>منم عالم جوالح</u> SAMPLE TIME: 1300
REMARKS: Fe = 0.63 mg/L SAMPLER(S): ~0
WELL PURGING: STATIC WATER LEVEL: 6.95 ft. WELL DEPTH: 28.55 ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED:A gais.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\[\begin{subarray}{c} \end{subarray} \end{subarray} gals. \end{subarray}$
REMOVAL METHOD: <u>Peristaltic pump</u> PUMPING RATE: <u>250</u> ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (µS/cm) (mV) (ppm) (m/min) (ft)
1200 17.14 7.05 30.6 290 14.2 7.44 250 6.90'
1215 16.82 6.88 11.2 269 6.2 1.16
1230 16.39 6.87 9.19 257 7.3 1.08
1240 16.22 6.86 8.46 258 13.8 0.64
1250 16.47 6.86 8.10 257 13.6 0.62
1255 17.01 6.85 7.94 257 13.0 0.62
1300 17.20 6.85 7.68 257 13.8 0.61
Sample 1300
SAMPLE WITHDRAWL METHOD: EPA 10 - flow LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
Voc 8260 (3x 40 ml voa Hci): 504 CL NO3 (1x 250 ml plastic Np):
dissolved gases (2x vial HCI)
SAMPLE ID NUMBER(s): <u>MB - MW - 374</u> DECON
METHOD: liquinex disposable tubing
PURGE WATER DISPOSED
SAMPLES DELIVERED TO: ////pha TRANSPORTER: MM DATE: 6/3/13 TIME: PM
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

GROUNDWATER SAMPLING LOG	Page 1 of
CLIENT: Baker Hughes LOCATION: Walpole, MA	DATE: 5/30/13
WELL NO. NP-MW-601 WEATHER: SUD 85"F SA	MPLE TIME: 10:40
REMARKS: Fe=0.0 msil SAM	//PLER(S):∕♪
WELL PURGING: STATIC WATER LEVEL: 15,43 ft. WELL DE	:PTH: <u> </u>
LENGTH OF SATURATED ZONE: 13.0 linear ft. VOLUME OF WATER TO BE EVA	CUATED: <u>~ 4</u> gals.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = A/A gals.	
REMOVAL METHOD: <u>Peristaltic Pump</u> PUMPING RATE: <u></u>	<u>150ml/min.</u>
TIME TEMP (C) TURB. COND. ORP DO rate (mV)	draw down (ft) COMMENTS
0950 16.38 6.47 18.6 197 74.0 8.61 250	15.51
1005 15.86 6.44 3.19 193 61.0 0.84 1	<u> </u>
1020 15.52 6.50 2.24 196 34.2 0.39	
1030 16.01 6.52 2.04 195 22.6 0.38	
1035 16.21 6.53 1.97 194 18.4 0.37	
1040 16.04 6.54 1.77 194 13.9 0.37	
sample 10:40	• · · · · · · · · · · · · · · · · · · ·
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AL <u>VOC 8260 (3 × 40 ml von HCI); CI 504, NO3 (1 × 250 ml</u>	ND PRESERVATIVES: plastic ~p)
SAMPLE ID NUMBER(s): <u>NP-MW-601</u> DECON METHOD: <u>disposable troing</u> liquinex PURGE WATER DISPOSED TO: <u><u>q</u>round</u>	
SAMPLES DELIVERED TO: Alpha TRANSPORTER:	Courier
DATE: 5/30/13 TIME: PM	
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%). Turbidity (+/-10%)

GROUNDWATER SAMPLING LOG Page 1 of
CLIENT: Baker Hugher LOCATION: Walpole MA DATE: 5/30/13
WELL NO. NP-MW- 602 WEATHER: SUN, 85° 5 SAMPLE TIME: 11:40
REMARKS: Dup collected SAMPLER(S): NO
WELL PURGING: STATIC WATER LEVEL: 10.38 # WELL DEPTH: 17.55 #
LENGTH OF SATURATED ZONE: 7.17 linear ft. VOLUME OF WATER TO BE EVACUATED: A/A gais
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = \sqrt{A} gais.
REMOVAL METHOD: Peristaltic funp PUMPING RATE: 250 ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (μS/cm) (mV) (ppm) (ml/min) (ft)
1050 16.06 6.36 25.2 146 110.1 9.80 250 W 10.40'
1105 14.34 6.35 6.55 138 92.3 7.61
1120 14.53 6.34 4.25 137 85.9 7.34
1130 14.81 6.34 4.01 136 83.2 7.30
1135 14.91 6.34 3.94 136 82.4 7.31
1140 14.33 6.33 3.79 136 82.0 7.30
sample 11:40
SAMPLE WITHDRAWL METHOD: EPA low flow LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: Voc 8260 (3× voa via) 40 ml Hc)); 504, cl, NO3 (1× 250 ml plastic)
SAMPLE ID NUMBER(s): <u>NP-MW-602 DP</u> DECON METHOD: <u>disposable tubing (liquinex</u> PURGE WATER DISPOSED TO:
SAMPLES DELIVERED TO: Alpha TRANSPORTER:
DATE: 5/30/13 TIME: PM
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

GROUNDWATER SAMPLING LOG

	CLIENT: Baker Hughes LOCATION: Walpole MA DATE: 5/30/13 WELL NO. NP-MW-603 WEATHER: Sup 85°F SAMPLE TIME: 8:15
	REMARKS: $Fc = 0.0m s IL$ SAMPLER(S): NO
	WELL PURGING: STATIC WATER LEVEL: 10.90 ft. WELL DEPTH: 3.80 ft.
	LENGTH OF SATURATED ZONE: <u>12.90</u> linear ft. VOLUME OF WATER TO BE EVACUATED: <u>NA</u> gals.
	VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = \underline{NA} gals.
	TIME TEMP (C) TURB. COND. ORP DO flow draw TIME (C) pH TURB. COND. ORP DO rate down COMMENTS
5130	1150 Pumping well dry
	1210 Well dry
2/31	0815 14.80 7.43 8.29 212 30.4 6.48 250 NA
	Sample 0815
	SAMPLE WITHDRAWL METHOD: EPA low flow
	LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
	Voc 8260 (3× 40 ml von Hel); CI, 504, NO3 (1× 250ml plastic NA)
8	SAMPLE ID NUMBER(s): <u>NP-Mw-603</u>
	METHOD: disposable tubing liquinox
	PURGE WATER DISPOSED
	SAMPLES DELIVERED TO: Alaba TRANSPORTER Courses
	DATE: 5/31/13 TIME: 6M
┣	
	1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
	Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV). D.O. (+/-10%). Turbidity (+/-10%)
L	

GROUNDWATER SAMPLING LOG Page 1 of
CLIENT: Raker Hugher LOCATION: Walpole MA DATE: 5/28/13/5/2
WELL NO. MW-700 WEATHER: SAMPLE TIME: 14:00
REMARKS: Fezo.on, IL SAMPLER(S):
WELL PURGING: STATIC WATER LEVEL: 15.81 ft. WELL DEPTH: 21.90 ft.
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.
REMOVAL METHOD: PUMPING RATE:ml/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (μS/cm) (mV) (ppm) (ml/min) (ft)
1350 Begin Purging Well dry
1420 Well dry.
1400 12.89 7.20 12.10 164 112.8 8.01 250 NA
Sample 1400
SAMPLE WITHDRAWL METHOD: EPA Low flow LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: Voc 8260 (3x 40 ml voa Hcl); cl, No 3, 504 (1x 250 ml plartic pooprer)
SAMPLE ID NUMBER(s): M/J - 706
METHOD: liquinex / disposable tubing
PURGE WATER DISPOSED
SAMPLES DELIVERED TO: Alpha TRANSPORTER Courier
DATE: 5/29/13 TIME: PM
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

5/29

amec⁰

GROUNDWATER SAMPLING LOG

Page 1 of ____

	CLIENT: <u>Baker Hughes</u> LOCATION: <u>Walpole MA</u> DATE: 5/29/13 \$130/13 WELL NO. <u>MW-701</u> WEATHER: <u>Sun / Clouds 75° F</u> SAMPLE TIME: 8:10
	REMARKS: Fezo.omsc SAMPLER(S): ~0
	WELL PURGING: STATIC WATER LEVEL: 17.04 ft. WELL DEPTH: 22.70 ft.
	LENGTH OF SATURATED ZONE: <u>5.66</u> linear ft. VOLUME OF WATER TO BE EVACUATED: <u>A</u> gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = <u>A</u> gals. REMOVAL METHOD: <u>ورزه امالاند اسمو</u> PUMPING RATE: <u>م</u> و mi/min.
	WELL PURGE DATA:
	TIME TEMP (C) pH TURB. (NTU) COND. (µS/cm) ORP (mV) DO (ppm) flow rate (ml/min) draw down (ml/min)
*9	14:40 well dry
j o	08:10 12.90 7.40 19.2 135 106.1 9.26 250 NA
	SAMPLE WITHDRAWL METHOD: EPA low flow
	LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: VOC 8260(3× 40 ml vor Hc1); C1, NO3, 504 (1× 250 ml plastic NP)
×	SAMPLE ID NUMBER(s):
	DECON METHOD: <u>disposable tubing liquinox</u> PURGE WATER DISPOSED
	SAMPLES DELIVERED TO: Alpha TRANSPORTER Causies
	DATE: 5/30/31 TIME: PM
	CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
	Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

GROUNDWATER SAMPLING LOG Page 1 of 1
CLIENT: <u>Baker Hughes</u> LOCATION: <u>Walpok MA</u> DATE: <u>5/29/13</u> WELL NO. <u>MW-JO25</u> WEATHER: <u>Clouds /sun 75°P</u> SAMPLE TIME: <u>13:55</u> REMARKS: <u>Fezo.ons</u> SAMPLER(S): <u>NO</u>
WELL PURGING: STATIC WATER LEVEL: 14.95 ft. WELL DEPTH: 21.15 ft. LENGTH OF SATURATED ZONE: 6.2 linear ft. VOLUME OF WATER TO BE EVACUATED: $\sim A$ gals. VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\sim A$ gals. REMOVAL METHOD: $\frac{9e_{ris}}{2} \frac{11e_{ris}}{11e_{ris}}$ PUMPING RATE: 250 mi/min.
WELL PURGE DATA: TIME TEMP (C) pH TURB. (NTU) COND. (µS/cm) ORP (mV) DO (ppm) flow rate (mV/min) draw down (ft) COMMENTS 1305 13.62 6.39 136 106.2 4.68 250 15.0 ⁴ 13260 13.18 6.27 6.0 126 112.7 4.21 1 1335 12.82 6.26 4.78 122 116.0 4.19
Voc 8260 (3× 40 ml voa 14c1); CI, S04, NO3 (1×250 ml plastic non preserved) SAMPLE ID NUMBER(s): MW-702 S DECON METHOD: disposable tubing / liquinox PURGE WATER DISPOSED TO: ground SAMPLES DELIVERED TO: Alpha TIME: pm CASING CAPACITY (gallons/linear foot)
$1^{"}= 0.04, 2^{"}= 0.16, 4^{"}= 0.65, 6^{"}= 1.47, 8^{"}= 2.6, 10^{"}= 4.08, 12^{"}= 5.87$ Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

GROUNDWATER SAMPLING LOG Page	1 of
CLIENT: Baker Hughes LOCATION: Walpole MA DATE:	5/29/13
WELL NO. MW-702D WEATHER: Clouds 70°F SAMPLE TIME:	12:55
REMARKS: Fe = 0. cm 1 SAMPLER(S):	ND
WELL PURGING: STATIC WATER LEVEL: 15.57 ft. WELL DEPTH: 28.97	ft.
LENGTH OF SATURATED ZONE: 13.4 linear ft. VOLUME OF WATER TO BE EVACUATED:A	gals.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\underline{~~}$ gals.	_
REMOVAL METHOD: <u>peristaltic pump</u> PUMPING RATE: <u>250</u>	ml/min.
TIME TEMP (C) TURB. COND. ORP DO flow draw TIME (C) pH TURB. COND. ORP DO rate down CO	MMENTS
1210 13.80 6.92 3.13 228 168.5 429 250 15.59'	
1225 13.04 6.34 2.98 215 91.1 3.30 1 15.65'	
1270 12.90 6.33 2.90 213 87.2 2.55 15.69	
1245 13.15 6.32 2.92 212 88.0 2.51	
1250 13.10 6.32 2.86 212 88.2 2.48	
1255 13.08 6.32 2.88 211 88.4 2.47	
<u>sample 13:55</u>	
SAMPLE WITHDRAWL METHOD: <u>EPA</u> <u>low</u> flow LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVAT <u>Voc 8260 (3×40 ml vial Hcl); Cl, SO4, NO3 (1×250 m) plastic non preserv</u>	 اVES: وکم)
SAMPLE ID NUMBER(s): <u>MW-702D</u> DECON METHOD: <u>disposable tubing liquinex</u> PURGE WATER DISPOSED TO: <u>ground</u>	-
SAMPLES DELIVERED TO: Alpha TRANSPORTER: Courier	
DATE: 5/29/13 TIME: PM	
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%). Turbidity (+/-10%)	

an	nec	0	GROU	NDWA	TER SA	MPLING	G LOG		Page 1 of
CLIEN	T: <u>Bak</u>	er Hugh	٤٢	LC	OCATION	1: Walpo	le MA	DAT	E: 5/3.113
WELL	NO <u>M</u> v	J-702B	WE	ATHER:	SUN	50°5	Ś	SAMPLE T	IME: 9:35
REMA	RKS:	Fe	20.00	nsL	· >		S.	- AMPLER(S):
WELL	PURGIN	G: ST/	ATIC WATE	R LEVEL: _	14.65	ft.	WELL	. DEPTH:3	8.30 ft.
LENGTI	H OF SATU	RATED ZON	IE: <u>23.6</u>	5_ linear ft.	VOLUN	IE OF WAT	ER TO BE E	EVACUATED:	gals.
VOLUM	E OF WATE	R TO BE E	ACUATED	X 3 CASIN	g volume	S =	<u>A</u> ga	als.	
REMOV	AL METHO	D: <u> </u>	istaltic	pump	P	UMPING R/	ATE:	250	mi/min.
		pH		COND.	ORP (mV)	DO (maa)	flow rate	draw down	COMMENTS
8:45	14.35	6.83	303	298	44.5	7.79	(mvmin)	(π)	
9:00	15.74	6.54	8.50	250	31.0	1.33	200		
9:15	16.00	6.52	4.59	248	30.1	1.31	1		
9:25	15.82	6.51	4.44	248	29.2	1.29	1		
9:30	15.79	6.51	4.33	247	29.0	7.27			
9:35	15.88	6.51	3.09	247	28.6	1.26			
50	w b/b o	1:35					¥	¥	
SAMPLE LABOI ۶ کمور ۱	E WITHDRA RATORY AN Voc (3 x)	WL METHO IALYSIS, SA V ar 40 M	D: EPA AMPLE CON NI (4C1)		<u>flo₩</u> JSED INCL 04, ~03		NBER, TYPE -So m/ p)	E, AND PRESI	ERVATIVES:
SAMPLE NUMBER DECON METHOD PURGE	E ID R(s):M D: WATER DIS	(-702B orable to POSED	iting /1	نوين مو×					
то:			2 TOUND		<u> </u>				
SAMPLE	S DELIVER	ED TO:	/tipha	·····		TRANS	PORTER:	Courie PM	<u>۲</u>
Low Flow 9	Stabilization F	1"= 0.04 Parameters:	CAS , 2" = 0.16, 4 pH(+/-0.1), Co	SING CAPA 4" = 0.65, 6" ond. (+/-3%),	<i>CITY (gallol</i> ' = 1.47, 8" = ORP (+/-10n	ns/linear foo = 2.6, 10" = 4 nV), D.O. (+/-	<i>t)</i> 4.08, 12" = 5 10%), Turbidi	5.87 Ity (+/-10%)	

С	LIEN	т: <u>В</u>	alter	Hugh	185	L(OCATION	N: Walpoli	MA	DA1	TE:6/4/13
N	VELL	NO^	W	703 5	<u> w</u>	EATHER:	Sun	65°F	Ś	SAMPLE .	داءا،ع TIME: ٥٢
R	EMAI	RKS:	0 0.						S/	AMPLER	(S): <u>N</u> P
W	ELL I	PURGI	NG:	ST	ATIC WAT	ER LEVEL: _	4.45	ft.	WELL	DEPTH:	16.81
L	ENGTH	OF SAT	URAT	ed zor	NE: 12.3	6 linear ft.	VOLU	ME OF WAT	er to be e		: <u>^^</u>
			TER TO	DBEE		D X 3 CASIN	IG VOLUME	S =^	<u>vA</u> ga	ıls.	
					istaltic	pomp	F	PUMPING R/	ATE:	700	ml/mi
		TEMP (C)		pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
<u>0</u>	820	Purg	ting_	well	dry	<u></u>					
0	<u>845</u>	well	dry						-		
) כד	18.08	<u>c rec</u>	109	310	294	642	4 07	340		
				<u> </u>			<u> </u>				<u>_</u>
_											
-											<u> </u>
-		_									
s	AMPLE		RAWLI	METHO	D:	FPA low .	flow				
	LABOF	ATORY	ANALY	'SIS, S/	AMPLE CO	ONTAINERS	USED INCL		MBER, TYPE	E, AND PRES	SERVATIVES:
		dissolu	<u>ed A</u>	v (1	× 250	ml plast	ic HNO	3)			
	<u></u>					· · · · ·	· · · · · · · · · · · · · · · · · · ·				
S. N	AMPLE UMBEF	ID R(s):^	<u>1</u> w-	703	1						
D M	econ Iethod):	ligu	in•X	dispos	cable tubi	09				
P(VATER [DISPOS	SED	0		0				
	0 AMPI F	S DEI IVI	ERED	<u>то:</u>	Alol	NA		TRANG		~^^	
D	ATE:		(61511	3			TIME		AM	<u> </u>
								· · · · · · · · · · · · · · · · · · ·		<u>···</u>	

ł	CLIENT: Bake-Houses LOCATION: Bindmaching DATE:
	WELL NO. MW-7045 WEATHER: Sunny, Jenp 10705 SAMPLE TIME: 8:10
	REMARKS: hell dandown Sample rechard SAMPLER(S): NP
Γ	WELL PURGING: STATIC WATER LEVEL: 3.8 5 ft. WELL DEPTH: /0.0
	LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED:
	VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.
h	NELL PURGE DATA
F	TIME TEMP pH TURB. COND. ORP DO rate down COMMENT (C) pH (NTU) (µS/cm) (mV) (ppm) (ml/min) (ft)
2	1045 -start hell drawn down
ŀ	
-	08:10 (Sample recharge
ŀ	<u> </u>
	SAMPLE WITHDRAWL METHOD: Geograp
	LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES:
	(3×40ml Hel Vol 8260)
	(1x DSONIM plastic CI, Nos Soy)
	SAMPLE ID NUMBER(s): MW. 704 S
	PURGE WATER DISPOSED
	SAMPLES DELIVERED TO: Adong TRANSPORTED:
	DATE: TIME

an	nec	0	GROU	NDWAT	ER SA	MPLINC	G LOG	•	Page 1 of
CLIEN	T:	her H.	shes	LC	CATION	: Bird	Machin	DATI	: G/4/13
WELL	NO. <u>_^v</u>	~ -7046) WE		Sunni	1, temp.	nos e	SAMPLE T	IME: 1040
REMA	RKS:	e= 0	Oruil	Tung He	er lin	.+		AMPLER(S	s): MAn
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL: _	2.85	ft.	WELL	DEPTH:	21 ft.
LENGT	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE E	EVAÇUATED:	gais.
VOLUM	E OF WATE	R TO BE E	VACUATED	X 3 CASING	G VOLUME	S =	ga	als.	
REMOV	AL METHO	D:	reopin	ſ	P	UMPING RA	TE:	120	ml/min.
WELL	TEMP	DATA:	Startin	~ 4 8 1 3 1 COND.	ORP	DO	flow	draw down	
	(C)	Car	(NTU)	(µS/cm)	(mV)	(ppm)	(ml/min)	(ft)	COMMENTS
Glack	/1.16	7.07	<u> </u>	302	182	0.43	120	2115	
0400	// > /	7.07	131	200	91	0.13	120	215	
<u>015</u>	11 55	713	$\frac{169}{271}$	301	9)		120	3.63	
0433	11.26	7.13	$\frac{211}{233}$	301	GF	0.14	120	3.65]
0943	11,32	7.13	185	302	9~1	0.13	120	3.60	
0953	11.25	7.14	96.4	303	96	0.11	AU	3.60	
1003	11.501	7.14	78. 1	303	26	0.15	120	3.65	
1013	11.15	7,13	60.3	304	99	0.14	120	30	
1033	11.23	7.13	37.5	307	92	0.15	120	3.65	
SAMPLI	EWITHDRA	WL METHO	D: 600	opinp					
LABO	RATORY AN	IALYSIS, S	AMPLE CON	NTAINERS L	ISED INCL		IBER, TYPE	E, AND PRESE	RVATIVES:
<u> </u>	3×-10,	-1 Hel	Voc 8	2603)	Cax	20ml	Hel ch	selver	598 . 5
(Ixasc	un INF	Plushe	- CI, NC	13,50)				
Sample Number Decon	E ID R(s):	lu=70	чP						
METHO									
TO:		Gr	n.l		<u> </u>				
SAMPLE	ES DELIVER		MAN			TRANS	PORTER:		
DATE:						TIME:	10		
		1"= 0.04	CA: I, 2" = 0.16, 4	SING CAPA 4" = 0.65, 6"	<i>CITY (gallo</i> = 1.47, 8" :	ns/linear foot = 2.6, 10" = 4	;) I.08, 12" = 5	.87	
Low Flow §	Stabilization F	Parameters:	pH(+/-0.1), C	ond. (+/-3%),	ORP (+/-10	n V), D.O. (+/- 1	0%), Turbidi	ity (+/-10%)	

an	nec	0	GROU	NDWAT	TER SA	MPLING	G LOG		Page 1 of _1
CLIEN	IT: <u> </u>	aker H.	ights	LC	OCATION	1: Walpo	le, MA	DA1	E: 6/4/13
WELL	NO	W- 705	<u>s</u> WE	EATHER:	Sun To	°F		SAMPLE	TIME:4:30
REMA	RKS:						S	AMPLER((S):0
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL: _	4.25	ft.	WELL	_ DEPTH:	17.25_ft.
LENGT	H OF SATU	RATED ZO	NE: <u>13.0</u>	linear ft.	VOLUN	E OF WAT	ER TO BE	EVACUATED	: <u> </u>
VOLUM	E OF WATE	R TO BE E	VACUATED	X 3 CASIN	g volume:	S =	Ag	als.	
REMOV	AL METHO	D:	ristattic p	ump	P	UMPING R/		250	ml/min.
WELL	PURGE I	DATA:							
TIME	TEMP (C)	рН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
0850	16.15	6.48	50.0	229	81.0	8.96	220	4.30'	
0905	15.55	6.13	8.40	551	93.1	0.36		4.37'	
0920	15.43	6.13	4.91	207	102.2	6.23			
0925	15.42	6.13	4.80	207	103.1	0.27			
0930	15.60	6.12	3.91	206	104.8	0.27			
<u> </u>	mple oc	130	<u></u>				¥	<u> </u>	
		<u> </u>					<u></u>		
SAMPLE LABOI	E WITHDRA RATORY AN 550/ved	WL METHO NALYSIS, S As (1x	DD: <u>EP</u> AMPLE CO	<u>A lew f</u> NTAINERS (plastic	USED INCL	UDING NUN	IBER, TYP	E, AND PRES	SERVATIVES:
SAMPLE NUMBEI DECON METHOI PURGE TO:	E ID R(s):/^\კ D:ბ.ა WATER DIS	- 705	s tubing cound "	(liqui, a	×				
SAMPLE	ES DELIVER	RED TO:	Alpha			TRANS	PORTER:_	MM	
DATE:	6	14/13		. 1	·	TIME:	PN	<u>۱</u>	
Low Flow S	Stabilization	1"= 0.0 Parameters:	<i>CA</i> 4, 2" = 0.16, pH(+/-0.1), C	SING CAPA 4" = 0.65, 6" cond. (+/-3%),	CITY (gallo) " = 1.47, 8" : , ORP (+/-10m	ns/linear foo = 2.6, 10° = 4 nV), D.O. (+/-	t) 4.08, 12" = : 1 0%), Turbi c	5.87 lity (+/-10%)	

	OLIEN WELL	т: <u>В</u> NO. М	aker Hu W-706	gher 5 Mr			N: <u>Valp</u> o	le MA		E: 5/30/13 5/30/13
F	REMA	RKS:					<u> </u>	S	SAMPLE II): <u>~~</u> _
	/ELL LENGTI VOLUM REMOV	PURGII H OF SAT E OF WAT	NG: ST URATED ZO FER TO BE E OD: Perio	ATIC WATE NE: <u>10.3</u> VACUATED	ER LEVEL: _ 5_ linear ft. 0 X 3 CASIN	ک <mark>ج. ج. ک</mark> VOLUI G VOLUME F	ft. ME OF WAT S =A PUMPING RA	WELL ER TO BE I	DEPTH: EVACUATED: _ als. 250	<u>+.12</u> <u>MA</u> gi ml/min
W	/ELL	PURGE	DATA:							
	TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
<u> </u>	1430	<u>well</u>	م <u>رم</u> مربع 7.41	135	375	57.5	3.30	250		
-	<u> </u>	mple	07:55	132	375	57.5	3.38			
-										
-										
s	Sample Labor		AWL METHO	DD: <u>EPA</u> AMPLE CO		Flow USED INCL		IBER, TYPE	E, AND PRESE	RVATIVES:
						<u>, uri has</u>				<u></u>
SN	SAMPLE NUMBER	: ID R(s):^	W-706	2						
N P T	VECON VETHOL VURGE	D: <u>∂</u> WATER D	Lisposable ISPOSED	tubing	/liqui	<u>v x »v</u>				
'	SAMPLE	S DELIVE	RED TO:	<u> </u>	ha		TRANS	PORTER:	 Courier	
S			510.1							

GROUNDWATER SAMPLING LOG Page 1 of
CLIENT: Baker Hugher LOCATION: Walpole MA DATE: 5/31/13
WELL NO. MW-707D WEATHER: SUN 85'S SAMPLE TIME: 0945
REMARKS: <u>Duplicate collected</u> <u>Fe=o.oms</u> SAMPLER(S): <u>NO</u>
WELL PURGING: STATIC WATER LEVEL: 6.03 ft. WELL DEPTH: 31.80 ft.
LENGTH OF SATURATED ZONE: ふう. つ linear ft. VOLUME OF WATER TO BE EVACUATED: gais.
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
REMOVAL METHOD: <u>Peristaltic pump</u> PUMPING RATE: 250 mi/min.
WELL PURGE DATA:
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (µS/cm) (mV) (ppm) (ml/min) (ft)
0845 17.15 6.81 134 764 55.6 7.40 2.50 6.10'
0900 17.24 6.81 50.1 708 52.2 110
0915 16.79 6.90 38.3 633 47.8 0.83
0925 16.16 6.79 15.0 589 45.7 0.21
0935 16.23 6.79 12.40 572 46.1 0.20
0940 16.51 6.79 11.71 571 46.0 0.20
0945 16.48 6.79 11.49 568 45.0 0.19
sample 0945
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>Voc 8260 (3×40 ml voa Hcl); c1, No3, 504 (1×250 ml plastic NA)</u>
SAMPLE ID NUMBER(s): <u>MW-707D</u> , <u>MW-707D</u> <u>DP</u> DECON METHOD: <u>Lisposable tubing liquinex</u> PURGE WATER DISPOSED TO:
SAMPLES DELIVERED TO: A)pha TRANSPORTER: Courier
DATE: 5/31/13 TIME: PM
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)

	IT: <u>B</u>	Ker +	tughes		OCATION	1: <u>Walp</u>	ole, MA	DAT	E: 5/31/13		
VVELL	NU/_\	108	<u> </u>	AIHER:	- 30 0,-	83 F		SAMPLE 1	IME: 1055		
REMA	RKS:	Le:	20.01	s L_			S.	AMPLER(S): <u>N/Ŋ</u>		
WELL	PURGIN	G: ST	ATIC WATE	R LEVEL:	5.44	ft.	WELL	DEPTH:	(9.35 ft.		
LENGT	H OF SATU		NE: 23.9	linear ft.	. VOLUI		ER TO BE E		<u>∧∕A</u> gals.		
VOLUN	IE OF WATE	R TO BE E	VACUATED	X 3 CASIN	IG VOLUME	S=	<u>A</u> ga	als.			
REMO	AL METHO	D:P	eristalti	c pum	P F	UMPING R	ATE:	220	ml/min.		
WELL	PURGE [DATA:									
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS		
0955	17.60	7.05	44.7	265	ר.ר	6.50	250	0			
1010	17.49	2.02	68.1	264	10.0	2.64					
1025	17.81	6.94	55.0	762	16.1	2.25					
1035	17.24	6.93	32.1	262	19.3	2.20					
1045	17.20	6.91	30.4	260	21.1	2.19					
1050	17.28	6.91	29.6	260	22.0	2.19					
1055	17.27	6.90	30.2	261	24.0	2.17					
1055	sample						¥	✓			
Sampl Labo 9	E WITHDRA RATORY AN २६० ४०८ (३४	WL METHC IALYSIS, S 40 ml y	DD: EPA AMPLE COI	NTAINERS	USED INCL		MBER, TYPE	E, AND PRES	ERVATIVES:		
SAMPL	E ID (R(s):/^	N-708	٥		<u></u>						
METHO PURGE	D: <u>\</u>	POSED	Asspara	ble tub	ing						
SAMD	ES DELIVER	ED TO.	Alah	D		TRANC		Courte	· c		
		<u> </u>	<u> </u>	**					#1		
GROUNDWATER SAMPLING LOG Page 1 of											
--	--	--	--	--	--	--	--	--	--	--	--
CLIENT: Baker Hughes LOCATION: Walpole MA DATE: 5/31/13											
WELL NO. MW-7088 WEATHER: JUD, 90°F SAMPLE TIME: 1225											
REMARKS: SAMPLER(S): ND											
WELL PURGING: STATIC WATER LEVEL: 6.05 ft. WELL DEPTH: 55.18 ft											
LENGTH OF SATURATED ZONE: 49.13 linear ft. VOLUME OF WATER TO BE EVACUATED: VA gais.											
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.											
REMOVAL METHOD: <u>Peristaltic pump</u> PUMPING RATE: 250 mi/min.											
WELL PURGE DATA:											
TIME TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (µS/cm) (mV) (ppm) (ml/min) (ft)											
1135 17.48 7.24 12.1 383 -87.9 2.93 250 6.10											
1150 17.00 7.23 7.10 385 -65.2 0.52											
1205 17.79 7.15 4.03 383 -35.5 0.33											
1215 17.40 7.11 4.00 383 -20.0 0.31											
1220 17.29 7.10 3.68 381 -16.4 0.30											
1225 17.34 7.09 3.20 381 -11.9 0.30											
<u>sample 1225</u>											
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>Voc 8260 (3× 40 m) voa Hcl); CI, Soy, ro3 (1×250 m) Plastic rep</u>											
SAMPLE ID NUMBER(s): <u>MW-708B</u> DECON METHOD: <u>disposable tubing liquinex</u> PURGE WATER DISPOSED TO: <u>\$revod</u>											
SAMPLES DELIVERED TO:AIDA TRANSPORTER:											
DATE: 5131/13 TIME: PM											
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87											
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)											

an	nec	0	GROU	NDWAT	ER SA	MPLINC	G LOG		Page 1 of			
CLIEN	T: Bak	en Hust	1=5	LC	OCATION	: Bird/	Mach.	<u>د</u> DAT	E: 5/30/13			
WELL	WELL NO. MW- 7095 WEATHER: Suny, www. SAMPLE TIME: 1005											
REMARKS: Sample leptin 13' SAMPLER(S): MAN Test Kit - [Fe=0.0msL]												
WELL PURGING: STATIC WATER LEVEL: 2.67 ft. WELL DEPTH: 15.2 ft.												
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.												
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals.												
REMOVAL METHOD: <u>Geypun p</u> PUMPING RATE: <u>Jac</u> ml/min.												
WELL PURGE DATA: Start :0803												
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	rate (ml/min)	down (ft)	COMMENTS			
0817	19.22	5.95	<u>60.4</u>	605	233	1.52	120	2.90				
0821	14.06	6.64	30.2	441	213	0.20	120	2.90				
0237	14.21	<u>6.cr</u>	28.3	432	189	0.36	120	2.80				
0847	14.14	609	25.2	43/	180	76.10	120	2.40				
0857	1V 3C	6.10	$\frac{223}{16}$	430	$\frac{179}{12}$	0.39	120	2.50				
0101	$\frac{17-5}{10165}$	$\frac{6.07}{6.05}$	17.5	$\frac{15}{100}$	10	0.51	120	2.40				
0017	$\frac{1}{16} \frac{1}{16} \frac$	<u> </u>	79.0	<u>-13 C</u>	153	$\frac{0.2F}{0.17}$	120	2.70				
0 <u>720</u> 0525	1465	6.0.	<u> </u>	423	145	<u> </u>	120	2.40	<u> </u>			
	11.00	6.00	2.20				120	200				
	E WITHDRA RATORY AN <u>אין אין אין אין אין אין אין אין אין אין </u>	WLMETHO IALYSIS, S I Acto Dr. J Ne	D: Ge AMPLE CON COA 826 Coa 826	$\frac{2}{12} \frac{1}{12} \frac$	JSED INCL	UDING NUN 1 Hc) U 0, NO3-3	IBER, TYPE ひみ しiss	E, AND PRES	ERVATIVES:			
SAMPLE NUMBEI DECON METHOI PURGE	E ID R(s): D: WATER DIS	POSED	695									
TO:			Alah	10		TRANC						
DATE:						TIME:						
Low Flow §	Stabilization I	1"= 0.04 Parameters:	CA: I, 2" = 0.16, 4 pH(+/-0.1), C	SING CAPA 4" = 0.65, 6' ond. (+/-3%),	<i>CITY (gallo</i> , ' = 1.47, 8" : ORP (+/-10 r	ns/linear foor = 2.6, 10" = 4 nV), D.O. (+/-1	t) 4.08, 12" = 5 1 0%), Turbid	5.87 ity (+/-10%)				

	IT: <u>Ball</u>	er Hy	he	L(N: <u>B.J</u>	Mach.r	<u>DAT</u>	E: 5/30/17		
VVELL	NU. <u>/~~</u>		WE	EATHER:	Junn	yho-n	2	<u>S</u> AMPLE T	IME: <u>/ogs</u>		
REMARKS: Sample dipth 13 SAMPLER(S): 1000											
WELL	PURGIN	G: ST	ATIC WATE	BLEVEL	2.6-		WELL		(5.) .		
LENGT	H OF SATU	RATED ZO	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE I		II.		
VOLUM	IE OF WATI	er to be e	VACUATED	X 3 CASIN	g volume	S =	ga	als.	g		
REMO\	AL METHO)D:				PUMPING R	ATE:	120	ml/min.		
WELL	PURGE	DATA:					flow	draw			
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	rate (ml/min)	down (ft)	COMMENTS		
0941	14-55	6.14	417	412	138	0.27	DU	2.90			
3952	14.52	6-11	3.13	<u>e113</u>	132	0,27	AC	2.90			
3957	14.64	6.13	3.9(405	130	0.22	120	2.90			
<u>1002</u>	14.67	6.14	4.65	403	126	0.28	120	2 40			
002	-collec	d- Sam	sl <u>e 2h</u> .	~ lint				<u> </u>			
SAMPL	E WITHDRA	WL METHO	DD:				·				
LABO	RATORY A	NALYSIS, S	AMPLE CON	NTAINERS	USED INCL		BER, TYPE	E, AND PRESE	ERVATIVES:		
		Se	e ps	. 1							
SAMPLI	EID										
NUMBE DECON	H(s):							<u> </u>			
METHO								<u> </u>			
TO:	WATER DR	SPOSED			···						
SAMPL	ES DELIVER	RED TO:				TRANS	PORTER:				
DATE:_						TIME:					

an	nec	0	GROU	NDWAT	ER SA	MPLING	G LOG		Page 1 of			
CLIEN	1T: Bak	- Husk	~ 5	LC		1: Bird	Macher	DA [.]	TE: 5/29/17			
WELL NO. ER-MM. 709 WEATHER: Clark, tenp in 605 SAMPLE TIME: 1410												
REMARKS: <u>Collect Dupt MS/MSP</u> SAMPLER(S): <u>MAM</u>												
WELL	PURGIN	G: ST.	ATIC WATE	R LEVEL: _	41.3	ft.	WELL	. DEPTH:	31.45 ft.			
LENGT	H OF SATU	RATED ZON	NE:	linear ft.	VOLUI	ME OF WAT	ER TO BE I): gals.			
VOLUM		R TO BE E	VACUATED	X 3 CASING	G VOLUME	S =	9	als.				
REMO	AL METHO		equinf ct 14		P	UMPING RA	\TE:	740	mi/min.			
TIME	TEMP (C)	pH	TURB. (NTU)	солр. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS			
1328	14.38	6.62	29.9	393	30	1.31	140	4.39				
1338	14-54	6.59	16.3	392	33	0.23	140	4.39				
1348	1472	6.60	9.30	383	38	0.22	140	4.39				
1358	1-1.72	6.60	3.09	395	46	0.13	140	4.35				
1403	14.80	655	1.89	393	218	<u>G.12</u>	NU	4.35				
190x	19.85	0.60	1-51	593	54	0.12	140	<u> (, 3 9</u>				
1910-	<u>Olled</u>	- <u>San</u>	ph_		<u> </u>							
						···· · · · · · · ·		<u> </u>				
					<u> </u>							
SAMPLI		WL METHO	d: <u>6-</u> 0	cpunp				. <u></u>				
LABO	RATORY AN	IALYSIS, S/	AMPLE CON		JSED INCL		IBER, TYPE	E, AND PRES	SERVATIVES:			
(3×40r	1 Hel	VOA 8	2603)	(2×5	20ml H	cl dise	solver co	ases)			
_(1×2son	1 NPpl	astre (1-306 5	50,-300	10-3	00) Ter	st Kitz	Ferron Iron B.O.			
SAMPLE	E ID R(s):	~ - 70	50			,						
DECON	D•											
PURGE	WATER DIS	POSED										
то:		Rout										
SAMPLE	ES DELIVER	ED TO:	Apra			TRANSI	PORTER:	(Quire				
DATE:	5120	115				TIME:_						
		1"= 0.04	CA:	S <i>ING CAPA</i> 4" = 0.65, 6"	CITY (gallo = 1.47, 8" =	ns/linear foot = 2.6, 10" = 4	;) 1.08, 12" = 5	5.87				
ow Flow	Stabilization P	arameters:	pH(+/-0.1), C	ond. (+/-3%).	ORP (+/-10n	nV), D.O. (+/-1	0%), Turbid	ity (+/-10%)				

an	nec		GROU	NDWAT	ER SA	MPLING	LOG	жт. ^т	Dage 1 of			
CLIEN	IT: Bah	en Hus	125	LC	CATION	: <u>B.J.J.</u>	Maeh,)	L DATI	5)30113			
WELL NO. MM-7105 WEATHER: Somy, nam SAMPLE TIME: //15												
REMARKS: Superson SAMPLER(S): MAy												
WELL	WELL PURGING: STATIC WATER LEVEL: 1.88 ft. WELL DEPTH: 16.7 ft.											
LENGT	LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.											
LENGTH OF SATURATED ZONE: linear it. VOLUME OF WATER TO BE EVACUATED: gais.												
REMO\	AL METHO	D:G	2 punf	>	P	UMPING RA	TE:	120	ml/min.			
WELL	PURGE	DATA:	start in	L: 10:2	e la			<u></u>				
TIME	TEMP (C)	pН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS			
1030	K.11	6.04	7.70	555	83	0.36	120	2.70				
1040	16.05	6.05	5.41	<u>592</u>	77	0.45	120	2.81				
1050	16.17	6.04	3.20	520	26	0-2-(Ro	2 92				
1100	16.18	6.03	3.2)	519	75	0.22	120	3.10	···· <u></u>			
1105	16.27	6.03	3-64	509	74	0.22	120	3.19				
1110	16 24	6-63		509	74	0.22	520	3.21				
1115	-collect	- Sup										
SAMPL	E WITHDRA	WL METHO	D: <u>6</u>	opent	2							
LABO	RATORY AN	ALYSIS, SA	AMPLE COI	NTAINERS L	SED INCL	UDING NUM	BER, TYPE	E, AND PRESE	ERVATIVES:			
_(3×40n/1	Woc 320	6) (2	x 2cm	NI AC	dissol	ulsas	()				
C	(x250,	-INPPI	ustic M	<u>ل ماد ل</u>	504-300) Fem	us Irn:	6.0mil			
SAMPLI NUMBE DECON	E ID R(s):	1-71C	S									
METHO	D:											
PURGE TO:		SPOSED										
SAMPLI	ES DELIVER	ED TO:	Alpho	٦		TRANS	PORTER:	(oure				
DATE:_	5/30	5113				TIME:_	<u>. </u>					
		1"= 0.04	<i>CA</i> , 2" = 0.16.	SING CAPA 4" = 0.65, 6"	<i>CITY (gallo</i> = 1.47. 8" :	ns/linear foot = 2.6, 10" = 4) .08, 12" = 5	5.87				
Low Flow	Stabilization I	Parameters:	pH(+/-0.1). C	ond. (+/-3%).	ORP (+/-107	nV), D.O. (+/-1	0%), Turbid	ity (+/-10%)				
					(1/ 1 4 1							

an	nec		GROU	INDWA	FER SA	MPLING	G LOG		Page 1 of			
CLIEN	IT: <u> Ba</u> K.	or Hugh	1-)	L(OCATION	1: B:	Mach	DAT	E: 5/30/13			
WELL	NO. <u></u>	~-710M	WE	ATHER:	Snn	1. Un con	1	SAMPLE T	IME: 1235			
REMA	REMARKS: <u>FerrousImp to omsth</u> SAMPLER(S): MAN											
WELL	WELL PURGING: STATIC WATER LEVEL: 1.85 ft. WELL DEPTH: 32,26 ft.											
LENGT	LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gals.											
REMOV	E OF WATE	er to be ev D:	ACUATED	X 3 CASIN	g volume P		ga	als.	mi/min			
WELL	PURGE I	DATA:	tent !!!	11:25			、 、					
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS			
1135	16.17	<u>ç.75</u>	35.7	203	110	2.13	120	2.38				
1145	<u>/>.</u>	6-19	282	205	108	1.19	120	2.39	<u> </u>			
1200	15-11	6.73	18.0	210	99	0.57		2.42				
1210	15.8-1	6.74	11.3	217	92	0.9	Be	2.42				
1220	16.16	6.74	9.07	217	54	0.12	120	2.42				
125	16.25	$\frac{6.75}{0.75}$	×.78	217	-1/	0.17	120	2.42				
1235	- (alles	<u>6.15</u> L San	0.0)	213	81	U.IF	120	2.42				
			14									
SAMPLE		WL METHO	D: <u>CC</u>	opurp								
	RATORY AN	IALYSIS, SA	MPLE CON	ITAINERS U	JSED INCL	UDING NUM	BER, TYPE	, AND PRESE	RVATIVES:			
	3×40×1	Hel Voi	<u>(8760)</u>	<u>(2x 3</u>	ONI He	1 dissa	un jac	ses/				
	1 x 150	mMp	last.L	Cl-sce	SU.1-300,	Noz-De)					
SAMPLE NUMBEF	R(s):	In-710	M				_					
DECON METHO);;			·								
PURGE		POSED										
SAMPLE	S DELIVER	ED TO:	Alpha			TRANSF	PORTER:	Crew 1				
DATE:			v ``			TIME:_						
			CAS	SING CAPA	CITY (gallor	ns/linear foot)					
		1"= 0.04,	2" = 0.16, 4	4" = 0.65, 6"	= 1.47, 8" =	= 2.6, 10" = 4	.08, 12" = 5	.87				
Low Flow S	tabilization P	Parameters: p	9H(+/-0.1), Co	ond. (+/-3%),	ORP (+/-10m	nV), D.O. (+/-1	0%), Turbidi	ty (+/-10%)				

an	GROUNDWATER SAMPLING LOG Page 1 of													
CLIEN	CLIENT: Bake- Alahos LOCATION: Bird Machine DATE: 5/31/73													
WELL NO. Mu- 7/0 D WEATHER: Summer SAMPLE TIME: 0155														
REMARKS: Simple Depth SAMPLER(S): MAM														
WELL	WELL PURGING: STATIC WATER LEVEL: 1. 1. WELL DEPTH: 43. 5 ft.													
LENGT	H OF SATUF	ATED ZON	1E:	linear ft.	VOLUN	/E OF WAT!	ER TO BE E	EVACUATED:	gals.					
	E OF WATER		VACUATED	X 3 CASING	3 VOLUMES	3 =	ga	ຟ ຣ.						
):(d ++.v	ρ	PI	UMPING RA	.TE:	110	mi/min.					
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS					
0814	14.99	7.54	135	289	217	2.09	120	9.40						
02751	14.83	7.75	26.1	194	195	1.30	120	502						
0834	14.54	2.62	572	132	163	1.86	120	5.65						
0844	14.52	1.55		122	153	1.00	120	6.20						
USAL	14.03	1.35		127	190	1.55	120	6.60						
6911	Kas	761		135	124	127	120	7.13						
0924	15.19	7.63		14/	112	107	120	7.23						
Crzy	15.01	7.67		Mr	101	1.03	120	7.37						
SAMPL		WL METHO	D: Ge	opurf	>									
	RATORY AN	ALYSIS, S/	AMPLE COM		JSED INCLI	UDING NUM	IBER, TYPE	, AND PRESE	:RVATIVES:					
~	<u> </u>	-Trici	<u>n oa</u>	<u> </u>										

(IX2 son I NP Plast. CNUS, SC	and the lind
SAMPLE ID NUMBER(s): MM-7100	
DECON METHOD:	
PURGE WATER DISPOSED TO:	
SAMPLES DELIVERED TO: Alph 1	TRANSPORTER: Ame C
DATE:	TIME:
CASING CAPACIT 1"- 0.04, 2" - 0.16, 4" - 0.65, 6" - 1	$\frac{1}{47} = 26 + 10^{2} - 4.09 + 10^{2} - 5.97$

CLIENT: Ba	ho-Hy	hes	LC	DCATIO	N: B. J.	Machile	DAT	TE: <u>5/31/2</u>
WELL NO.	n-710F	we	EATHER:	5.,	my		SAMPLE -	TIME: OSSV
REMARKS:	Fe:	0.01	s	<u>.</u>		S	AMPLER((S):
WELL PURGI	IG: ST		ER LEVEL: _		ft.	WELL	. DEPTH:	43.5 ft.
LENGTH OF SAT	JRATED ZON	lE:	linear ft.	VOLU			EVACUATED	: gals.
VOLUME OF WAT	ER TO BE EV	ACUATED	X 3 CASINO	g volume	S =	ga	als.	
REMOVAL METHO	DD:				PUMPING R	ATE:		ml/min.
TIME TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (mi/min)	draw down (ft)	COMMENTS
0984 /S.112	- 7.07		120	55	0 91	120	4.44	
0555 -00	lect ?	<u>sapk</u>	2h	1.21				
					<u></u>			
<u> </u>		<u> </u>						
						<u></u>		
<u> </u>	·		<u> </u>	<u> </u>				
<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>				
SAMPLE WITHDR	AWL METHO	D:						
LABOHATORY	NALYSIS, SA	MPLE CO	NTAINERS (JSED INCL	UDING NUI	MBER, TYPE	E, AND PRES	ERVATIVES:
· <u> </u>		0.0	0					
<u> </u>	\geq	JE	TS	-				
SAMPLE ID NUMBER(s):							<u> </u>	
DECON METHOD:								
PURGE WATER D	SPOSED							
SAMPLES DELIVE	RED TO:				TRANS	PORTER:		
DATE:					TIME:			

an	nec		GROU	NDWA	TER SA	MPLIN	G LOG		Page 1 of			
CLIENT: Bahen Hughes LOCATION: Bin Machine DATE: 5/31/13 WELLNO. MN-710B WEATHER: Sumpterpingo'S SAMPLE TIME: 105 REMARKS: Supply depth Fe = 0.0mL SAMPLER(S): MAN												
	WELL PURGING											
WELL	WELL PURGING: STATIC WATER LEVEL: 2(0) ft. WELL DEPTH: 6.(ft.											
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED: gais.												
REMOV	VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gals. REMOVAL METHOD: $G^{2}G^{2} + f^{2}$ PUMPING RATE: $J^{2}G^{2}$ mi/min											
WELL	PURGE I	DATA:	Stand f.	me- 00	25 <i>6</i>							
TIME	TEMP (C)	pH	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	fiow rate (ml/min)	draw down (ft)	COMMENTS			
1010	17.85	2.35	33.8	233	-55	1.01	120	3.60				
1620	17.61	1.67	27.3	235	- 55-	0.67	120	3.91				
1030	11.73	1.12	24.7	23 1	- 33	- 38		2).20				
1035	17-62	7.77	15.4	$\frac{230}{127}$	-(12	0.35	120	122				
1045	1253	773	7/20	000	-3~	0.32	120	4.27				
1050	K242	7.74	7.43	22/	-35	041	120	4.25				
1055-	18.20	7.74	7.02	224	-35	0.41	Ac	4.25				
1100	18.34	7.73	7.13	223	-32	0.14	120	4.25-				
SAMPLI		WL METHO		NTAINERS		UDING NUN	MBER , TYP	5, AND PRES	ERVATIVES:			
((<u>3×4</u> ^ 1 × 2 5	on the	C JUA	8266) L.C CI	Jest 1-300 S	$\frac{k_1+\frac{1}{2}}{50}$	0.0gm	$\frac{s(C)}{300}$				
SAMPLE NUMBEI DECON METHOI PURGE	E ID R(s): D: WATER DIS	Mh-	71013									
TO:		much										
SAMPLE	es deliver 5/3/	RED TO:	Alpha			TRANS	PORTER:	MAM				
Low Flow S	Stabilization i	1"= 0.04 Parameters:	CA , 2" = 0.16, pH(+/-0.1), C	SING CAPA 4" = 0.65, 6' ond. (+/-3%),	CITY (gallo " = 1.47, 8" , ORP (+/-10	ons/linear foo = 2.6, 10" = - mV), D.O. (+/-	ot) 4.08, 12" = { 1 0%), Turbi d	5.87 lity (+/-10%)				

GROUNDWATER SAMPLING LOG											
CLIENT: Baker Hughes LOCATION: Walpole, MA DATE: 6/3/13											
WELL NO. MW. 711 5 WEATHER: clouds rain 75°F SAMPLE TIME: 1000											
REMARKS: <u>Fe = 1.6 mg/L</u> SAMPLER(S): <u>MD</u>											
WELL PURGING: STATIC WATER LEVEL: 5.18 ft. WELL DEPTH: 19.75 ft.											
LENGTH OF SATURATED ZONE: <u></u> linear ft. VOLUME OF WATER TO BE EVACUATED: <u>/A</u> gals.											
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\underline{\checkmark4}$ gais.											
REMOVAL METHOD: <u>Peristaltic fump</u> PUMPING RATE: <u>250</u> ml/min.											
WELL PURGE DATA:											
flow draw TEMP pH TURB. COND. ORP DO rate down COMMENTS (C) (NTU) (µS/cm) (mV) (ppm) (ml/min) (ft)											
0910 15.10 7.47 44.0 136 -86.2 8.02 250 5.24'											
0925 14.55 6.98 24.3 124 -50.4 0.52 1 1											
0940 14.46 7.04 14.7 121 -58.5 0.37											
0950 14.34 7.05 12.4 115 -60.9 0.32											
0955 14.46 7.04 11.8 113 -57.3 0.31											
1000 14.42 7.04 12.2 112 -53.9 0.30											
<u>Sample 1000</u>											
SAMPLE WITHDRAWL METHOD: EPA low flow LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: Voc 8260 (3× 40 ml voa Hcl); CI NO3 Joy (1× 250 ml plastic NP)											
SAMPLE ID NUMBER(s): <u>MW-7115</u> <u>MW-7115</u> <u>MS</u> <u>MW-7115</u> <u>MSD</u> DECON METHOD: <u>disposable</u> <u>tubing</u> <u>liquinox</u> PURGE WATER DISPOSED TO: <u><u>ground</u></u>											
SAMPLES DELIVERED TO: <u>A\Pha</u> TRANSPORTER: <u>MM</u>											
DATE:											
CASING CAPACITY (gallons/linear foot) $1^{*}= 0.04, 2^{*} = 0.16, 4^{*} = 0.65, 6^{*} = 1.47, 8^{*} = 2.6, 10^{*} = 4.08, 12^{*} = 5.87$											
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)											

an	nec	0	GROU	NDWA	TER SA	MPLIN	g log		Page 1 of			
CLIEN	T: Bak	er Hugh	62	L(OCATION	: Wale	ole MA	DAT	E: 6/3/13			
WELL NO. MW-711D WEATHER: Clouds Showers, 75°F SAMPLE TIME: 1130												
REMARKS: Fe = 0.6 mg/L SAMPLER(S): NO												
WELL	PURGINO	G: ST/	ATIC WATE	R LEVEL: _	6.30	ft.	WELL	. DEPTH: _3	6,35_ft.			
LENGT	H OF SATUF	RATED ZON	IE: <u>30.0</u>	5_ linear ft.	VOLUI		ER TO BE I	EVACUATED	: <u>// A</u> gals.			
VOLUM	E OF WATE	R TO BE E	ACUATED	X 3 CASIN	G VOLUME	S =/	4 g:	als.				
REMOV	AL METHOD	D:Pe	ristaltic	Pump	P	UMPING R	ATE:	220	ml/min.			
		pH	TURB. (NTU)	COND. (uS/cm)	ORP (mV)	DO (ppm)	flow rate	draw down	COMMENTS			
1040	15.00	7.19	16.6	381	-32.1	6.88	250	6.40				
1055	14.45	6.86	17.2	414	5.8	0.46	1	1				
1110	14.29	6.80	15.8	412	17.1	0.41						
1120	14.46	6.77	16.0	411	23.4	0.33						
1125	14.39	6.76	15.0	410	26.1	0.32						
1130	14.40	6.76	15.2	410	21.2	0.31		_				
<u> </u>	o <u>sample</u>						*	↓	<u> </u>			
SAMPLE	E WITHDRAN RATORY AN	WL METHO ALYSIS, S/	D: EP	A low			ABER, TYPE	E, AND PRES	ERVATIVES:			
D	issolved	aaser (2× 40 m	Hel vial).	Voc 83-61) (3× 40	ml voa	Hel): a	504 NO3			
6	× 250 m) Alastic	NP)	.,				······	·······			
SAMPLE NUMBEI	EID R(s):	0 11 F-1										
DECON METHO	: dispo	sable t	ubing 1									
PURGE	WATER DIS	POSED	r						<u> </u>			
TO:			9 roun	<u>d</u>								
SAMPLE		ED TO: \3	Alpha	·····		TRANS	PORTER: P/	<u>MM</u>				
		1"= 0.04	<i>CA</i> , 2" = 0.16.	SING CAPA 4" = 0.65. 6	ACITY (gallo " = 1.47. 8" :	ns/linear foo = 2.6. 10" = 4	t) 4.08, 12" = F	5.87				
Low Flow S	Stabilization P	arameters:	pH(+/-0.1), C	ond. (+/-3%)	, ORP (+/-10r	nV), D.O. (+/-	10%), Turbid	lty (+/-10%)				

GROUNDWATER SAMPLING LOG Page 1 of							
CLIENT: Baker Hughes LOCATION: Walpole MA DATE: 6/3/13							
WELL NO. MW- 7125 WEATHER: Claude 75°F SAMPLE TIME: 1420							
REMARKS: Fe: 1.4 mg/L SAMPLER(S): ~0							
WELL PURGING: STATIC WATER LEVEL: 5.52 ft. WELL DEPTH: 18.18 ft							
LENGTH OF SATURATED ZONE: 13.28 linear ft. VOLUME OF WATER TO BE EVACUATED: NA ga							
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = $\[Action A decomposition A decompositio$							
REMOVAL METHOD: <u>Peristaltic Pump</u> PUMPING RATE: <u>50</u> ml/min.							
WELL PURGE DATA:							
TIMETEMP (C)pHTURB. TURB.COND.ORPDO rateflowdraw downTIME(C)pH(NTU)(µS/cm)(mV)(ppm)(ml/min)(ft)							
1325 17.27 7.08 236 61 72.4 10.62 250 5.68'							
1340 17.88 6.52 98 103 80.5 5.40 5.72'							
1355 18.10 6.54 51.1 103 60.7 2.89							
1405 18.34 6.56 12.3 103 42.2 1.77							
1410 18.39 6.57 11.6 104 33.9 1.49							
1415 1847 6.57 10.98 104 34.1 1.47							
1420 18.57 6.57 10.66 104 32.6 1.46							
sample 1420							
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>Voc 8260 (3x 40 ml von Hcl); 504, CL, NO3 (1x 250 ml plastic NP)</u>							
SAMPLE ID NUMBER(s): <u>MW-7125</u> DECON METHOD: <u>liquinex (disposable tubing</u> PURGE WATER DISPOSED TO: <u>g</u> (quad							
SAMPLES DELIVERED TO: ALPha TRANSPORTED MM							
DATE: 613113 TIME: PM							
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)							

GROUNDWATER SAMPLING LOG	lge 1 of							
CLIENT: Bather Hickies LOCATION: Bin Machie DATE: 6/3/13 WELL NO MATTISS WEATHER: S. D. L. CANDIETTICE NEST								
REMARKS: FC=0.0mil SAMPLER(S): MAN								
WELL PURGING: STATIC WATER LEVEL:ft. WELL DEPTH:ft.	ft.							
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED:	gals.							
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = gais.								
WELL PURGE DATA: Statting 11:25	ml/min.							
TIMETEMP (C)pHTURB. (NTU)COND. (µS/cm)ORP 	COMMENTS							
1145 15.19 S.S.T 1000 475 20 1.11 120 6.35 0	asc Floc							
1150 15.49 5.48 1000 470 DZ 0.85 120 6.25								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
120 15.26 6.01 23.3 466 21 0.12 120 6.20								
1240 15.37 6.00 223 460 18 0.14 120 G.dr								
ANT 15.24 6.01 21.4 460 K 0.19 100 6.26								
1250 15.37 5.99 21.2 458 18 0.19 120 6.28								
DST-cullect Surph								
SAMPLE WITHDRAWL METHOD: Geepung LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESER	VATIVES:							
(3×10~1 Hel UN8620D) 7= st Kit (0.0ms L)	<u> </u>							
(1×250N/NPplustic CI, Sou, NOS)								
SAMPLE ID NUMBER(s):								
METHOD:								
PURGE WATER DISPOSED TO:								
SAMPLES DELIVERED TO: TRANSPORTER:								
DATE: TIME:								
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87 Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbletby (+/-10%)								

10
Carl

an	nec	0	GROU		TER SA	MPLING	G LOG		Page 1 of
CLIENT: Button Hyes LOCATION: BM Marchine DATE: 6/3/3									
WELL NO. MW-713D WEATHER: Clardy tensing SAMPIFTIME MYSS									
REMARKS: Hest Kit = 0 on the SAMPIER(S). MAIN									
WELL PUHGING: STATIC WATER LEVEL: <u>3.</u> (C) ft. WELL DEPTH:ft.									
VOLUM	E OF WATE	R TO BE E		X 3 CASIN	G VOLUME	S =		als.	: gals.
REMOV	AL METHO	D:(Second	0	۴۲	PUMPING RA	\TE:	12	<u>ml/min.</u>
TIME		р Н	Sto-F to	me = 13. COND.	ORP	DO (ppm)	flow rate	draw down	COMMENTS
14.10	17.90	7.03	11.3	285	>.0	3.35	(mi/min))こと	(#) 3. (C)	
14:15	17.55	2-01	7.13	286	20	0.50	120	3.((
Mi2U	17.82	7.60	4.70	286	27	0-37	120	3.10	
M.25	18.05	6.99	4.35	-288	30	0.27	120	3.16	
14:30 14:37	- coll	<u>6.7)</u> e.t	Surpl	275	21		120	3.10	<u> </u>
								<u> </u>	
SAMPLI	E WITHDRA	WL METHO	DD: <u>G</u>	UPUND					
LABO	RATORY AN	IALYSIS, S	AMPLE CO		JSED INCL		IBER, TYPE	, AND PRES	ERVATIVES:
	3× 40	m1 Hc	l voc	8260)					
_(1 x 25	ion 1	19 Plus	I CI CI	Suy, L	(rul			
SAMPLE	E ID R(s):	4n-71	30						
DECON	n				2				
PURGE	WATER DIS	POSED							
			man						
DATE:							FURIER:		
			04						
		1"= 0.04	4, 2" = 0.16,	4" = 0.65, 6"	' = 1.47, 8"	= 2.6, 10" = 4	9 1.08, 12" = 5	.87	
Low Flow S	Stabilization I	Parameters:	pH(+/-0.1), C	ond. (+/-3%),	ORP (+/-10)	mV), D.O. (+/-1	0%), Turbidi	ity (+/-10%)	

an	nec	0	GROL	JNDWAT	ER SA	MPLING	g LOG	ł	Page 1 of	
CLIENT: Bake-Hustes LOCATION: B. Machine DATE: 6/3/13										
WELL	NO	-7145	WE	EATHER: _	605 -	<u>'</u>		SAMPLE T	IME: 105	
REMA	REMARKS: Test K.+ = 0.0m L SAMPLER(S): MAN									
WELL	WELL PURGING: STATIC WATER LEVEL: 7.6) ft. WELL DEPTH: 12.95 ft.									
LENGT	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	E OF WAT	ER TO BE I	EVACUATED:	gals.	
VOLUM	IE OF WATE	R TO BE E	VACUATED	X 3 CASING	VOLUME	S =	g	als.		
REMO	AL METHO	D: <u> </u>	c) d d	- :	P	UMPING RA	\TE:	120	ml/min.	
TIME		pH		COND.	ORP (mV)	DO (ppm)	flow rate	draw down	COMMENTS	
OGAT	(), [),]	6.63	59.7		1-20	2.35	(mvmin)	(m)		
0940	17.34	6.25	43.1	230	-49	0.42	120	7.60		
0950	17.29	6.20	413	224	-60	0.61	120	7.60		
1600	17.28	6-92	37.2	222	-59	0 43	120	7-60		
1010	17,37	6.93	33.2	217	-33	0.35	120	7.61		
1020	17,30	<u>6.93</u>	194	A17	-59	0.37	120	7.00		
1430	17,38	6.93	18.1	216	-63	0.40	120	7.60		
1035	<u>17.55</u>	6.13	16.7	210	-64	0.11	120	7.60		
1040	<u>17.43</u> <u>17.47</u>	6.93	12.5	214	-62	0.42	120	7.60		
SAMPL	E WITHDRA	WL METHO	D: <u>Ge</u> e	p						
LABO	RATORY AN	NALYSIS, SA	AMPLE CO	NTAINERS U	SED INCL		IBER, TYPE	E, AND PRESE	ERVATIVES:	
_(3 × 40	AL V	UC 72	6013)						
(<u>(/x;</u>	250 ~	INP	phon	<u> </u>	SUN, 80	63)			
	EID B(s): M	m-7 (4)	s							
DECON										
PURGE	U:	POSED	3					#1 <u></u>		
TO:		Grand								
SAMPLE	ES DELIVER	ED TO:	Aphi			TRANSI	PORTER:			
DATE:						TIME:_				
		1"= 0.04	<i>CA</i> , , 2" = 0.16,	<i>SING CAPAC</i> 4" = 0.65, 6"	CITY (galloi = 1.47, 8" =	ns/linear foot = 2.6, 10" = 4) .08, 12" = 5	5.87		
Low Flow 8	Stabilization F	Parameters:	pH(+/-0.1), C	ond. (+/-3%), (ORP (+/-10n	1V), D.O. (+/-1	0%), Turbidi	ity (+/-10%)		

ar	nec	^o	GROL	INDWAT	ER SA	MPLIN	G LOG		Page 1 of	
CLIENT: Bake-Hypers LOCATION: Bind Machin DATE: 6/3/13										
WELL	WELL NO. MW-7HS WEATHER: SAMPLE TIME: //0.5									
REMARKS:										
WELL PURGING: STATIC WATER LEVEL:ft. WELL DEPTH:ft.										
LENGT	H OF SATU	RATED ZOI	NE:	linear ft.	VOLU	ME OF WAT	ER TO BE E	VACUATED:	gals.	
VOLUM	IE OF WATE	R TO BE E	VACUATED	X 3 CASING	i volume	S =	ga	ls.		
REMO\	AL METHO	D:			F	UMPING R/	ATE:		ml/min.	
WELL	TEMP		TURB.	COND.	ORP	DO	flow	draw down		
	(C)		(NTU)	(µS/cm)	(mV)	(ppm)	(ml/min)	(ft)	COMMENTS	
1050	17.39	6.2	12.7	215	-61		120	7.60		
1000	17.5	6.12	10.2		-67	641	120	7.60		
105	17.52	6.93	14.7	217	-65	<u>G YI</u>	120	7.0		
105	11.31	<u> </u>	10.1	-10		0.11	10	1.5		
		<u> </u>								
				<u> </u>						
		·								
		. <u></u>							<u> </u>	
SAMPLE WITHDRAWL METHOD: LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: 										
SAMPLE NUMBE DECON	E ID R(s):									
PURGE	WATER DIS	POSED				··········				
SAMPLE	es deliver	ED TO:				TRANS	PORTER:			
DATE:	<u> </u>					TIME:				
Low Flow §	Stabilization F	1"= 0.04 Parameters:	<i>CA</i> I, 2" = 0.16, pH(+/-0.1), C	SING CAPAC 4" = 0.65, 6" ond. (+/-3%), (CITY (gallo = 1.47, 8" : ORP (+/-10r	ns/linear foo = 2.6, 10" = 4 nV), D.O. (+/-1	t) 4.08, 12" = 5. 1 0%), Turbid il	87 ty (+/-10%)		

GROUNDWATER SAMPLING LOG							
CLIENT: Baker Hughes LOCATION: Walpole MA DATE: 5/30/13							
WELL NO. MW-714D WEATHER: Jun 85"F SAMPLE TIME: 14:00							
REMARKS: Fe = 0 ons L SAMPLER(S): NO							
WELL PURGING: STATIC WATER LEVEL: 6,10 ft. WELL DEPTH: 22.18 ft.							
LENGTH OF SATURATED ZONE: linear ft. VOLUME OF WATER TO BE EVACUATED:A gals.							
VOLUME OF WATER TO BE EVACUATED X 3 CASING VOLUMES = <u>MA</u> gals.							
REMOVAL METHOD: <u>feristaltic fump</u> PUMPING RATE: <u>250</u> ml/min.							
WELL PURGE DATA: flow draw TIME TEMP TURB. COND. ORP DO rate down C() pH (µS/cm) (mV) (ppm) (ml/min) (ft)							
<u>1310 18.44 7.06 24.2 310 61.3 10.01 250 6.20</u>							
1325 18.18 6.93 9.45 305 40.3 0.34 200 6.45'							
1340 18.63 6.89 5.91 308 32.5 0.27							
1350 17.75 6.88 4.52 307 29.2 0.24							
1355 18.00 6.88 4.09 307 28.4 0.23							
1400 18.20 6.88 4.00 306 28.0 0.22							
Sample 1400							
SAMPLE WITHDRAWL METHOD: <u>EPA low flow</u> LABORATORY ANALYSIS, SAMPLE CONTAINERS USED INCLUDING NUMBER, TYPE, AND PRESERVATIVES: <u>Voc 8260 (3x 40 ml von Hcl); Cl 504, No3 (1x 250ml plastic NP)</u>							
SAMPLE ID NUMBER(s): <u>MW-714 D</u> DECON METHOD: <u>disposable tubing liquinex</u>							
TO:ground							
SAMPLES DELIVERED TO: Alpha TRANSPORTER: Courier							
DATE:							
CASING CAPACITY (gallons/linear foot) 1"= 0.04, 2" = 0.16, 4" = 0.65, 6" = 1.47, 8" = 2.6, 10" = 4.08, 12" = 5.87							
Low Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)							

	IT: <u> </u>	ker Hugh	ler	L	OCATION	1: <u>Walp</u>	le MA	DAT	Е: 614/1
WELL	NO	W-715	<u>s</u> WE	EATHER:	500	70°F		SAMPLE 1	ГIМЕ: <u>)</u>
REMA	RKS:_F	e = 0.0	Imple	}	·····		S	AMPLER((S): <u>^^</u>
WELL	PURGIN	IG: ST	ATIC WATE	R LEVEL:	5.24	ft.	WELL	DEPTH:	6.78
LENGT	H OF SATU	JRATED ZO	NE: <u>11.54</u>	linear ft	· VOLU		TER TO BE	EVACUATED	:_ <u>~A</u>
VOLUN	E OF WAT	ER TO BE E	VACUATED	X 3 CASIN	IG VOLUME	S =	<u>Ag</u>	als.	
REMO	AL METHO	<u>po:</u>	eristaltic	Pump	F	UMPING P	IATE:	200	ml/i
WELL	PURGE	DATA:						duom	
TIME	TEMP (C)	рН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	tiow rate (ml/min)	down (ft)	COMMEN
1110	12.00	6.28	98.1	341	47.8	4.17	200	5.56'	
1125	11.71	6.22	54.5	346	44.1	2.13	120	<u> </u>	
1140	11-11	6.21	34.9	346	46.0	1.40			
1155	11.58	6.21	15.0	342	48.0	1.41			
1205	12.12	6.20	14.46	342	53.7	1.42	_		·····
1210	12.14	6.20	14.09	342	54.1	1.41			<u></u> .
1512	11.78	6.20	13.94	341	52.4	1.41			
	Sample	1215			<u> </u>		• <u>•</u>	¥	
	<u> </u>					<u>. </u>	· · · · · · · · · · · · · · · · · · ·		
SAMPL LABO SAMPLI NUMBE DECON METHO	E WITHDR. RATORY A Noc 82. E ID R(s): D:	AWL METHO NALYSIS, S 60 (3× 4 1W-715 : 1W-715 : 15005060	DD: <u>Ef</u> AMPLE COI o <u>ml voo</u> S tubing	A Jow A NTAINERS HCI); (liquino)	ileν USED INCL ζις δο 4	UDING NU	MBER, TYPE	E, AND PRES Plastic /	SERVATIVES:
TO:			ground Ala		,				
SANU	ES DELIVE	RED 10:			<u> </u>	TRAN	SPORTER:_	/^v\/^\	

an	nec	0	GROU	INDWA	TER SA	MPLIN	G LOG		Page 1 of
CLIEN	IT: <u> </u>	ker H.	y hes	L(OCATION	1: \/a4	pole MA	DAT	E: 6/4/13
WELL	NO	W-719	D WE	ATHER:	SUN, 7	5°F		<u>S</u> AMPLE 1	TIME: 1100
REMA	RKS:	<u> </u>	all				S		S)· A/A
10/071			0						
WELL	PURGIN	G: ST		R LEVEL: _	2.38	ft.	WELL	. DEPTH:	<u>19.70</u> ft.
	H OF SATU		NE:	V 2 CASIN		VE OF WAT	TER TO BE		$: \underline{A} \underline{A} \underline{B}$ gais.
REMOV	AL METHO		Cristat:c	Pump	G VOLUME P	UMPING R	<u>2A. </u>	ais. 200	mi/min.
WELL	PURGE	DATA:		· · · · · ·					
TIME	TEMP (C)	рН	TURB. (NTU)	COND. (µS/cm)	ORP (mV)	DO (ppm)	flow rate (ml/min)	draw down (ft)	COMMENTS
1010	12.11	6.76	13.7	309	95.8	10.01	200	5.4'	
1025	11.83	6.66	11.7	299	103.4	2.42	120	5.60'	
1040	11.89	6.61	9.87	299	107.3	1.59	\rightarrow	5.62'	
1050	<u>11.75</u>	6.59	8.27	300	108.5	1.49		1	
1055	11.70	6.58	7.98	300	109.5	1.48			
1100	11.72	6.58	7.88	300	110.0	1.48			
<u> </u>	mple 1	100						_	<u> </u>
SAMPL		WL METHO	DD: E	PA low	flow			4	
LABO		NALYSIS, S	AMPLE COI	NTAINERS	USED INCL	UDING NUI	MBER, TYP	E, AND PRES	ERVATIVES:
v	01 8260			14.1).	(1 salt	(1)	r Farma)	ماريط	
			<u>- 1-11 V 000</u>		<u> </u>	N03 [1	~ J00 m /	piarte /	
SAMPLE NUMBE	E ID R(s):/	W-715	P	ā					
DECON	D: Č	tispo sable	thing	(lin :	• • ×				
PURGE	WATER DI	SPOSED	7		1967			· · · · · · · · · · · · · · · · · · ·	
TO:			yround .						
SAMPLE	es delivef	RED TO:	Alpha	<u> </u>		TRANS	SPORTER:_	MM	· · · · · · · · · · · · · · · · · · ·
DATE:		01411	3			TIME	:P	Μ	
			CA	SING CAPA	CITY (gallo	ns/linear foo	ot)		
		1°= 0.04	4, 2" = 0.16,	4" = 0.65, 6	" = 1.47, 8" :	= 2.6, 10" =	4.08, 12" =	5.87	
low Flow S	ow Flow Stabilization Parameters: pH(+/-0.1), Cond. (+/-3%), ORP (+/-10mV), D.O. (+/-10%), Turbidity (+/-10%)								

Appendix D – Laboratory Results

Site Name: Bird Machine Project Number: 0146790000.00010 Laboratory Name: Alpha Analytical SDG Number: L1303324 AMEC Sample IDs: MW-714S, MW-714D, MB-MW-374, MW-712S, MB-MW-371, LR-MW-121, LR-MW-121-DUP, LR-MW-124, LR-MW-129, LR-MW-122 and TRIP BLANK-02.

	Analysis									
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175						
Chain of Custody										
Sample Receipt (Preservation & Temperature)										
Holding Time										
Trip Blank		NA	NA	NA						
Method Blanks										
MS/MSD	An MS/MSD was not submitted for this analysis.	Sample LR-MW-121 was submitted as the source for the MS/MSD.	The lab used a sample from a different SDG.	The lab used a sample from a different SDG.						
LCS/LCSD			(LCS only)	(LCS only)						
Field Duplicates	A field duplicate was not submitted for this analysis.	Sample LR-MW-121- DUP was submitted as the field duplicate of LR- MW-121.	A field duplicate was not submitted for this analysis.	A field duplicate was not submitted for this analysis.						
Laboratory Duplicate	NA	NA	The lab used a sample from a different SDG.	The lab used a sample from a different SDG.						
Surrogate Recoveries		NA	NA	NA						

	Analysis								
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175					
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-714S, MW- 714D, MB-MW-374, MW-712S, LR-MW-124, LR-MW-129 and TRIP BLANK-02, did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00267), as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4- dioxane. The continuing calibration standard did not meet the %D method criteria for dichlorodifluoromethane (-27%), acetone (21%), 2-butanone (29%), trans-1,3-dichloropropene (-21%) and 1,2-dibromo-3-chloropropane (-21%). UJ-qualify these analytes in all samples.								
Other Issues	None	None	None	None					

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Denise King Date: 03/07/2013

Site Name: Bird Machine Project Number: 0146790000.00010 Laboratory Name: Alpha Analytical SDG Number: L1303408 AMEC Sample IDs: MW-709S, MW-709D, MW-709D DUP, MW-710S, MW-710M, NP-MW-601, MW-702B, MW-702S, NP-MW-601 DUP, MW-702D and TRIP BLANK-03.

	Analysis									
Data Reviewed	VOCS – 8260C	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175							
Chain of Custody										
Sample Receipt (Preservation & Temperature)										
Holding Time										
Trip Blank		NA	NA							
Method Blanks										
MS/MSD	Sample MW-709D was submitted as the source for the MS/MSD.	Sample MW-709D was submitted as the source for the MS/MSD.	Sample MW-709D was submitted as the source for the MS/MSD. Methane recovered low in the MSD at 66%. J-qualify methane in sample MW-709D and MW-709D DUP due to the low bias.							
LCS/LCSD	Dichlorodifluoromethane recovered low in the LCS at 66%. UJ-qualify in all samples due to the low bias.	(LCS only)	(LCS only)							
Field Duplicates	Sample MW-709D DUP was submitted as the field duplicate of sample MW-709D. Sample MW-709D DUP was analyzed at too large of a dilution and was not re- analyzed due to the vials being compromised. The lab narrative indicated that concentrations of TCE, PCE and cis-1,2-dichloroethene matched those of MW- 709D. No qualifications are necessary.	Sample MW-709D DUP was submitted as the field duplicate of sample MW-709D. Sample NP-MW-601 DUP was submitted as the field duplicate of sample NP-MW-601.	Sample MW-709D DUP was submitted as the field duplicate of sample MW- 709D.							

	Analysis			
Data Reviewed	VOCS - 8260C	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	
	Sample NP-MW-601 DUP was submitted as the field duplicate of sample NP-MW-601.			
Laboratory Duplicate	NA	The lab used sample MW-709D as the lab duplicate.	The lab used sample MW-709S as the lab duplicate.	
Surrogate Recoveries		NA	NA	
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with all samples, did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00267), as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for dichlorodifluoromethane (-34%), acetone (-26%) and 1,2-dibromo-3-chloropropane (-21%). UJ-qualify these analytes in all samples.			
Other Issues	None	None	None	

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Denise King Date: 03/12/2013

Site Name: <u>Bird Machine</u> Project Number: <u>0146790000.00010</u> Laboratory Name: <u>Alpha Analytical</u> SDG Number: <u>L1303582</u> AMEC Sample IDs: <u>MW-704D</u>, MB-MW-361, MW-707D, MW-705 and TRIP BLANK-05.

		Analysis		
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175
Chain of Custody				
Sample Receipt (Preservation & Temperature)				
Holding Time				
Trip Blank		NA	NA	NA
Method Blanks				
MS/MSD	An MS/MSD was not submitted with this SDG.	An MS/MSD was not submitted with this SDG.	The lab used sample MB-MW- 361 as the source for the MS.	The lab used a sample from a different SDG.
LCS/LCSD	1,2-Dibromo-3-chloropropane recovered low in the LCSD at 66%. Also the LCS/LCSD RPD is elevated at 35%. UJ-qualify 1,2- dibromo-3-chloropropane in all samples.		(LCS only)	(LCS only)
Field Duplicates	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.
Laboratory Duplicate	NA	NA	The lab used sample MB-MW- 361 as the source for the lab duplicate.	The lab used a sample from a different SDG.
Surrogate Recoveries		NA	NA	NA
Calibration Issues	The initial calibration, associated with samples MW-704D, MB- MW-361, MW-707D and TRIP BLANK-05, did not meet the			

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175
(Deficiencies	method required minimum relative response factor (RRF) for the			
noted in	lowest calibration standard for 1,4-dioxane (0.00267), as well as			
Narrative)	the average response factor for 1,4-dioxane. 1,4-Dioxane is a			
	known difficult analyte with poor purging efficiency. UJ-qualify			
	1,4-dioxane in above samples. The continuing calibration did not			
	meet the minimum RRF for 1,4-dioxane. The continuing			
	calibration standard did not meet the %D method criteria for			
	dichlorodifluoromethane (-23%). UJ-qualify this analyte in all			
	samples.			
Other Issues	None	None	None	None

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Denise King Date: 03/13/2013

Site Name: <u>Bird Machine</u> Project Number: <u>0146790000.00010</u> Laboratory Name: <u>Alpha Analytical</u> SDG Number: <u>L1303637</u> AMEC Sample IDs: <u>MB-MW-362</u>, MW-703S, MW-704S, MW-706S, MW-701S, MW-700S, NP-MW-603 and TRIP BLANK-06.

	Analysis				
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	
Chain of Custody					
Sample Receipt (Preservation & Temperature)	Samples were received at the lab at a temperature of 8°C. The samples were delivered directly from the site on ice and had insufficient time to cool. No qualifications are necessary.	Samples were received at the lab at a temperature of 8°C. The samples were delivered directly from the site on ice and had insufficient time to cool. No qualifications are necessary. Sample MW-703S was received at a pH >2. The lab added additional HNO3 to pH <2. No qualification necessary.	Samples were received at the lab at a temperature of 8°C. The samples were delivered directly from the site on ice and had insufficient time to cool. No qualifications are necessary.	Samples were received at the lab at a temperature of 8°C. The samples were delivered directly from the site on ice and had insufficient time to cool. No qualifications are necessary.	
Holding Time					
Trip Blank		NA	NA	NA	
Method Blanks					
MS/MSD	An MS/MSD was not submitted with this SDG.	An MS/MSD was not submitted with this SDG.	The lab used sample MW-701S as the source for the MS.	The lab used a sample from a different SDG.	
LCS/LCSD	Dichlorodifluoromethane recovered low in the LCSD at 68%. UJ-qualify this analyte in all samples due to the low bias.		(LCS only)	(LCS only)	
Field Duplicates	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.	A field duplicate was not submitted for this SDG.	

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175
Laboratory Duplicate	NA	NA	The lab used sample MW-701S as the source for the lab duplicate.	The lab used a sample from a different SDG.
Surrogate Recoveries		NA	NA	NA
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with all samples, did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00267), as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ- qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for dichlorodifluoromethane (-27%), 2-butanone (23%), 1,4-dioxane (22%) and 1,4-dichlorobenzene (22%). UJ-qualify these analytes in all samples.			
Other Issues	None	None	None	None

NA = Not Applicable

ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Denise King Date: 03/13/2013

Site Name: <u>Bird Machine</u> Project Number: <u>0146790000.00010</u> Laboratory Name: <u>Alpha Analytical</u> SDG Number: <u>L1309657</u> AMEC Sample IDs: <u>MW-705S, MW-704D, MW-715D, MW-715S, MB-MW-361, MB-MW-360, TRIP BLANK-05</u>

	Analysis				
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	
Chain of Custody					
Sample Receipt (Preservation & Temperature)					
Holding Time					
Trip Blank		NA	NA	NA	
Method Blanks					
MS/MSD	Sampe MW-709D was submitted as the source for the MS/MSD. Acetone recovered below acceptance criteria in the MS/MSD at 52%/57%. 1,4-Dioxane recovered outside of acceptance criteria in the MS/MSD at 42%/163%. The MS/MSD RPD for 1,4- dioxane was above acceptance criteria at 177%. UJ-qualify acetone and 1,4-dioxane in MW-709D and MW-709DDP due to the low bias.	Sampe MW-709D was submitted as the source for the MS/MSD. Methane recovered below acceptance criteria in the MSD at 31%. J-Qualify methane in MW- 709D and MW-709DDP due to the low bias.	Sampe LR-MW-121 was submitted as the source for the MS/MSD.	Sampe MW-709D was submitted as the source for the MS/MSD.	
LCS/LCSD	Dichlorodifluoromethane (133%), hexachlorobutadiene (134%) and 1,4-dioxane (135%) recovered above acceptance criteria in the LCSD associated with LR-MW-124. The LCS/LCSD RPDs for hexachlorobutadiene (22%) and 1,4-dioxane (26%) exceeded acceptance criteria as well. However these analyes are ND in the sample and not impacted by the high and non-directional bias; no qualifications are necessary.	(LCS only)		(LCS only)	

	Analysis					
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300		
	 Chloromethane (LCS at 131%), dichlorodifluoromethane (LCSD at 131%), hexachlorobutadiene (139%/148%) and 1,4-dioxane (LCSD at 134%) recovered above acceptance criteria in the LCS/LCSD associated with MW-700, MW-702S, MW-702D, and LR-MW-129. Additionally, the LCS/LCSD RPD recovered above the acceptance criteria for 1,2-dibromo-3-chloropropane (24%). These analytes are ND in the associated samples and not impacted by the high and non-directional bias. 1,2-Dibromo-3-chloropropane recovered below acceptance criteria in the LCS at 65%. UJ-qualify 1,2-dibromo-3-chloropropane in MW-702S, MW-702D, and LR-MW-129 due to the low bias. 1,4-Dioxane (150%/163%) recovered above acceptance criteria in the LCS/LCSD associated with MW-709D, MW-709DDP, and TRIP BLANK -01. 1,4-Dioxane is ND in the associated samples and not impacted by the high bias. No qualifications are necessary. 					
Field Duplicates	Sample MW-709DDP was submitted as a field duplicate for MW-709D.	Sample MW-709DDP was submitted as a field duplicate for MW-709D.	Sample LR-MW-121DP was submitted as a field duplicate for LR-MW- 121. Results were ND.	Sample MW-709DDP was submitted as a field duplicate for MW-709D.		
Laboratory Duplicate	NA	NA	NA	Sample MW-709Dwas was ised for the lab duplicate analysis.		
Surrogate Recoveries		NA	NA	NA		
Calibration Issues (Deficiencies noted in	The initial calibration, associated with samples LR-MW-124, MW-700, MW-702S, MW-702D, and LR-MW-129 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00137) and 4-					

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Narrative)	methyl-2-pentanone (0.08307) as well as the average response factor for 1,4-dioxane and 4-methyl-2-pentanone. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ- qualify 1,4-dioxane and 4-methyl-2-pentanone in above samples.			
	The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for tetrahydrofuran (22%), tetrachloroethylene (21%), 1,1,2-trichloroethane (21%), 1,3- dichloropropane (21%), and 1,2-dibromoethane (21%). UJ- qualify these analytes in LR-MW-124.			
	The continuing calibration did not meet the minimum RRF for 1,4-dioxane and 4-methyl-2-pentanone. The continuing calibration standard did not meet the %D method criteria for dichlorodifluoromethane (30%), choromethane (31%), acetone (- 23%), 1,2-dibromo-3-chloropropane (-35%), hexachlorobutadiene (39%), and naphthalene (-27%). UJ-qualify the above-listed analytes in MW-700, MW-702S, MW-702D, and LR-MW-129.			
	The initial calibration, associated with samples MW-709D, MW- 709DDP, and Trip Blank-01 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00094) as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4- dioxane in above samples.			
	The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for 2-butanone (-27%), 1,4-dioxane (50%), and hexachlorobutadiene (24%). UJ-qualify the above-listed analytes in MW-709D, MW-709DDP, and Trip Blank-01.			

		Analysis		
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Other Issues	None	None	None	None

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Katie Weaver Date: 6/14/2013

Site Name: Bird Machine Project Number: 0146790000.00010 Laboratory Name: Alpha Analytical SDG Number: L1309729 AMEC Sample IDs: MW-701, MW-702B, NP-MW-601, NP-MW-602, NP-MW-602DP, MW-714D, MW-709S, MW-710S, MW-710M, MB-MW-362, TRIP BLANK-02

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Chloride – 300, Nitrate – 300, and Sulfate - 300	
Chain of Custody				
Sample Receipt (Preservation & Temperature)				
Holding Time				
Trip Blank		NA	NA	
Method Blanks				
MS/MSD	An MS/MSD was not submitted for this SDG.	An MS/MSD was not submitted for this SDG.	Sample MW-714D was submitted as the source for the MS.	
LCS/LCSD	 1,4-Dioxane (135%) recovered above acceptance criteria in the LCS. 1,4-Dioxane is ND in the associated sample and not impacted by the high bias; no qualifications are necessary. Naphthalene recovered below acceptance criteria in the LCS/LCSD at 69%/66%. UJ-qualify naphthalene in all samples due to the low bias. 	(LCS only)	(LCS only)	
Field Duplicates	Sample NP-MW-602DP was submitted as the field duplicate of sample NP-MW-602. All results were ND.	A field duplicate was not submitted for this analysis.	Sample NP-MW-602DP was submitted as the field duplicate of sample NP-MW-602.	
Laboratory Duplicate	NA	NA	The lab used sample MW-714D as the lab duplicate.	

	Analysis				
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Chloride – 300, Nitrate – 300, and Sulfate - 300		
Surrogate Recoveries		NA	NA		
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-701, MW-702B, NP-MW-601, NP-MW-602, NP-MW-602DP, MW-714D, MW-709S, MW-710S, MW-710M, MB-MW-362, TRIP BLANK-02 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00117), as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration standard did not meet the %D method criteria for dichlorodifluoromethane (-22%), vinyl chloride (-23%), bromomethane (29%), trichlorofluoromethane (-26%), acetone (-28%), 2,2-dichloropropane (-30%), 1,1,1-trichloroethane (-22%), 1,4-dioxane (-35%), bromoform (24%), 1,2,2-tetrachloroethane (26%), 1,2,3-trichlorobenzene (24%), naphthalene (31%), and 1,2,3-trichlorobenzene (28%). J- or UJ-qualify these analytes in all above samples.				
Other Issues	None	None	None		

NA = Not Applicable

ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

 $R=\mbox{Data}$ is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: <u>Katie Weaver</u> Date: <u>6/14/2013</u>

Site Name: Bird Machine Project Number: 0146790000.00010 Laboratory Name: Alpha Analytical SDG Number: L1309824 AMEC Sample IDs: NP-MW-603, MW-706S, MW-707D, MW-707DDP, MW-708B, MW-708D, MW-710D, MW-710B, MB-MW-363 and TRIP BLANK-03

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	
Chain of Custody				
Sample Receipt (Preservation & Temperature)	Samples were received at 6.5° C. However, the samples were transported to the laboratory on ice directly from the sampling site. No qualifications are necessary.	Samples were received at 6.5° C. However, the samples were transported to the laboratory on ice directly from the sampling site. No qualifications are necessary.	Samples were received at 6.5° C. However, the samples were transported to the laboratory on ice directly from the sampling site. No qualifications are necessary.	
Holding Time				
Trip Blank		NA	NA	
Method Blanks				
MS/MSD	An MS/MSD was not submitted for this analysis.	An MS/MSD was not submitted for this analysis.	The lab used sample MW-708D as the source for the MS.	
LCS/LCSD	 1,4-Dioxane (139%) recovered high in the LCS. 1,4-Dioxane is ND in the associated samples and not impacted by the high bias. 1,1,2,2-Tetrachloroethane (69%/66%), 1,2,3-trichloropropane (LCSD at 67%), 1,2-dibromo-3-chloropropane (68%/63%), naphthalene (63%/59%), 1,2,3-trichlorobenzene (67%/62%), and 1,2,4-trichlorobenzene (LCSD at 68%) recovered low in the LCS and/or LCSD. UJ-qualify these analytes in samples NP-MW-603, MW-707D, MW-707DDP, MW-708B, MW-708D, MW-710D, MW-710B, MB-MW-363 and TRIP BLANK-03 due to the low bias. 		(LCS only)	
Field Duplicates	Sample MW-707DDP was submitted as the field duplicate of sample MW-707D.	A field duplicate was not submitted for this analysis.	Sample MW-707DDP was submitted as the field duplicate of sample MW- 707D.	

Data Reviewed	Analysis		
	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Laboratory Duplicate	NA	NA	The lab used sample MW-708D as the lab duplicate.
Surrogate Recoveries		NA	NA
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples NP-MW-603, MW-707D, MW- 707DDP, MW-708B, MW-708D, MW-710D, MW-710B, MB-MW-363 and TRIP BLANK-03 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4-dioxane (0.00117), as well as the average response factor for 1,4-dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane and 4- methyl-2-pentanone. The continuing calibration standard did not meet the %D method criteria for bromomethane (30%), tetrahydrofuran (22%), 1,4-dioxane (- 39%), 4-methyl-2-pentanone (22%), 1,1,2-trichloroethane (21%), 2-hexanone (21%), bromoform (29%), 1,1,2,2-tetrachloroethane (31%), 1,2,3-trichloropropane (29%), 1,2-dibromo-3-chloropropane (31%), 1,2,4-trichlorobenzene (28%), naphthalene (37%), and 1,2,3-trichlorobenzene (33%). UJ-qualify these analytes in all above samples.		
Other Issues	None	None	None

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Katie Weaver Date: 6/11/2013

MCP Presumptive Certainty Data Usability Assessment

Site Name: Bird Machine Project Number: 0146790000.00010 Laboratory Name: Alpha Analytical SDG Number: L1309965 AMEC Sample IDs: MW-711S, MW-711SDP, MW-711D, MB-MW-374, MW-712S, MW-714S, MW-713S, MW-713D, TRIP BLANK-04

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Chloride – 300, Nitrate – 300, and Sulfate - 300	
Chain of Custody				
Sample Receipt (Preservation & Temperature)				
Holding Time				
Trip Blank		NA	NA	
Method Blanks				
MS/MSD	 MW-711S was submitted as the source for the MS/MSD. 1,2-Dibromo- 3-chloropropane (MS at 65%), naphthalene (MS at 67%), and 1,4- dioxane (MS at 40%) recovered below acceptance criteria in the MS and/or MSD. UJ-qualify 1,2-dibromo-3chloropropane, naphthalene, and 1,4-dioxane in MW-711S and MW-711SDP due to the low bias. Acetone (0%/0%) and 2-butanone (0%/0%) concentrations fell below the reported detection limits. UJ-qualify due to the potential low bias. Hexachlorobutadiene recovered above acceptance criteria in the MSD at 137%. In addition, the MS/MSD RPDs are above the acceptance criteria for 1,2-dibromo-3-chloropropane (28%) and 1,4-dioxane (100%). Results were ND in the associated samples and not impacted by the high and non-directional bias. 	An MS/MSD was not submitted for this analysis.	MW-711S was submitted as the source for the MS/MSD.	
LCS/LCSD	2-Butanone recovered low in the LCS at 68%. UJ-qualify 2-butanone in samples MW-711S, MW-711SDP, MW-711D, MB-MW-374, MW- 712S, MW-714S, MW-713S, MW-713D, TRIP BLANK-04 due to the low bias. 1,4-Dioxane (149%/168%) recovered high in the LCS/LCSD. The	(LCS only)	(LCS only)	

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Chloride – 300, Nitrate – 300, and Sulfate - 300	
	LCS/LCSD RPDs for 2-butanone (25%) and 1,2-dibromo-3- chloropropane (25%) recovered above acceptance criteria. 2-Butanone, 1,2-dibromo-2-chloropropane, and 1,4-dioxane are ND in the associated samples and not impacted by the high bias or non-directional bias.			
Field Duplicates	Sample MW-711SDP was submitted as the field duplicate of sample MW-711S. All results were ND.	A field duplicate was not submitted for this analysis.	Sample MW-711SDP was submitted as the field duplicate of sample MW-711S.	
Laboratory Duplicate	NA	NA	The lab used sample MW-711S as the lab duplicate.	
Surrogate Recoveries		NA	NA	
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-711S, MW-711SDP, MW-711D, MB-MW-374, MW-712S, MW-714S, MW-713S, MW- 713D, TRIP BLANK-04 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4- dioxane (0.00094), as well as the average response factor for 1,4- dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for 2-butanone (-32%), 1,4-dioxane (49%), 1,2-dibromo-3-chloropropane (- 22%), and hexachlorobutadiene (22%). UJ-qualify these analytes in all above samples.			
Other Issues	None	None	None	

Notes:

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use UJ = Reporting limit is considered estimated U = Non-detect

Data Reviewer: Katie Weaver Date: 6/13/2013

MCP Presumptive Certainty Data Usability Assessment

Site Name: <u>Bird Machine</u> Project Number: <u>0146790000.00010</u> Laboratory Name: <u>Alpha Analytical</u> SDG Number: <u>L1310057</u> AMEC Sample IDs: <u>MW-705S, MW-704D, MW-715D, MW-715S, MB-MW-361, MB-MW-360, and TRIP BLANK-05</u>

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Chain of Custody				
Sample Receipt (Preservation & Temperature)				
Holding Time				
Trip Blank		NA	NA	NA
Method Blanks				
MS/MSD	An MS/MSD was not submitted with this SDG.	An MS/MSD was not submitted with this SDG.	An MS/MSD was not submitted with this SDG.	An MS/MSD was not submitted with this SDG.
	2-Butanone recovered low in the LCS at 68%. UJ-qualify 2- butanone in samples MW-704D, MW-715D, MW-715S, MB- MW-361, MB-MW-360, and TRIP BLANK-05 due to the low bias.			
LCS/LCSD	1,4-Dioxane (149%/168%) recovered high in the LCS/LCSD. The LCS/LCSD RPDs for 2-butanone (25%) and 1,2-dibromo-3- chloropropane (25%) were above acceptance criteria. 2- Butanone, 1,2-dibromo-2-chloropropane, and 1,4-dioxane are ND in the associated samples and not impacted by the high bias or non-directional bias.	(LCS only)		(LCS only)
Field Duplicates	A field duplicate was not submitted with this SDG.	A field duplicate was not submitted with this SDG.	A field duplicate was not submitted with this SDG.	A field duplicate was not submitted with this SDG.

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Gases (Methane, Ethene, and Ethane) - RSK-175	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Laboratory Duplicate	NA	NA	NA	NA
Surrogate Recoveries		NA	NA	NA
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-704D, MW- 715D, MW-715S, MB-MW-361, MB-MW-360, and TRIP BLANK-05 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 1,4- dioxane (0.00094), as well as the average response factor for 1,4- dioxane. 1,4-Dioxane is a known difficult analyte with poor purging efficiency. UJ-qualify 1,4-dioxane in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane. The continuing calibration standard did not meet the %D method criteria for 2-butanone (-32%), 1,4-dioxane (49%), 1,2-dibromo-3-chloropropane (-22%), and hexachlorobutadiene (22%). UJ-qualify these analytes in all above samples.			
Other Issues	None	None	None	None

Notes:

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Katie Weaver Date: 6/13/2013

MCP Presumptive Certainty Data Usability Assessment

Site Name: <u>Bird Machine</u> Project Number: <u>0146790000.00010</u> Laboratory Name: <u>Alpha Analytical</u> SDG Number: <u>L1310183</u> AMEC Sample IDs: <u>MW-704S</u>, <u>MW-703</u>, and <u>TRIP BLANK-06</u>

	Analysis			
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300	
Chain of Custody				
Sample Receipt (Preservation & Temperature)				
Holding Time				
Trip Blank		NA	NA	
Method Blanks				
MS/MSD	An MS/MSD was not submitted for this SDG.	An MS/MSD was not submitted for this SDG.	Sample MW-704S was submitted as the source for the MS.	
LCS/LCSD	1,4-Dioxane (141%) recovered above acceptance criteria in the LCSD. The LCS/LCSD RPD for 2-butanone recovered above acceptance criteria at 25%. 1,4-Dioxane and 2-butanone are ND in the associated samples and are not impacted by the high and non- directional bias. 2-Butanone (64%) recovered below acceptance criteria in the LCSD. UJ-Qualify 2-butanone in MW-704S due to the low bias.		(LCS only)	
Field Duplicates	A field duplicate was not submitted with this SDG.	A field duplicate was not submitted with this SDG.	A field duplicate was not submitted with this SDG.	
Laboratory Duplicate	NA	NA	The lab used sample MW-704S as the lab duplicate.	
Surrogate Recoveries		NA	NA	

	Analysis		
Data Reviewed	VOCS – 8260C	Dissolved Arsenic – 6020A	Chloride – 300, Nitrate – 300, and Sulfate - 300
Calibration Issues (Deficiencies noted in Narrative)	The initial calibration, associated with samples MW-704S and TRIP BLANK-06 did not meet the method required minimum relative response factor (RRF) for the lowest calibration standard for 4- methyl-2-pentanone (0.08307) and 1,4-dioxane (0.00137), as well as the average response factor for 4-methyl-2-pentanone and 1,4- dioxane. 1,4-Dioxane and 4-methyl-2-pentanone are known difficult analytes with poor purging efficiency. UJ-qualify 1,4-dioxane and 4-methyl-2-pentanone in above samples. The continuing calibration did not meet the minimum RRF for 1,4-dioxane and 4-methyl-2- pentanone. The continuing calibration standard did not meet the %D method criteria for bromomethane (-23%) and naphthalene (-26%). UJ-qualify these analytes in all above samples.		
Other Issues	None	None	None

Notes:

NA = Not Applicable ND = Non Detect

RPD = Relative Percent Difference

= Data Reviewed is to be considered acceptable within MCP criteria and without qualification

Qualifiers:

J = Estimated

R = Data is rejected and not suitable for use

UJ = Reporting limit is considered estimated

U = Non-detect

Data Reviewer: Katie Weaver Date: 6/14/2013

Laboratory Report Documentation RTN 4-3024222 Former Bird Machine Company Site Walpole, MA

Full copies of the laboratory analytical reports are available from the Massachusetts Department of Environmental Protection website at: http://public.dep.state.ma.us/SearchableSites2/Search.aspx